Certain embodiments of the present invention pertain to systems for tracking and analyzing welding activity, and more particularly, to systems that capture weld data in real time (or near real time) for analysis and review. Additionally, the embodiments of the present invention provide a system for marking portions of a welded article by indicating possible discontinuities or flaws within the weld joint.
In many applications, ascertaining the quality of weld joints is critical to the use and operation of a machine or structure incorporating a welded article. In some instances, x-raying or other nondestructive testing is needed to identify potential flaws within one or more welded joints. However, non-destructive testing can be cumbersome to use, and typically lags the welding process until the inspector arrives to complete the testing. Additionally, it may not be effective for use with all weld joint configurations. Moreover, non-destructive testing does not provide any information about how the weld was completed. In welding applications where identifying waste is vital to producing cost effective parts, non-destructive testing provides no insight into problems like overfill.
Further limitations and disadvantages of conventional, traditional, and proposed approaches will become apparent to one of skill in the art, through comparison of such approaches with the subject matter of the present application as set forth in the remainder of the present application with reference to the drawings.
The embodiments of the present invention pertain to a system for tracking and analyzing welding activity. The system may be used in conjunction with a welding power supply and includes a sensor array and logic processor-based technology that captures performance data (dynamic spatial properties) as the welder performs various welding activities. The system functions to evaluate the data via an analysis engine for determining weld quality in real time (or near real time). The system also functions to store and replay data for review at a time subsequent to the welding activity thereby allowing other users of the system to review the performance activity of the welding process.
These and other novel features of the subject matter of the present application, as well as details of illustrated embodiments thereof, will be more fully understood from the following description and drawings.
Referring again to the drawings wherein the showings are for purposes of illustrating embodiments of the invention only and not for purposes of limiting the same,
In one embodiment, the system 100 tracks movement or motion (i.e., position and orientation over time) of a welding tool 230, which may be, for example, an electrode holder or a welding torch. Accordingly, the system 100 is used in conjunction with a welding system 200 including a welding power supply 210, a welding torch 230, and welding cables 240, along with other welding equipment and accessories. As a welder 10, i.e. end user 10, performs welding activity in accordance with a welding process, the system 100 functions to capture performance data from real world welding activity as sensed by sensors 160, 165 (see
In accordance with an embodiment of the present invention, the system 100 for tracking and analyzing welding activity includes the capability to automatically sense dynamic spatial properties (e.g., positions, orientations, and movements) of a welding tool 230 during a manual welding process producing a weld 16 (e.g., a weld joint). The system 100 further includes the capability to automatically track the sensed dynamic spatial properties of the welding tool 230 over time and automatically capture (e.g., electronically capture) the tracked dynamic spatial properties of the welding tool 230 during the manual welding process.
The system 100 also includes the capability to automatically analyze the tracked data to determine performance characteristics of a welder 10 performing the manual welding process and quality characteristics of a weld 16 produced by the welding process. The system 100 allows for the performance characteristics of the welder 10 and the quality characteristics of the weld to be reviewed. The performance characteristics of a welder 10 may include, for example, a weld joint trajectory, a travel speed of the welding tool 230, welding tool pitch and roll angles, an electrode distance to a center weld joint, an electrode trajectory, and a weld time. The quality characteristics of a weld produced by the welding process may include, for example, discontinuities and flaws within certain regions of a weld produced by the welding process.
The system 100 further allows a user (e.g., a welder 10) to locally interact with the system 100. In accordance with another embodiment of the present invention, the system 100 allows a remotely located user to remotely interact with the system 100. In either scenario, the system 100 may automatically authorize access to a user of the system 100, assuming such authorization is warranted.
In accordance with an embodiment of the present invention, the system 100 for tracking and analyzing welding activity includes a processor based computing device 110 configured to track and analyze dynamic spatial properties (e.g., positions, orientations, and movements) of a welding tool 230 over time during a manual welding process producing a weld 16. The system 100 further includes at least one sensor array 160, 165 operatively interfacing to the processor based computing device 110 (wired or wirelessly) and configured to sense the dynamic spatial properties of a welding tool 230 during a manual welding process producing a weld 16. The system 100 also includes at least one user interface operatively interfacing to the processor based computing device 110. The user interface may include a graphical user interface 135 and/or a display device (e.g., a display 130 or a welding display helmet 180 where a display is integrated into a welding helmet as illustrated in
In accordance with an embodiment of the present invention, a method 500 (see
The method 500 may initially include selecting welding set up parameters for the welding process via a user interface 135 as part of step 510. The method may also include outputting the performance characteristics of the welder 10 and/or the quality characteristics of a weld to a remote location and remotely viewing the performance characteristics and/or the quality characteristics via a communication network 300 (see
The system 100 for tracking and analyzing welding activity comprises hardware and software components, in accordance with an embodiment of the present invention. In one embodiment, the system 100 incorporates electronic hardware. More specifically, system 100 may be constructed, at least in part, from electronic hardware 150 (see
Other embodiments are contemplated wherein the system 100 is incorporated into the welding system 200. More specifically, the components comprising the system 100 may be integrated into the welding power supply 210 and/or weld torch 230. For example, the processor based computing device 110 may be received internal to the housing of the welding power supply 210 and may share a common power supply with other systems located therein. Additionally, sensors 160, 165, used to sense the weld torch 230 dynamic spatial properties, may be integrated into the weld torch handle.
The system 100 may communicate with and be used in conjunction with other similarly or dissimilarly constructed systems. Input to and output from the system 100, termed I/O, may be facilitated by networking hardware and software including wireless as well as hard wired (directly connected) network interface devices. Communication to and from the system 100 may be accomplished remotely as through a network 300 (see
In one embodiment, remote communications are used to provide virtual instruction by personnel, i.e. remote or offsite users, not located at the welding site. Reconstruction of the welding process is accomplished via networking. Data representing a particular weld may be sent to another similar or dissimilar system 100 capable of displaying the weld data (see
The processor based computing device 110 further includes support circuitry including electronic memory devices, along with other peripheral support circuitry that facilitate operation of the one or more logic processor(s), in accordance with an embodiment of the present invention. Additionally, the processor based computing device 110 may include data storage, examples of which include hard disk drives, optical storage devices and/or flash memory for the storage and retrieval of data. Still any type of support circuitry may be used with the one or more logic processors as chosen with sound engineering judgment. Accordingly, the processor based computing device 110 may be programmable and operable to execute coded instructions in a high or low level programming language. It should be noted that any form of programming or type of programming language may be used to code algorithms as executed by the system 100.
With reference now to
In one embodiment, the system 100 functions to capture performance data of the end user 10 for manual activity as related to the use of tools or hand held devices. In the accompanying figures, welding, and more specifically, arc welding is illustrated as performed by the end user 10 on a weldment 15 (e.g., a weld coupon). The welding activity is recorded by the system 100 in real time or near-real time for tracking and analysis purposes mentioned above by a real time tracking module 121 and an analysis module 122, respectively (see
The data captured and entered into the system 100 is used to determine the quality of the real world weld joint. Persons of ordinary skill in the art will understand that a weld joint may be analyzed by various processes including destructive and non-destructive methods, examples of which include sawing/cutting or x-raying of the weld joint respectively. In prior art methods such as these, trained or experienced weld personnel can determine the quality of a weld performed on a weld joint. Of course, destructive testing renders the weldment unusable and thus can only be used for a sampling or a subset of welded parts. While non-destructive testing, like x-raying, do not destroy the welded article, these methods can be cumbersome to use and the equipment expensive to purchase. Moreover, some weld joints cannot be appropriately x-rayed, i.e. completely or thoroughly x-rayed. By way of contrast, system 100 captures performance data during the welding process that can be used to determine the quality of the welded joint. More specifically, system 100 is used to identify potential discontinuities and flaws within specific regions of a weld joint. The captured data may be analyzed by an experienced welder or trained professional (e.g., a trainer 123, see
Performance data may be stored electronically in a database 140 (see
In another embodiment, data captured and stored in the database 140 is analyzed by an analyzing module 122 (a.k.a., an analysis engine) of the system 100. The analyzing module 122 may comprise a computer program product executed by the processor based computing device 110. The computer program product may use artificial intelligence. In one particular embodiment, an expert system may be programmed with data derived from a knowledge expert and stored within an inference engine for independently analyzing and identifying flaws within the weld joint. By independently, it is meant that the analyzing module 122 functions independently from the analyzing user to determine weld quality. The expert system may be ruled-based and/or may incorporate fuzzy logic to analyze the weld joint. In this manner, areas along the weld joint may be identified as defective, or potentially defective, and marked for subsequent review by an analyzing user. Determining weld quality and/or problem areas within the weld joint may be accomplished by heuristic methods. As the system 100 analyzes welding processes of the various end users over repeated analyzing cycles, additional knowledge may be gained by the system 100 for determining weld quality.
A neural network or networks may be incorporated into the analysis engine 122 of the system 100 for analyzing data to determine weld quality, weld efficiency and/or weld flaws or problems. Neural networks may comprise software programming that simulates decision making capabilities. In one embodiment, the neural network(s) may process data captured by the system 100 making decisions based on weighted factors. It is noted that the neural network(s) may be trained to recognize problems that may arise from the weld torch position and movement, as well as other critical welding factors. Therefore, as data from the welding process is captured and stored, the system 100 may analyze the data for identifying the quality of the weld joint. Additionally, the system 100 may provide an output device 170 (see
In capturing performance data, the system 100 incorporates a series of sensors, also referred to as sensor arrays 160, 165 (see
In one embodiment, part of the sensor arrays 160, 165 are received by the weld torch 230. That is to say that a portion of the sensors or sensor elements are affixed with respect to the body of the weld torch 230 (see sensor array 160165 of
As an example of sensing and tracking a welding tool 230, in accordance with an embodiment of the present invention, a magnetic sensing capability may be provided. For example, the receiver sensor array 165 may be a magnetic sensor that is mounted on the welding tool 230, and the emitter sensor array 160 may take the form of a magnetic source. The magnetic source 160 may be mounted in a predefined fixed position and orientation with respect to the weldment 15. The magnetic source 160 creates a magnetic field around itself, including the space encompassing the welding tool 230 during use and establishes a 3D spatial frame of reference. The magnetic sensor 165 is provided which is capable of sensing the magnetic field produced by the magnetic source. The magnetic sensor 165 is attached to the welding tool 230 and is operatively connected to the processor based computing device 110 via, for example, a cable, or wirelessly. The magnetic sensor 165 includes an array of three induction coils orthogonally aligned along three spatial directions. The induction coils of the magnetic sensor 165 each measure the strength of the magnetic field in each of the three directions and provide that information to the real time tracking module 121 of the processor based computing device 110. As a result, the system 100 is able to know where the welding tool 230 is in space with respect to the 3D spatial frame of reference established by the magnetic field produced by the magnetic source 160. In accordance with other embodiments of the present invention, two or more magnetic sensors may be mounted on or within the welding tool 230 to provide a more accurate representation of the position and orientation of the welding tool 230, for example. Care is to be taken in establishing the magnetic 3D spatial frame of reference such that the weldment 15, the tool 230, and any other portions of the welding environment do not substantially distort the magnetic field created by the magnetic source 160. As an alternative, such distortions may be corrected for or calibrated out as part of a welding environment set up procedure. Other non-magnetic technologies (e.g., acoustic, optical, electromagnetic, inertial, etc.) may be used, as previously discussed herein, to avoid such distortions, as are well known in the art.
With reference to all of the figures, operation of the system 100 will now be described in accordance with an embodiment of the present invention. The end user 10 activates the system 100 and enters his or her user name via the user interface 135. Once authorized access has been gained, the end user 10 traverses the menu system as prompted by the computer program product 120 via the GUI 135. The system 100 instructs the end user 10 to initiate set up of the welding article 15, which includes entering information about the weldment materials and/or welding process being used. Entering such information may include, for example, selecting a language, entering a user name, selecting a weld coupon type, selecting a welding process and associated axial spray, pulse, or short arc methods, selecting a gas type and flow rate, selecting a type of stick electrode, and selecting a type of flux cored wire.
In one embodiment, the end user enters the starting and ending points of the weld joint 16. This allows the system 100, via the real time tracking module 121, to determine when to start and stop recording the tracked information. Intermediate points are subsequently entered for interpolating the weld joint trajectory as calculated by the system 100. Additionally, sensor emitters and/or receivers 160, 165 are placed proximate to the weld joint at locations suitable for gathering data in a manner consistent with that described herein. After set up is completed, system tracking is initiated and the end user 10 is prompted to begin the welding procedure. As the end user 10 completes the weld, the system 100 gathers performance data including the speed, position and orientation of the weld torch 230 for analysis by the system 100 in determining welder performance characteristics and weld quality characteristics as previously described herein.
In summary, a system and a method for tracking and analyzing welding activity is disclosed. Dynamic spatial properties of a welding tool are sensed during a welding process producing a weld. The sensed dynamic spatial properties are tracked over time and the tracked dynamic spatial properties are captured as tracked data during the welding process. The tracked data is analyzed to determine performance characteristics of a welder performing the welding process and quality characteristics of a weld produced by the welding process. The performance characteristics and the quality characteristics may be subsequently reviewed.
While the claimed subject matter of the present application has been described with reference to certain embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the scope of the claimed subject matter. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the claimed subject matter without departing from its scope. Therefore, it is intended that the claimed subject matter not be limited to the particular embodiment disclosed, but that the claimed subject matter will include all embodiments falling within the scope of the appended claims.
More than one reissue application has been filed for the reissue of U.S. Pat. No. 8,274,013. This application is for reissue of U.S. Pat. No. 8,274,013, and is a continuation reissue of application Ser. No. 14/177,692, which is an application for reissue of U.S. Pat. No. 8,274,013, which claims priority to and the benefit of U.S. provisional patent application No. 61/158,578 filed Mar. 9, 2009, and which is incorporated herein by reference in its entirety. This U.S. patent application claims priority to and the benefit of U.S. provisional patent application Ser. No. 61/158,578 which was filed on Mar. 9, 2009, and which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
317063 | Wittenstrom | May 1885 | A |
428459 | Oopfin | May 1890 | A |
483428 | Goppin | Sep 1892 | A |
1159119 | Springer | Nov 1915 | A |
D140630 | Garibay | Mar 1945 | S |
D142377 | Dunn | Sep 1945 | S |
D152049 | Welch | Dec 1948 | S |
2681969 | Burke | Jun 1954 | A |
D174208 | Abidgaard | Mar 1955 | S |
2728838 | Barnes | Dec 1955 | A |
D176942 | Cross | Feb 1956 | S |
2894086 | Rizer | Jul 1959 | A |
3035155 | Hawk | May 1962 | A |
3059519 | Stanton | Oct 1962 | A |
3356823 | Waters | Dec 1967 | A |
3555239 | Kerth | Jan 1971 | A |
3621177 | McPherson et al. | Nov 1971 | A |
3654421 | Streetman et al. | Apr 1972 | A |
3739140 | Rotilio | Jun 1973 | A |
3866011 | Cole et al. | Feb 1975 | A |
3867769 | Schow et al. | Feb 1975 | A |
3904845 | Minkiewicz et al. | Sep 1975 | A |
3988913 | Metcalfe et al. | Nov 1976 | A |
D243459 | Bliss | Feb 1977 | S |
4024371 | Drake | May 1977 | A |
4041615 | Whitehill | Aug 1977 | A |
D247421 | Driscoll | Mar 1978 | S |
4124944 | Blair | Nov 1978 | A |
4132014 | Schow | Jan 1979 | A |
4237365 | Lambros et al. | Dec 1980 | A |
4280041 | Kiessling et al. | Jul 1981 | A |
4280042 | Berger | Jul 1981 | A |
4280137 | Ashida et al. | Jul 1981 | A |
4314125 | Nakamura | Feb 1982 | A |
4354087 | Osterlitz | Oct 1982 | A |
4359622 | Dostoomian et al. | Nov 1982 | A |
4375026 | Kearney | Feb 1983 | A |
4410787 | Kremers | Oct 1983 | A |
4429266 | Traadt | Jan 1984 | A |
4452589 | Denison | Jun 1984 | A |
D275292 | Bouman | Aug 1984 | S |
D277761 | Korovin et al. | Feb 1985 | S |
4525619 | Ide et al. | Jun 1985 | A |
D280329 | Bouman | Aug 1985 | S |
4611111 | Baheti et al. | Sep 1986 | A |
4616326 | Meier et al. | Oct 1986 | A |
4629860 | Linbom | Dec 1986 | A |
4677277 | Cook et al. | Jun 1987 | A |
4680014 | Paton et al. | Jul 1987 | A |
4689021 | Vasiliev et al. | Aug 1987 | A |
4707582 | Beyer | Nov 1987 | A |
4716273 | Paton et al. | Dec 1987 | A |
D297704 | Bulow | Sep 1988 | S |
4867685 | Brush et al. | Sep 1989 | A |
4877940 | Bangs et al. | Oct 1989 | A |
4897521 | Burr | Jan 1990 | A |
4907973 | Hon | Mar 1990 | A |
4931018 | Herbst et al. | Jun 1990 | A |
4973814 | Kojima et al. | Nov 1990 | A |
4998050 | Nishiyama et al. | Mar 1991 | A |
5034593 | Rice et al. | Jul 1991 | A |
5061841 | Richardson | Oct 1991 | A |
5089914 | Prescott | Feb 1992 | A |
5192845 | Kirmsse et al. | Mar 1993 | A |
5206472 | Myking et al. | Apr 1993 | A |
5266930 | Ichikawa et al. | Nov 1993 | A |
5285916 | Ross | Feb 1994 | A |
5305183 | Teynor | Apr 1994 | A |
5320538 | Baum | Jun 1994 | A |
5337611 | Fleming et al. | Aug 1994 | A |
5360156 | Ishizaka et al. | Nov 1994 | A |
5360960 | Shirk | Nov 1994 | A |
5370071 | Ackermann | Dec 1994 | A |
D359296 | Witherspoon | Jun 1995 | S |
5424634 | Goldfarb et al. | Jun 1995 | A |
5436638 | Bolas et al. | Jul 1995 | A |
5464957 | Kidwell | Nov 1995 | A |
D365583 | Viken | Dec 1995 | S |
5562843 | Yasumoto | Oct 1996 | A |
5662822 | Tada | Sep 1997 | A |
5670071 | Ueyama et al. | Sep 1997 | A |
5676503 | Lang | Oct 1997 | A |
5676867 | Allen | Oct 1997 | A |
5708253 | Bloch et al. | Jan 1998 | A |
5710405 | Solomon et al. | Jan 1998 | A |
5719369 | White et al. | Feb 1998 | A |
D392534 | Degen | Mar 1998 | S |
5728991 | Takada et al. | Mar 1998 | A |
5751258 | Fergason et al. | May 1998 | A |
D395296 | Kaye et al. | Jun 1998 | S |
D396238 | Schmitt | Jul 1998 | S |
5781258 | Debral et al. | Jul 1998 | A |
5823785 | Matherne, Jr. | Oct 1998 | A |
5835077 | Dao et al. | Nov 1998 | A |
5835277 | Hegg | Nov 1998 | A |
5845053 | Watanabe | Dec 1998 | A |
5877777 | Colwell | Mar 1999 | A |
5963891 | Walker et al. | Oct 1999 | A |
6008470 | Zhang | Dec 1999 | A |
6037948 | Liepa | Mar 2000 | A |
6049059 | Kim | Apr 2000 | A |
6051805 | Vaidya et al. | Apr 2000 | A |
6114645 | Burgess | Sep 2000 | A |
6155475 | Ekelof et al. | Dec 2000 | A |
6155928 | Burdick | Dec 2000 | A |
6179619 | Tanaka | Jan 2001 | B1 |
6230327 | Briand et al. | May 2001 | B1 |
6236013 | Delzenne | May 2001 | B1 |
6236017 | Smartt et al. | May 2001 | B1 |
6242711 | Cooper | Jun 2001 | B1 |
6271500 | Hirayam et al. | Aug 2001 | B1 |
6330938 | Herve et al. | Dec 2001 | B1 |
6330966 | Eissfeller | Dec 2001 | B1 |
6331848 | Stove et al. | Dec 2001 | B1 |
D456428 | Aronson et al. | Apr 2002 | S |
6373465 | Jolly et al. | Apr 2002 | B2 |
D456828 | Aronson et al. | May 2002 | S |
D461383 | Blackburn | Aug 2002 | S |
6441342 | Hsu | Aug 2002 | B1 |
6445964 | White et al. | Sep 2002 | B1 |
6492618 | Flood et al. | Dec 2002 | B1 |
6506997 | Matsuyama | Jan 2003 | B2 |
6552303 | Blankenship et al. | Apr 2003 | B1 |
6560029 | Dobbie et al. | May 2003 | B1 |
6563489 | Latypov et al. | May 2003 | B1 |
6568846 | Cote et al. | May 2003 | B1 |
D475726 | Suga et al. | Jun 2003 | S |
6572379 | Sears et al. | Jun 2003 | B1 |
6583386 | Ivkovich | Jun 2003 | B1 |
6621049 | Suzuki | Sep 2003 | B2 |
6624388 | Blankenship et al. | Sep 2003 | B1 |
D482171 | Vui et al. | Nov 2003 | S |
6647288 | Madill et al. | Nov 2003 | B2 |
6649858 | Wakeman | Nov 2003 | B2 |
6655645 | Lu et al. | Dec 2003 | B1 |
6660965 | Simpson | Dec 2003 | B2 |
6697701 | Hillen et al. | Feb 2004 | B2 |
6697770 | Nagetgall | Feb 2004 | B1 |
6703585 | Suzuki | Mar 2004 | B2 |
6708385 | Lemelson | Mar 2004 | B1 |
6710298 | Eriksson | Mar 2004 | B2 |
6710299 | Blankenship et al. | Mar 2004 | B2 |
6715502 | Rome et al. | Apr 2004 | B1 |
D490347 | Meyers | May 2004 | S |
6730875 | Hsu | May 2004 | B2 |
6734393 | Friedl et al. | May 2004 | B1 |
6744011 | Hu et al. | Jun 2004 | B1 |
6750428 | Okamoto et al. | Jun 2004 | B2 |
6765584 | Wloka | Jul 2004 | B1 |
6772802 | Few | Aug 2004 | B2 |
6788442 | Potin et al. | Sep 2004 | B1 |
6795778 | Dodge et al. | Sep 2004 | B2 |
6798974 | Nakano et al. | Sep 2004 | B1 |
6857553 | Hartman et al. | Feb 2005 | B1 |
6858817 | Blankenship et al. | Feb 2005 | B2 |
6865926 | O'Brien et al. | Mar 2005 | B2 |
D504449 | Butchko | Apr 2005 | S |
6920371 | Hillen et al. | Jul 2005 | B2 |
6940037 | Kovacevic et al. | Sep 2005 | B1 |
6940039 | Blankepship et al. | Sep 2005 | B2 |
7021937 | Simpson et al. | Apr 2006 | B2 |
7024342 | Waite | Apr 2006 | B1 |
7126078 | Demers et al. | Oct 2006 | B2 |
7132617 | Lee et al. | Nov 2006 | B2 |
7170032 | Flood | Jan 2007 | B2 |
7194447 | Harvey et al. | Mar 2007 | B2 |
7247814 | Ott | Jul 2007 | B2 |
D555446 | Ibarrondo et al. | Nov 2007 | S |
7315241 | Daily et al. | Jan 2008 | B1 |
D561973 | Kinsley et al. | Feb 2008 | S |
7353715 | Myers | Apr 2008 | B2 |
7363137 | Brant et al. | Apr 2008 | B2 |
7375304 | Kainec et al. | May 2008 | B2 |
7381923 | Gordon et al. | Jun 2008 | B2 |
7414595 | Muffler | Aug 2008 | B1 |
7465230 | LeMay et al. | Dec 2008 | B2 |
7478108 | Townsend et al. | Jan 2009 | B2 |
D587975 | Aronson et al. | Mar 2009 | S |
7516022 | Lee et al. | Apr 2009 | B2 |
7580821 | Schirm | Aug 2009 | B2 |
D602057 | Osicki | Oct 2009 | S |
7621171 | O'Brien | Nov 2009 | B2 |
D606102 | Bender et al. | Dec 2009 | S |
7643890 | Hillen et al. | Jan 2010 | B1 |
7687741 | Kainec et al. | Mar 2010 | B2 |
D614217 | Peters et al. | Apr 2010 | S |
D615573 | Peters et al. | May 2010 | S |
7817162 | Bolick et al. | Oct 2010 | B2 |
7853645 | Brown | Dec 2010 | B2 |
D631074 | Peters et al. | Jan 2011 | S |
7874921 | Baszucki et al. | Jan 2011 | B2 |
7970172 | Hendrickson | Jun 2011 | B1 |
7972129 | O'Donoghue | Jul 2011 | B2 |
7991587 | Ihn | Aug 2011 | B2 |
8069017 | Hallquist | Nov 2011 | B2 |
8224881 | Spear et al. | Jul 2012 | B1 |
8248324 | Nangle | Aug 2012 | B2 |
8265886 | Bisiaux et al. | Sep 2012 | B2 |
8274013 | Wallace | Sep 2012 | B2 |
8287522 | Moses et al. | Oct 2012 | B2 |
8316462 | Becker et al. | Nov 2012 | B2 |
8363048 | Gering | Jan 2013 | B2 |
8365603 | Lesage et al. | Feb 2013 | B2 |
8512043 | Choquet | Aug 2013 | B2 |
8569646 | Daniel et al. | Oct 2013 | B2 |
8657605 | Wallace | Feb 2014 | B2 |
8680434 | Stoger | Mar 2014 | B2 |
8747116 | Zboray | Jun 2014 | B2 |
8777629 | Kreindl et al. | Jul 2014 | B2 |
RE45062 | Maguire, Jr. | Aug 2014 | E |
8851896 | Wallace | Oct 2014 | B2 |
8860760 | Chen | Oct 2014 | B2 |
RE45398 | Wallace | Mar 2015 | E |
8992226 | Leach | Mar 2015 | B1 |
9011154 | Kindig | Apr 2015 | B2 |
9293056 | Zboray | Mar 2016 | B2 |
9293057 | Zboray | Mar 2016 | B2 |
9318026 | Peters | Apr 2016 | B2 |
9323056 | Williams | Apr 2016 | B2 |
9761153 | Zboray et al. | Sep 2017 | B2 |
9767712 | Postlethwaite | Sep 2017 | B2 |
9779636 | Zboray et al. | Oct 2017 | B2 |
9818312 | Zboray et al. | Nov 2017 | B2 |
9836994 | Kinding et al. | Dec 2017 | B2 |
9911359 | Wallace | Mar 2018 | B2 |
9911360 | Wallace | Mar 2018 | B2 |
9928755 | Wallace et al. | Mar 2018 | B2 |
20010045808 | Hietmann et al. | Nov 2001 | A1 |
20010052893 | Jolly et al. | Dec 2001 | A1 |
20020032553 | Simpson et al. | Mar 2002 | A1 |
20020046999 | Veikkolainen | Apr 2002 | A1 |
20020050984 | Roberts | May 2002 | A1 |
20020085843 | Mann | Jul 2002 | A1 |
20020175897 | Pelosi | Nov 2002 | A1 |
20030000931 | Ueda | Jan 2003 | A1 |
20030023592 | Modica et al. | Jan 2003 | A1 |
20030025884 | Hamana et al. | Feb 2003 | A1 |
20030069866 | Ohno | Apr 2003 | A1 |
20030075534 | Okamoto et al. | Apr 2003 | A1 |
20030106787 | Santilli | Jun 2003 | A1 |
20030111451 | Blankenship et al. | Jun 2003 | A1 |
20030172032 | Choquet | Sep 2003 | A1 |
20030186199 | McCool | Oct 2003 | A1 |
20030234885 | Pilu | Dec 2003 | A1 |
20040020907 | Zauner et al. | Feb 2004 | A1 |
20040035990 | Ackeret | Feb 2004 | A1 |
20040050824 | Samler | Mar 2004 | A1 |
20040088071 | Kouno | May 2004 | A1 |
20040140301 | Blankenship et al. | Jul 2004 | A1 |
20040181382 | Hu et al. | Sep 2004 | A1 |
20040217096 | Lipnevicius | Nov 2004 | A1 |
20050007504 | Fergason | Jan 2005 | A1 |
20050017152 | Fergason | Jan 2005 | A1 |
20050029326 | Henrikson | Feb 2005 | A1 |
20050046584 | Breed | Mar 2005 | A1 |
20050050168 | Wen et al. | Mar 2005 | A1 |
20050101767 | Clapham et al. | May 2005 | A1 |
20050103766 | Iizuka et al. | May 2005 | A1 |
20050103767 | Kainec et al. | May 2005 | A1 |
20050109735 | Flood | May 2005 | A1 |
20050128186 | Shahoian et al. | Jun 2005 | A1 |
20050133488 | Blankenship et al. | Jun 2005 | A1 |
20050159840 | Lin et al. | Jul 2005 | A1 |
20050163364 | Beck et al. | Jul 2005 | A1 |
20050189336 | Ku | Sep 2005 | A1 |
20050199602 | Kaddani et al. | Sep 2005 | A1 |
20050230573 | Ligertwood | Oct 2005 | A1 |
20050252897 | Hsu | Nov 2005 | A1 |
20050275913 | Vesely et al. | Dec 2005 | A1 |
20050275914 | Vesely et al. | Dec 2005 | A1 |
20060014130 | Weinstein | Jan 2006 | A1 |
20060076321 | Maev et al. | Apr 2006 | A1 |
20060136183 | Choquet | Jun 2006 | A1 |
20060142656 | Malackowski et al. | Jun 2006 | A1 |
20060154226 | Maxfield | Jul 2006 | A1 |
20060163227 | Hillen et al. | Jul 2006 | A1 |
20060163228 | Daniel | Jul 2006 | A1 |
20060166174 | Rowe et al. | Jul 2006 | A1 |
20060169682 | Kainec et al. | Aug 2006 | A1 |
20060173619 | Brant et al. | Aug 2006 | A1 |
20060189260 | Sung | Aug 2006 | A1 |
20060207980 | Jacovetty et al. | Sep 2006 | A1 |
20060213892 | Ott | Sep 2006 | A1 |
20060214924 | Kawamoto et al. | Sep 2006 | A1 |
20060226137 | Huismann et al. | Oct 2006 | A1 |
20060252543 | Van Noland et al. | Nov 2006 | A1 |
20060258447 | Baszucki et al. | Nov 2006 | A1 |
20070034611 | Drius et al. | Feb 2007 | A1 |
20070038400 | Lee et al. | Feb 2007 | A1 |
20070045488 | Shin | Mar 2007 | A1 |
20070088536 | Ishikawa | Apr 2007 | A1 |
20070112889 | Cook et al. | May 2007 | A1 |
20070198117 | Wajihuddin | Aug 2007 | A1 |
20070209586 | Ebensberger et al. | Sep 2007 | A1 |
20070211026 | Ohta | Sep 2007 | A1 |
20070221797 | Thompson et al. | Sep 2007 | A1 |
20070256503 | Wong et al. | Nov 2007 | A1 |
20070277611 | Portzgen et al. | Dec 2007 | A1 |
20070291035 | Vesely et al. | Dec 2007 | A1 |
20080021311 | Goldbach | Jan 2008 | A1 |
20080031774 | Magnant et al. | Feb 2008 | A1 |
20080038702 | Choquet | Feb 2008 | A1 |
20080061113 | Seki et al. | Mar 2008 | A9 |
20080078811 | Hillen et al. | Apr 2008 | A1 |
20080078812 | Peters et al. | Apr 2008 | A1 |
20080117203 | Gering | May 2008 | A1 |
20080120075 | Wloka | May 2008 | A1 |
20080128398 | Schneider | Jun 2008 | A1 |
20080135533 | Ertmer et al. | Jun 2008 | A1 |
20080140815 | Brant et al. | Jun 2008 | A1 |
20080149686 | Daniel et al. | Jun 2008 | A1 |
20080203075 | Feldhausen et al. | Aug 2008 | A1 |
20080233550 | Solomon | Sep 2008 | A1 |
20080303197 | Paquette et al. | Dec 2008 | A1 |
20080314887 | Stoger | Dec 2008 | A1 |
20090015585 | Klusza | Jan 2009 | A1 |
20090021514 | Klusza | Jan 2009 | A1 |
20090045183 | Artelsmair et al. | Feb 2009 | A1 |
20090050612 | Serruys | Feb 2009 | A1 |
20090057286 | Ihara | Mar 2009 | A1 |
20090139968 | Hesse | Jun 2009 | A1 |
20090152251 | Dantinne et al. | Jun 2009 | A1 |
20090173726 | Davidson et al. | Jul 2009 | A1 |
20090184098 | Daniel et al. | Jul 2009 | A1 |
20090200281 | Hampton | Aug 2009 | A1 |
20090200282 | Hampton | Aug 2009 | A1 |
20090231423 | Becker | Sep 2009 | A1 |
20090259444 | Dolansky et al. | Oct 2009 | A1 |
20090298024 | Batzler et al. | Dec 2009 | A1 |
20090325699 | Delgiannidis | Dec 2009 | A1 |
20100012017 | Miller | Jan 2010 | A1 |
20100012637 | Jaeger | Jan 2010 | A1 |
20100048273 | Wallace et al. | Feb 2010 | A1 |
20100062405 | Zboray et al. | Mar 2010 | A1 |
20100062406 | Zboray et al. | Mar 2010 | A1 |
20100096373 | Hillen et al. | Apr 2010 | A1 |
20100121472 | Babu et al. | May 2010 | A1 |
20100133247 | Mazumder et al. | Jun 2010 | A1 |
20100133250 | Sardy et al. | Jun 2010 | A1 |
20100176107 | Bong | Jul 2010 | A1 |
20100201803 | Melikian | Aug 2010 | A1 |
20100224610 | Wallace | Sep 2010 | A1 |
20100276396 | Cooper et al. | Nov 2010 | A1 |
20100299101 | Shimada et al. | Nov 2010 | A1 |
20100307249 | Lesage et al. | Dec 2010 | A1 |
20110006047 | Penrod et al. | Jan 2011 | A1 |
20110060568 | Goldfine et al. | Mar 2011 | A1 |
20110091846 | Kreindl et al. | Apr 2011 | A1 |
20110114615 | Daniel et al. | May 2011 | A1 |
20110116076 | Chanty et al. | May 2011 | A1 |
20110117527 | Conrardy et al. | May 2011 | A1 |
20110122495 | Togashi | May 2011 | A1 |
20110183304 | Wallace | Jul 2011 | A1 |
20110187746 | Suto | Aug 2011 | A1 |
20110248864 | Becker et al. | Oct 2011 | A1 |
20110290765 | Albrecht et al. | Dec 2011 | A1 |
20110316516 | Schiefermuller et al. | Dec 2011 | A1 |
20120122062 | Yang | May 2012 | A1 |
20120189993 | Kindig | Jul 2012 | A1 |
20120291172 | Wills et al. | Nov 2012 | A1 |
20120298640 | Conrardy et al. | Nov 2012 | A1 |
20130026150 | Chanty et al. | Jan 2013 | A1 |
20130040270 | Albrecht | Feb 2013 | A1 |
20130049976 | Maggiore | Feb 2013 | A1 |
20130075380 | Albrech et al. | Mar 2013 | A1 |
20130182070 | Peters et al. | Jul 2013 | A1 |
20130183645 | Wallace et al. | Jul 2013 | A1 |
20130189657 | Wallace et al. | Jul 2013 | A1 |
20130189658 | Peters et al. | Jul 2013 | A1 |
20130209976 | Postlethwaite et al. | Aug 2013 | A1 |
20130230832 | Peters et al. | Sep 2013 | A1 |
20130231980 | Elgart | Sep 2013 | A1 |
20130327747 | Dantinne | Dec 2013 | A1 |
20140017642 | Postelthwaite et al. | Jan 2014 | A1 |
20140038143 | Daniel et al. | Feb 2014 | A1 |
20140065584 | Wallace et al. | Mar 2014 | A1 |
20140134579 | Becker | May 2014 | A1 |
20140134580 | Becker | May 2014 | A1 |
20140220522 | Peters | Aug 2014 | A1 |
20140263224 | Becker | Sep 2014 | A1 |
20140272835 | Becker | Sep 2014 | A1 |
20140272836 | Becker | Sep 2014 | A1 |
20140272837 | Becker | Sep 2014 | A1 |
20140272838 | Becker | Sep 2014 | A1 |
20140312020 | Daniel | Oct 2014 | A1 |
20140315167 | Kreindl et al. | Oct 2014 | A1 |
20140322684 | Wallace et al. | Oct 2014 | A1 |
20140346158 | Matthews | Nov 2014 | A1 |
20150056584 | Boulware | Feb 2015 | A1 |
20150056585 | Boulware et al. | Feb 2015 | A1 |
20150056586 | Penrod et al. | Feb 2015 | A1 |
20160125763 | Becker | May 2016 | A1 |
20160260261 | Hsu | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
2698078 | Sep 2011 | CA |
101193723 | Jun 2008 | CN |
10214178 | Jul 2008 | CN |
101209512 | Jul 2008 | CN |
201083660 | Jul 2008 | CN |
101419755 | Apr 2009 | CN |
101419755 | Apr 2009 | CN |
201229711 | Apr 2009 | CN |
101571887 | Nov 2009 | CN |
101587659 | Nov 2009 | CN |
101587659 | Nov 2009 | CN |
102165504 | Aug 2011 | CN |
102171744 | Aug 2011 | CN |
202684308 | Jan 2013 | CN |
103871279 | Jun 2014 | CN |
102014819 | Jul 2014 | CN |
107316544 | Nov 2017 | CN |
2833638 | Feb 1980 | DE |
3046634 | Jan 1984 | DE |
3244307 | May 1984 | DE |
3522581 | Jan 1987 | DE |
4037879 | Jun 1991 | DE |
19615069 | Oct 1997 | DE |
19739720 | Oct 1998 | DE |
19834205 | Feb 2000 | DE |
20009543 | Aug 2001 | DE |
102005047204 | Apr 2007 | DE |
102010038902 | Sep 2012 | DE |
202012013151 | Feb 2015 | DE |
108599 | May 1984 | EP |
127299 | Dec 1984 | EP |
145891 | Jun 1985 | EP |
319623 | Jun 1989 | EP |
0852986 | Jul 1998 | EP |
1527852 | May 2005 | EP |
1905533 | Apr 2008 | EP |
2274736 | May 2007 | ES |
2274736 | Mar 2008 | ES |
1456780 | Mar 1965 | FR |
2827066 | Jan 2003 | FR |
2926660 | Jul 2009 | FR |
1455972 | Nov 1976 | GB |
1511608 | May 1978 | GB |
2254172 | Sep 1992 | GB |
2435838 | Sep 2007 | GB |
2454232 | Jun 2009 | GB |
478719 | Oct 1972 | JP |
5098035 | Aug 1975 | JP |
2224877 | Sep 1990 | JP |
5329645 | Dec 1993 | JP |
7047471 | Feb 1995 | JP |
7232270 | Sep 1995 | JP |
8132274 | May 1996 | JP |
8150476 | Jun 1996 | JP |
8505091 | Jun 1996 | JP |
11104833 | Apr 1999 | JP |
2000167666 | Jun 2000 | JP |
2000237872 | Sep 2000 | JP |
2001071140 | Mar 2001 | JP |
2002278670 | Sep 2002 | JP |
2002366021 | Dec 2002 | JP |
2003200372 | Jul 2003 | JP |
2003271048 | Sep 2003 | JP |
2003326362 | Nov 2003 | JP |
2006006604 | Jan 2006 | JP |
2006175205 | Jul 2006 | JP |
2006281270 | Oct 2006 | JP |
2007290025 | Nov 2007 | JP |
2009500178 | Jan 2009 | JP |
2009160636 | Jul 2009 | JP |
2010231792 | Oct 2010 | JP |
2011528283 | Nov 2011 | JP |
2012024867 | Feb 2012 | JP |
2013091086 | May 2013 | JP |
100876425 | Dec 2008 | KR |
20090010693 | Jan 2009 | KR |
20090010693 | Jan 2009 | KR |
1020110068544 | Jun 2011 | KR |
2008108601 | Nov 2009 | RU |
1038963 | Aug 1983 | SU |
WO9845078 | Oct 1998 | WO |
0112376 | Feb 2001 | WO |
001009867 | Feb 2001 | WO |
WO0143910 | Jun 2001 | WO |
0158400 | Aug 2001 | WO |
2005102230 | Nov 2005 | WO |
2006034571 | Apr 2006 | WO |
WO2006034571 | Apr 2006 | WO |
WO2007009131 | Jan 2007 | WO |
WO2007039278 | Apr 2007 | WO |
2009120921 | Jan 2009 | WO |
WO2009060231 | May 2009 | WO |
WO2009149740 | Dec 2009 | WO |
WO2010000003 | Jan 2010 | WO |
2010020867 | Feb 2010 | WO |
2010020870 | Feb 2010 | WO |
2010044982 | Apr 2010 | WO |
WO2010091493 | Aug 2010 | WO |
2011045654 | Apr 2011 | WO |
2011058433 | May 2011 | WO |
WO2011067447 | Jun 2011 | WO |
2011097035 | Aug 2011 | WO |
2011148258 | Dec 2011 | WO |
2012082105 | Jun 2012 | WO |
2012137060 | Oct 2012 | WO |
WO2012143327 | Oct 2012 | WO |
2013008235 | Jan 2013 | WO |
WO2013014202 | Jan 2013 | WO |
2013025672 | Feb 2013 | WO |
2013061518 | May 2013 | WO |
2013114189 | Aug 2013 | WO |
2013175079 | Nov 2013 | WO |
2014007830 | Jan 2014 | WO |
2014019045 | Feb 2014 | WO |
2014020386 | Feb 2014 | WO |
2014140722 | Sep 2014 | WO |
2016137578 | Jan 2016 | WO |
2014140721 | Sep 2017 | WO |
Entry |
---|
International Search Report and Written Opinion from PCT/IB09/000605 dated Feb. 12, 2010. |
International Search Report and Written Opinion from PCT/IB10/02913 dated Apr. 19, 2011. |
ASME Definitions, Consumables, Welding Positions, dated Mar. 19, 2001. See http://www.gowelding.com/wp/asme4.htm. |
Abbas, M., et al.; Code_Aster; Introduction to Code_Aster; User Manual; Booket U1.0-: Introduction to Code_Aster; Document: U1.02.00; Version 7.4; Jul. 22, 2005. |
Bjorn G. Agren; Sensor Integration for Robotic Arc Welding; 1995; vol. 5604C of Dissertations Abstracts International p. 1123; Dissertation Abs Online (Dialog® File 35): © 2012 ProQuest Info& Learning: http://dialogweb.com/cgi/dwclient?req=1331233317524; one (1) p.; printed Mar. 8, 2012. |
Abid, et al., “Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-flange joint” by M. Abid and M. Siddique, Faculty of Mechanical Engineering, GIK Institute of Engineering Sciences and Technology, Topi, NWFP, Pakistan. Available on-line Aug. 25, 2005. |
“Penetration in Spot GTA Welds during Centrifugation,”D.K. Aidun and S.A. Martin; Journal of Materials Engineering and Performance vol. 7(5) Oct. 1998—597. |
Arc+ simulator; http://www.123arc.com/en/depliant_ang.pdf; 2000, 2 pgs. |
ARS Electronica Linz GmbH, Fronius, 2 pages, May 18, 1997. |
Asciencetutor.com, A division of Advanced Science and Automation Corp., VWL (Virtual Welding Lab), 2 pages, 2007. |
16TH International Shop and Offshore Structures Congress: Aug. 20-25, 2006: Southhampton, UK, vol. 2 Specialist Committee V.3 Fabrication Technology Committee Mandate: T Borzecki, G. Bruce, Y.S. Han, M. Heinemann, A Imakita, L. Josefson, W. Nie, D. Olson, F. Roland, and Y. Takeda. |
CS Wave, A Virtual learning tool for welding motion, 10 pages, Mar. 14, 2008. |
Choquet, Claude; “ARC+: Today's Virtual Reality Solution for Welders” Internet Page, Jan. 1, 2008. |
Code Aster (Software) EDF (France), Oct. 2001. |
Cooperative Research Program, Virtual Reality Welder Training, Summary Report SR 0512, 4 pages, Jul. 2005. |
Desroches, X.; Code-Aster, Note of use for aclculations of welding; Instruction manual U2.03 booklet: Thermomechanical; Document: U2.03.05; Oct. 1, 2003. |
Edison Welding Institute, E-Weld Predictor, 3 pages, 2008. |
Eduwelding+, Weld Into the Fugure; Online Welding Seminar—A virtual training environment; 123arc.com; 4 pages, 2005. |
Eduwelding+, Training Activities with arc+ simulator; Weld Into The Future, Online Welding Simulator—A virtual training environment; 123arc.com; 6 pages, May 2008. |
FH Joanneum, Fronius—virtual welding, 2 pages, May 12, 2008. |
The Fabricator, Virtual Welding, 4 pages, Mar. 2008. |
Fast, K. et al., “Virtual Training for Welding”, Mixed and Augmented Realtity, 2004, ISMAR 2004, Third IEEE and CM International Symposium on Arlington, VA, Nov. 2-5, 2004. |
Garcia-Ellende et al., “Defect Detection in Arc-Welding Processes by Means of the Line-to-Continuum Method and Feature Selection”, www.mdpi.com/journal/sensors; Sensors 2009, 9, 7753-7770; doi; 10.3390/s91007753. |
Juan Vicenete Rosell Gonzales, “RV-Sold: simulator virtual para la formacion de soldadores”; Deformacion Metalica, Es. vol. 34, No. 301 Jan. 1, 2008. |
Hillis and Steele, Jr.; “Data Parallel Algorithms”, Communications of the ACM, Dec. 1986, vol. 29, No. 12, p. 1170. |
“The influence of fluid flow phenomena on the laser beam welding process”; International Journal of Heat and Fluid Flow 23, dated 2002. |
The Lincoln Electric Company, CheckPoint Production Monitoring brochure; four pages; http://www.lincolnelectric.com/assets/en_US/products/literature/s232.pdf; Publication S2.32; issue date Feb. 2012. |
The Lincoln Electric Company, Production Monitoring brochure, 4 pages, May 2009. |
Eric Linholm, John Nickolls, Stuart Oberman, and John Montrym, “Nvidia Testla: A Unifired Graphics and Computing Architecture”, IEEE Computer Society, 2008. |
Mahrle, A., et al.; “The influence of fluid flow phenomena on the laser beam welding process” International Journal of Heat and Fluid Flow 23 (2002, No. 3, pp. 288. |
Mavrikios D et al, A prototype virtual reality-based demonstrator for immersive and interactive simulation of welding processes, International Journal of Computer Integrated manufacturing, Taylor and Francis, Basingstoke, GB, vol. 19, No. 3, Apr. 1, 2006, pp. 294-300. |
Mechanisms and Mechanical Devices Source Book, Chironis, Neil Sclater; McGraw Hill; 2nd Addition, 1996. |
Miller Electric Mgf Co.; MIG Welding System features weld monitoring software; NewsRoom 2010 (Dialog® File 992); © 2011 Dialog. 2010; http://www.dialogweb.com/cgi/dwclient?reg=1331233430487; three (3) pages; printed Mar. 8, 2012. |
NSRP ASE, Low-Cost Virtual Reality Welder Training System, 1 Page, 2008. |
N. A. Tech., P/NA.3 Process Modeling and Optimization, 11 pages, Jun. 4, 2008. |
Virtual Reality Welder Trainer, Sessiion 5: Joining Technologies for Naval Applications: earliest date Jul. 14, 2006 (http://weayback.archive.org) by Nancy C. Porter, Edision Welding Institute; J. Allan Cote, General Dynamics Electric Boat; Timothy D. Gifford, VRSim, and Wim Lam, FCS Controls. |
Porter, et al., Virtual Reality Training, Paper No. 2005-P19, 14 pages, 2005. |
Production Monitoring 2 brochure, four pages, The Lincoln Electric Company, May 2009. |
Ratnam and Khalid: “Automatic classification of weld defects using simulated data and an MLP neutral network.” Insight vol. 49, No. 3; Mar. 2007. |
Russel and Norvig, “Artificial Intelligence: A Modern Approach”, Prentice-Hall (Copyright 1995). |
“Design and Implementation of a Video Sensor for Closed Loop Control of Back Bead Weld Puddle Width,” Robert Schoder, Massachusetts Institute of Technology, Dept. of Mechanical Engineering, May 27, 1983. |
http://www.sciencedirect.com/science/article/pil/S009457650000151X. |
Sim Welder, retrieved on Apr. 12, 2010 from: http://www.simwelder.com. |
SIMFOR / CESOL, “RV-Sold” Welding Simulator, Technical and Functional Features, 20 page, no. date available. |
Training in a virtual environment gives welding students a leg up, retrieved on Apr. 12, 2010 from: http://www.thefabricator.com/article/arcwelding/virtually-welding. |
Wade, “Human uses of ultrasound: ancient and modern”, Ultrasonics vol. 38, dated 2000. |
Wang et al., “Numerical Analysis of Metal Tranfser in Gas Metal Arc Welding,” G. Wang, P.G. Huang, and Y.M. Zhang. Departements of Mechanical and Electrical Engineering. University of Kentucky, Dec. 10, 2001. |
Wang et al., Study on welder training by means of haptic guidance and virtual reality for arc welding, 2006 IEEE International Conference on Robotics and Biomimetics, ROBIO 2006 ISBN-10: 1424405718, p. 954-958. |
White et al., Virtual welder training, 2009 IEEE Virtual Reality Conference, p. 303, 2009. |
Edison Welding Institue, Inc. And Realweld Systems, Inc. -v- Lincoln Global, Inc.; Complaint for Declaratory Judgement including Exhibits; Civil Action No. 2:12-cv-1040. |
Edison Welding Institue, Inc. and Realweld Systems, Inc. -v- Lincoln Global, Inc.; Stipulated Extension of Time to Answer . . . Civil Action No. 2:12-cv-1040. |
Edison Welding Institue, Inc. and Realweld Systems, Inc. -v- Lincoln Global, Inc.; Corporate Disclosure Statement; Civil Action No. 2:12-cv-1040. |
Edison Welding Institue, Inc. and Realweld Systems, Inc. -v- Lincoln Global, Inc.; Notice of Appearance of Counsel; Civil Action No. 2:12-cv-1040. |
Edison Welding Institue, Inc. and Realweld Systems, Inc. -v- Lincoln Global,lnc.; Unopposed Motion to Dismiss w/o Prejudice including Exhibits; Civil Action No. 2:12-cv-1040. |
Edison Welding Institue, Inc. and Realweld Systems, Inc. -v- Lincoln Global, Inc.; Order Granting Motion; Civil Action No. 2:12-cv-1040. |
Edison Welding Institute, Inc.; Docket; Civil Action No. 2:12-cv-1040. |
Bender Shipbuilding and Repair Co. Virtual Welding-A Low Cost Virtual Reality Welding Training System. Proposal submitted pursuant to MSRP Advanced Shipbuilding Enterprise Research Announcement, Jan. 23, 2008. 28 pages, See also, http://www.nsrp.org/6-Presentations/WD/020409 Virtual Welding Wilbur.pdf;. |
Porter, Nancy; Cote, Allan; Gifford, Timothy; and Lam, Wim. “Virtual Reality Welder Training.” The American Welding Society Fabtech International/ AWS Welding Show, Session 5. 29 pages; allegedly Chicago 2005;. |
Tschirner, Petra; Hillers, Bernd; and Graser, Axel “A Concept for the Application of Augmented Reality in Manual Gas Metal Arc Welding.” Proceedings of the International Symposium on Mixed and Augmented Reality; 2 pages; 2002;. |
Penrod, Matt. “New Welder Training Tools.” EWI PowerPoint presentation; 16 pages allegedly 2008;. |
Echtler, Florian; Sturm, Fabian; Kindermann, Kay; Klinker, Gudrun; Stilla, Joachim; Trilk, Jorn; and Najafi, Hesam. “The Intelligent Welding Gun: Augmented Reality for Experimental Vehicle Construction.” Virtual and Augmented Reality Applications in Manufacturing. Eds. Ong, S.K. And Nee, A.Y.C. Springer Verlag. 27 pages. 2003. |
Fite-Georgel, Pierre. “Is there a Reality in Industrial Augmented Reality?” 10th IEEE International Symposium on Mixed and Augmented Reality (ISMAR). 10 pages, allegedly 2011. |
Aiteanu, Dorian; and Graser, Axel. “Generation and Rendering of a Virtual Welding Seam in an Augmented Reality Training Environment.” Proceedings of the Sixth IASTED International Conference on Visualization, Imaging and Image Processing, Aug. 28-30, 2006, 8 pages, allegedly Palma de Mallorca, Spain. Ed. J.J. Villaneuva. ACTA Press. |
Hillers, B.; Graser, A. “Real time Arc-Welding Video Observation System.” 62nd International Conference of IIW, Jul. 12-17,2009, 5 pages, allegedly Singapore 2009. |
Hillers, B.; Graser, A. “Direct welding arc observation without harsh flicker,” 8 pages, allegedly Fabtech International and AWS welding show, 2007. |
Advance Program of American Welding Society Programs and Events. Nov. 11-14, 2007. 31 pages. Chicago. |
Terebes: examples from http://www.terebes.uni-bremen.de.; 6 pages. |
Sandor, Christian; Gudrun Klinker. “Paarti: Development of an Intelligent Welding Gun for BMW.” PIA2003, 7 pages, Tokyo. 2003. |
Arvika Forum Vorstellung Projekt PAARI. BMW Group Virtual Reality Center. 4 pages. Nuernberg. 2003. |
Sandor, Christian; Klinker, Gudrun. “Lessons Learned in Designing Ubiquitous Augmented Reality User Interfaces.” 21 pages, allegedly from Emerging Technologies of Augmented Reality: Interfaces Eds. Haller, M.; Billinghurst, M.; Thomas, B. Idea Group Inc. 2006. |
Impact Welding: examples from current and archived website, trade shows, etc. See, e.g., http://www.impactwelding.com. 53 pages. |
http://www.nsrp.org/6-Presentations/WDVirtual_Welder. pdf (Virtual Reality Welder Training, Project No. S1051, Navy ManTech Program, Project Review for ShipTech 2005); 22 pages. Biloxi, MS. |
https://app.aws.org/w/r/www/wj/2005/03/WJ_2005_03.pdf (AWS Welding Journal, Mar. 2005 (see, e.g., p. 54)).; 114 pages. |
https://app.aws.org/conferences/defense/live index.html (AWS Welding in the Defense Industry conference schedule, 2004); 12 pages. |
https://app.aws.org/wj/2004/04/052/njc (AWS Virtual Reality Program to Train Welders for Shipbuilding, workshop information, 2004); 7 pages. |
http://citeseerx.ist.psu.edu/viewdoc/download; jsessionid= E5 B275EI72A9E2 D E2803B9 A5BCA3 E8F8?doi=I 0.1.1.134.8879&rep=rep1&type=pdf (Virtual Reality Welder Training, Cooperative Research Program Summary report SR0512, Jul. 2005); 4 pages. |
https://app.aws.org/wj/2007 /11/WJ200711.pdf (AWS Welding Journal, Nov. 2007); 240 pages. |
American Welding Society, “Vision for Welding Industry”; 41 pages. |
Energetics, Inc. “Welding Technology Roadmap”, Sep. 2000, 38 pages. |
Aiteanu, Dorian; and Graser, Axel. “Computer-Aided Manual Welding Using an Augmented Reality Supervisor” Sheet Metal Welding Conference XII, Livonia, MI, May 9-12, 2006, 14 pages. |
Hillers, Bernd; Aiteanu, Dorin and Graser, Axel “Augmented Reality—Helmet for the Manual Welding Process” Institute of Automation, University of Bremen, Germany; 21 pages. |
Aiteanu, Dorin, Hillers, Bernd and Graser, Axel “A Step Forward in Manual Welding: Demonstration of Augmented Reality Helmet” Institute of Automation, University of Bremen, Germany, Proceedings of the Second IEEE and ACM International Symposium on Mixed and Augmented Reality; 2003; 2 pages. |
ArcSentry Weld Quality Monitoring System; Native American Technologies allegedly 2002, 5 pages. |
P/NA.3 Process Modelling and Optimization; Native American Technologies, allegedly 2002, 5 pages. |
B. Hillers, D. Aitenau, P. Tschimer, M. Park, A. Graser, B. Balazs, L. Schmidt, “Terebes: Welding Helmet with AR Capabilities”, Institute of Automatic University Bremen; Institute of Industrial Engineering and Ergonomics, 10 pages, allegedly 2004. |
“Sheet Metal Welding Conference XII”, American Welding Society Detroit Section, May 2006, 11 pages. |
Kenneth Fast, Timothy Gifford, Robert Yancey, “Virtual Training for Welding”, Proceedings of the Third IEEE and ACM International Symposium on Mixed and Augmented Reality (ISMAR 2004); 2 pages. |
Claude Choquet, “ARC+®: Today's Virtual Reality Solution for Welders” estimated Jan. 1, 2008, 6 pages. |
ARC+ Welding Simulation presentation; 25 pages. |
Chuansong Wu, “Microcomputer-based welder training simulator” Computers in Industry 20, 1992, 5 pages. |
P. Tschirner et al., “Virtual and Augmented Reality for Quality Improvement of Manual Welds” National Institute of Standards and Technology, Jan. 2002, Publication 973, 24 pages. |
Matt Phar, GPU Gems 2 Programming Techniques for High-Performance Graphics and General-Purpose Computation 2005, 12 pages. |
Y. Wang et al., “Impingement of Filler Droplets and Weld Pool During Gas Metal Arc Welding Process” International Journal of Heat and Mass Transfer, Sep. 1999, 14 pages. |
Larry Jeffus, “Welding Principles and Applications” Sixth Edition, 2008, 10 pages. |
R.J. Renwick et al., “Experimental Investigation of GTA Weld Pool Oscillations” Welding Research—Supplement to the Welding Journal, Feb. 1983, 7 pages. |
Dorin Aiteanu et al., “Generation and Rendering of a Virtual Welding Seam in an Augmented Reality Training Environment” Proceedings of the Sixth IASTED International Conference, Aug. 2006, 8 pages. |
VRSim Inc. “About Us—History” www.vrsim.net/history, 2016, 1 page. |
VRSim Powering Virtual Reality, www.lincolnelectric.com/en-us/equipment/training-equipment/Pages/powered-by-vrsim.aspx, 2016, 1 page. |
ARC+—Archived Press Release from WayBack Machine from Jan. 31, 2008-Apr. 22, 2013, Page, https://web.archive.org/web/20121006041803/http://www.123certification.com/en/article_press/index.htm, Jan. 21, 2016, 3 pages. |
Aidun, Daryush “Influence of Simulated High-g on the Weld Size of Al—Li Alloy” Elevator Sciece Ltd.; Jan. 2001; 4 pages. |
ARC Simulation & Certification, Weld Into the Future, 4 pages, Est. Jan. 2005. |
International Search Report for PCT/IB2015/000777, dated Dec. 15, 2016; 11 pages. |
International Search Report for PCT/IB2015/000814 dated Dec. 15, 2016; 9 pages. |
Exhibit B from Declaration of Morgan Lincoln in Lincoln Electric Co. et al. v. Seabery Soluciones, S.L. et al., Case No. 1:15-cv-01575-DCN, dated Dec. 20, 2016, 5 pages. |
Bryan E. Feldman, James F. O'Brien, Bryan M. Klingner, and Tolga G. Goktekin. Fluids in deforming meshes. In ACM Siggraph/Eurographics Symposium on Computer Animation 2005, Jul. 2005. |
Adam W. Bargteil, Tolga G. Goktekin, James F. O'Brien, and John A. Strain. A semi-lagrangian contouring method for fluid simulation. ACM Transactions on Graphics, 25(1), Jan. 2006. |
Adam W. Bargteil, Funshing Sin, Jonathan E. Michaels, Tolga G. Goktekin, and James F. O'Brien. A texture synthesis method for liquid animations. In Proceedings of the ACM Siggraph/Eurographics Symposium on Computer Animation, Sep. 2006. |
Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O'Brien. Fluid animation with dynamic meshes. In Proceedings of ACM Siggraph 2006, pp. 820-825, Aug. 2006. |
Nuttapong Chentanez, Tolga G. Goktekin, Bryan E. Feldman, and James F. O'Brien. Simultaneous coupling of fluids and deformable bodies. In ACM Siggraph/Eurographics Symposium on Computer Animation, pp. 83-89, Aug. 2006. |
Nuttapong Chentanez, Bryan E. Feldman, François Labelle, James F. O'Brien, and Jonathan R. Shewchuk. Liquid simulation on lattice-based tetrahedral meshes. In ACM Siggraph/Eurographics Symposium on Computer Animation 2007, pp. 219-228, Aug. 2007. |
Pascal Clausen, Martin Wicke, Jonathan R. Shewchuk, and James F. O'Brien. Simulating liquids and solid-liquid interactions with lagrangian meshes. ACM Transactions on Graphics, 32(2):17:1-15, Apr. 2013. Presented at Siggraph 2013. |
Kass, M., and Miller, G., “Rapid, Stable Fluid Dynamics for Computer Graphics,” Proceedings of Siggraph '90, in Computer Graphics, vol. 24, No. 4, pp. 49-57, Sep. 1990. |
Nathan Holmberg and Burkhard C. Wünsche Efficient modeling and rendering of turbulent water over natural terrain. In Proceedings of the 2nd international conference on Computer graphics and interactive techniques in Australasia and South East Asia (Graphite '04), Jun. 2004. |
James F. O'Brien and Jessica K Hodgins. “Dynamic Simulation of Splashing Fluids”. In Proceedings of Computer Animation 95, pp. 198-205, Apr. 1995. |
Nils Thurey, Matthias Müller-Fischer, Simon Schirm, and Markus Gross. Real-time BreakingWaves for Shallow Water Simulations. In Proceedings of the 15th Pacific Conference on Computer Graphics and Applications (PG '07). Oct. 2007. |
Nick Foster, Ronald Fedkiw, Practical animation of liquids, Proceedings of the 28th annual conference on Computer graphics and interactive techniques, p. 23-30, Aug. 2001. |
N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon, R. Fedkiw, Directable photorealistic liquids, Proceedings of the 2004 ACM Siggraph/Eurographics symposium on Computer animation, Aug. 27-29, 2004, Grenoble, France. |
Bryan E Feldman, James F. O'Brien, and Okan Arikan. “Animating Suspended Particle Explosions”. In Proceedings of ACM Siggraph 2003, pp. 708-715, Aug. 2003. |
Tolga G. Goktekin, Adam W. Bargteil, and James F. O'Brien. “A Method for Animating Viscoelastic Fluids”. ACM Transactions on Graphics (Proc. of ACM Siggraph 2004), 23(3):463-468, Aug. 2004. |
Geoffrey Irving, Eran Guendelman, Frank Losasso, Ronald Fedkiw, Efficient simulation of large bodies of water by coupling two and three dimensional techniques, ACM Siggraph 2006 Papers, Jul. 30-Aug. 3, 2006, Boston, Massachusetts. |
Bart Adams, Mark Pauly, Richard Keiser, Leonidas J. Guibas, Adaptively sampled particle fluids, ACM Siggraph 2007 papers, Aug. 5-9, 2007, San Diego, California. |
Matthias Müller, David Charypar, Markus Gross, Particle-based fluid simulation for interactive applications, Proceedings of the 2003 ACM Siggraph/Eurographics symposium on Computer animation, Jul. 26-27, 2003, San Diego, California. |
Premoze, S., Tasdizen, T., Bigler, J., Lefohn, A. E., and Whitaker, R. T. Particle-based simulation of fluids. Comput. Graph. Forum 22, 3, 401-410 Sep. 2003. |
Office Action from U.S. Appl. No. 14/526,914 dated Feb. 3, 2017. |
International Preliminary Report from PCT/IB2015/001084 dated Jan. 26, 2017. |
Sun Yaoming; Application of Micro Computer in Robotic Technologies; Science and Technology Literature Press; Catalogue of New Books of Science and Technology; Sep. 1987, pp. 145-150—CN and English. |
Kenneth Fast; Virtual Welding—A Low Cost Virtual Reality Welder system training system phase II; NSRP ASE Technology Investment Agreement; Feb. 29, 2012; pp. 1-54. |
The Lincoln Electric Company, CheckPoint Operator's Manual, 188 pages, issue date Aug. 2015. |
Nick Foster, Dimitri Metaxas, Realistic animation of liquids, Graphical Models and Image Processing, v.58 n.5, p. 471-483, Sep. 1996. |
International Search Report for PCT/IB2014/001796, dated Mar. 24, 3016; 8 pages. |
International Search Report for PCT/IB2015/000161, dated Aug. 25, 2016; 9 pages. |
Petition for Inter Partes Review of U.S. Pat. No. 8,747,116; IPR 2016-01568; Aug. 9, 2016; 75 pages. |
Decision Termination Proceeding of U.S. Pat. No. 8,747,116; IPR 2016-01568; Nov. 15, 2016; 4 pages. |
Decision Trial Denied IPR Proceeding of U.S. Pat. No. 8,747,116; IPR 2016-00749; Sep. 21, 2016; 21 pages. |
Decision Denying Request for Rehearing of U.S. Pat. No. RE45398; IPR 2016-00840; Nov. 17, 2016; 10 pages. |
Decision Trial Denied IPR Proceeding of U.S. Pat. No. 9,293,056; IPR 2016-00904; Nov. 3, 2016; 15 pages. |
Decision Trial Denied IPR Proceeding of U.S. Pat. No. 9,293,057; IPR 2016-00905; Nov. 3, 2016; 21 pages. |
Porter, Nancy C.; “Virtual Reality Welder Training,” Journal of Ship Production, vol. 22, No. 3, Aug. 2006, pp. 126-138. |
William Hoff, Khoi Nguyen, “Computer Vision Based Registration Techniques for Augmented Reality ”, Colorado School of Mines, Division of Engineering, Proceedings of Intellectual Robots and Computer Vision XV, pp. 538-548; SPIE vol. 2904, Nov. 18-22, 1996, Boston MA. |
Final Written Decision dated Oct. 2, 2017, Case IPR 2016-00840, Patent RE45,398, Seabery North America Inc. (Petitioner) vs. Lincoln Global, Inc. (Patent Owner), pp. 1-65. |
Catalina, Stefanescu, Sen, and Kaukler, “Interaction of Porosity with a Planar Solid/Liquid Interface” (“Catalina”), Metallurgical and Materials Transactions, vol. 35A, May 2004, pp. 1525-1538. |
Swantec corporate web page downloaded Apr. 19, 2016. http://www.swantec.com/technology/numerical-simulation/. |
Complaint for Patent Infringement in Lincoln Electric Co. et al. v. Seabery Soluciones, S.L. et al., Case No. 1:15-cv-01575-DCN, docket No. 1, filed Aug. 10, 2015, in the U.S. District Court for the Northern District of Ohio; 81 pages. |
Amended Answer to Complaint with Exhibit A for Patent Infringement filed by Seabery North America Inc. In Lincoln Electric Co. et al. v. Seabery Soluciones, S.L. et al., Case No. 1:15-cv-01575-DCN, docket No. 44, filed Mar. 1, 2016, in the U.S. District Court for the Northern District of Ohio; 19 pages. |
Amended Answer to Complaint with Exhibit A for Patent Infringement filed by Seabery Soluciones Sl in Lincoln Electric Co. et al. v. Seabery Soluciones, S.L. et al., Case No. 1:15-cv-01575-DCN, docket No. 45, filed Mar. 1, 2016, in the U.S. District Court for the Northern District of Ohio; 19 pages. |
Reply to Amended Answer to Complaint for Patent Infringement filed by Lincoln Electric Company; Lincoln Global, Inc. In Lincoln Electric Co. et al. v. Seabery Soluciones, S.L. et al., Case No. 1:15-cv-01575-DCN; docket No. 46, filed Mar. 22, 2016; 5 pages. |
Answer for Patent Infringement filed by Lincoln Electric Company, Lincoln Global, Inc. in Lincoln Electric Co. et al. v. Seabery Soluciones, S.L. et al., Case No. 1:15-cv-01575-DCN; docket No. 47, filed Mar. 22, 2016; 5 pages. |
Petition for Inter Partes Review of U.S. Pat. No. 8,747,116; IPR 2016-00749; Apr. 7, 2016; 70 pages. |
Petition for Inter Partes Review of U.S. Pat. No. RE45,398; IPR 2016-00840; Apr. 18, 2016; 71 pages. |
Petition for Inter Partes Review of U.S. Pat. No. 9,293,056; IPR 2016-00904; May 9, 2016; 91 pages. |
Petition for Inter Partes Review of U.S. Pat. No. 9,293,057; IPR 2016-00905; May 9, 2016; 87 pages. |
Declaration of Dr. Michael Zyda, May 3, 2016, exhibit to IPR 2016-00749. |
Declaration of Edward Bohnart, Apr. 27, 2016, exhibit to IPR 2016-00749. |
Declaration of Dr. Michael Zyda, May 3, 2016, exhibit to IPR 2016-00905; 72 pages. |
Declaration of Edward Bohnart, Apr. 27, 2016, exhibit to IPR 2016-00905; 23 pages. |
Declaration of Dr. Michael Zyda, May 3, 2016, exhibit to IPR 2016-00904; 76 pages. |
Declaration of Edward Bohnart, Apr. 27, 2016, exhibit to IPR 2016-00904; 22 pages. |
Declaration of AxelGraeser, Apr. 17, 2016, exhibit to IPR 2016-00840; 88 pages. |
SIMFOR / CESOL, “RV-SOLD” Welding Simulator, Technical and Functional Features, 20 pages, estimated Jan. 2010. |
Teeravarunyou et al, “Computer Based Welding Training System,” International Journal of Industrial Engineering (2009) 16(2): 116-125. |
Antonelli et al, “A Semi-Automated Welding Station Exploiting Human-Robot Interaction,” Advanced Manufacturing Systems and Technology (2011) pp. 249-260. |
Praxair Technology Inc, “The RealWeld Trainer System: Real Weld Training Under Real Conditions” Brochure (2013) 2 pages. |
United States Provisional Patent Application for “System for Characterizing Manual Welding Operations on Pipe and Other Curved Structures,” Prov. U.S. Appl. No. 62/055,724, filed Sep. 26, 2014, 35 pages. |
Lincoln Global, Inc., “VRTEX 360: Virtual Reality Arc Welding Trainer” Brochure (2015) 4 pages. |
J.Y. (Yosh) Mantinband, Hillel Goldenberg, Llan Kleinberger, Paul Kleinberger, Autosteroscopic, field-sequential display with full freedom of movement OR Let the display were the shutter-glasses, 3ality (Israel) Ltd., 8 pages, 2002. |
Kobayashi, Ishigame, and Kato, “Simulator of Manual Metal Arc Welding with Haptic Display” (“Kobayashi 2001”), Proc. of the 11th International Conf. on Artificial Reality and Telexistence (ICAT), Dec. 5-7, 2001, pp. 175-178, Tokyo, Japan. |
Wahi, Maxwell, and Reaugh, “Finite-Difference Simulation of a Multi-Pass Pipe Weld” (“Wahi”), vol. L, paper 3/1, International Conference on Structural Mechanics in Reactor Technology, San Francisco, CA, Aug. 15-19, 1977. |
Nuhan Onew Technology Co Ltd, “ONEW-360 Welding Training Simulator” http://en.onewtech.com/_d276479751.htm as accessed on Jul. 10, 2015, 12 pages. |
The Lincoln Electric Company, “VRTEX Virtual Reality Arc Welding Trainer,” http://www.lincolnelectric.com/en-us/equipment/training-equipment/Pages/vrtex.aspx as accessed on Jul. 10, 2015, 3 pages. |
Miller Electric Mfg Co, “LiveArc: Welding Performance Management System” Owner's Manual, (Jul. 2014) 64 pages. |
Miller Electric Mfg Co, “LiveArc Welding Performance Management System” Brochure, (Dec. 2014) 4 pages. |
Kobayashi, Ishigame, and Kato, “Skill Training System of Manual Arc Welding by Means of Face-Shield-Like HMD and Virtual Electrode” (“Kobayashi 2003”), Entertainment Computing, vol. 112 of the International Federation for Information Processing (IFIP), Springer Science + Business Media, New York, copyright 2003, pp. 389-396. |
G.E. Moore, “No exponential is forever: but ‘Forever’ can be delayed!,” IEEE International Solid-State Circuits Conference, 2003. 19 pages. |
“High Performance Computer Architectures_ A Historical Perspective,” downloaded May 5, 2016. http://homepages.inf.ed.ac.uk/cgi/mi/comparch. pl?Paru/perf.html,Paru/perf-f.html,Paru/menu-76.html; 3 pages. |
Andreas Grahn, “Interactive Simulation of Contrast Fluid using Smoothed Particle Hydrodynamics,” Jan. 1, 2008, Master's Thesis in Computing Science, Umeå University, Department of Computing Science, Umeå, Sweden; 69 pages. |
Marcus Vesterlund, “Simulation and Rendering of a Viscous Fluid using Smoothed Particle Hydrodynamics,” Dec. 3, 2004, Master's Thesis in Computing Science, Umeå University, Department of Computing Science, Umeå, Sweden; 46 pages. |
M. Müller, et al., “Point Based Animation of Elastic, Plastic and Melting Objects,” Eurographics/ACM Siggraph Symposium on Computer Animation (2004); 11 pages. |
Andrew Nealen, “Point-Based Animation of Elastic, Plastic, and Melting Objects,” CG topics, Feb. 2005; 2 pages. |
D. Tonnesen, Modeling Liquids and Solids using Thermal Particles, Proceedings of Graphics Interface'91, pp. 255-262, Calgary, Alberta, 1991. |
“CUDA Programming Guide Version 1.1,” Nov. 29, 2007. 143 pages. |
Webster's II new college dictionary, 3rd ed., Houghton Mifflin Co., copyright 2005, Boston, MA, p. 1271, definition of “wake.” 3 pages. |
Da Dalto L, et al. “CS Wave: Learning welding motion in a virtual environment” Published in Proceedings of the IIW International Conference, Jul. 10-11, 2008; 19 pages. |
CS Wave-Manual, “Virtual Welding Workbench User Manual 3.0” 2007; 25 pages. |
Choquet, Claude. “ARC+®: Today's Virtual Reality Solution for Welders”, Published in Proceedings of the IIW Internatioal Conference; Jul. 10-11, 2008; 19 pages. |
Welding Handbook, Welding Science & Technology, American Welding Society, Ninth Ed., Copyright 2001. Appendix A “Terms and Definitions” 54 pages. |
Virtual Welding: A Low Cost Virtual Reality Welder Training System, NSRP RA 07-01—BRP Oral Review Meeting in Charleston, SC at ATI, Mar. 2008; 6 pages. |
Dorin Aiteanu “Virtual and Augmented Reality Supervisor for a New Welding Helmet” Dissertation Nov. 15, 2005; 154 pages. |
“The Evolution of Computer Graphics,” Tony Tamasi, NVIDIA, 2008; 36 pages. |
ViziTech USA, retrieved on Mar. 27, 2014 from http://vizitechusa.com/, 2 pages. |
Guu and Rokhlin, Technique for Simultaneous Real-Time Measurements of Weld Pool Surface Geometry and Arc Force, 10 pages, Dec. 1992. |
S.B. Chen, L. Wu, Q. L. Wang and Y. C. Liu, Self-Learning Fuzzy Neural Networks and Computer Vision for Control of Pulsed GTAW, 9 pages, dated May 1997. |
Patrick Rodjito, Position tracking and motion prediction using Fuzzy Logic, 81 pages, 2006, Colby College. |
D'Huart, Deat, and Lium; Virtual Environment for Training, 6th International Conference, ITS 20002, 6 pages, Jun. 2002. |
Konstantinos Nasios (Bsc), Improving Chemical Plant Safety Training Using Virtual Reality, Thesis submitted to the University of Nottingham for the Degree of Doctor of Philosophy, 313 pages, Dec. 2001. |
ANSI/A WS D 10.11 MID 10. 11 :2007 Guide for Root Pass Welding of Pipe without Backing Edition: 3rd American Welding Society / Oct. 13, 2006/36 pages ISBN: 0871716445, 6 pages. |
M. Jonsson, L. Karlsson, and L-E Lindgren, Simulation of Tack Welding Procedures in Butt Joint Welding of Plate Welding Research Supplement, Oct. 1985, 7 pages. |
Isaac Brana Veiga, Simulation of a Work Cell in the IGRIP Program, dated 2006, 50 pages. |
Balijepalli, A. and Kesavadas, Haptic Interfaces for Virtual Environment and Teleoperator Systems, Haptics 2003, 7-., Department of Mechanical & Aerospace Engineering, State University of New York at Buffalo, NY. |
Johannes Hirche, Alexander Ehlert, Stefan Guthe, Michael Doggett, Hardware Accelerated Per-Pixel Displacement Mapping, 8 pages. |
Yao et al., ‘Development of a Robot System for Pipe Welding’. 2010 International Conference on Measuring Technology and Mechatronics Automation. Retrieved from the Internet: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5460347&tag=1; pp. 1109-1112, 4 pages. |
Steve Mann, Raymond Chun Bing Lo, Kalin Ovtcharov, Shixiang Gu, David Dai, Calvin Ngan, Tao Al, Realtime HDR (High Dynamic Range) Video for Eyetap Wearable Computers, FPGA-Based Seeing Aids, and Glasseyes (Eyetaps), 2012 25th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1-6, 6 pages, Apr. 29, 2012. |
Kyt Dotson, Augmented Reality Welding Helmet Prototypes How Awsome the Technology Can Get, Sep. 26, 2012, Retrieved from the Internet: URL:http://siliconangle.com/blog/2012/09/26/augmented-reality-welding-helmet-prototypes-how-awesome-the-technology-can-get/, 1 page, retrieved on Sep. 26, 2014. |
Terrence O'Brien, “Google's Project Glass gets some more details”, Jun. 27, 2012 (Jun. 27, 2012), Retrieved from the Internet: http://www.engadget.com/2012/06/27/googles-project-glass-gets-some-more-details/, 1 page, retrieved on Sep. 26, 2014. |
William T. Reeves, “Particles Systems—A Technique for Modeling a Class of Fuzzy Objects”, Computer Graphics 17:3 pp. 359-3761983. |
Fletcher Yoder Opinion re RE45398 and U.S. Appl. No. 14/589,317; including appendices; Sep. 9, 2015; 1700 pages. |
Screen Shot of CS Wave Exercise 135.FWPG Root Pass Level 1 https://web.archive.org/web/20081128081858/http:/wave_c-sfr/images/english/snap_evolution2.jpg; 1 page. |
Screen Shot of CS Wave Control Centre V3.0.0 https://web.archive.org/web/20081128081915/http:/wave.c-s.fr/images/english/snap_evolution4.jpg; 1 page. |
Screen Shot of CS Wave Control Centre V3.0.0 https://web.archive.org/web/20081128081817/http:/wave.c-s.fr/images/english/snap_evolution6.jpg; 1 page. |
Da Dalto L, et al. “CS Wave a Virtual learning tool for the welding motion,” Mar. 14, 2008; 10 pages. |
Nordruch, Stefan, et al. “Visual Online Monitoring of PGMAW Without a Lighting Unit”, Jan. 2005; 14 pages. |
ChemWeb.com—Journal of Materials Engineering (printed Sep. 26, 2012) (01928041). |
Heat and mass transfer in gas metal arc welding. Part 1: the arc by J. Hu, and Hi Tsai found in ScienceDirect, International Journal of Heat and Mass transfer 50 (2007) 833-846 Available on Line on Oct. 24, 2006 http://web.mst/edu/˜tsai/publications/Hu-IJHMT-2007-1-60.pdf. |
Texture Mapping by. Ian Graham, Carnegie Mellon University Class 15-462 Computer graphics, Lecture 10 dated Feb. 13, 2003. |
Nancy C. Porter, J. Allan Cote, Timothy D. Gifford, and Wim Lam, Virtual Reality Welder Training, dated Jul. 14, 2006. |
European Examination Report for application No. 17001820.4, 4 pp., dated May 16, 2019. |
Yizhong Wang, Younghua Chen, Zhongliang Nan, Yong Hu, Study on Welder Training by Means of Haptic Guidance and Virtual Reality for Arc Welding, 2006 IEEE International Conference on Robotics and Biomimetrics, pp. 954-958, ROBIO 2006 ISBN-10:1424405718, Dec. 17-20, 2006, Kunming, China. |
Nancy C. Porter, J. Allan Cote, Timothy D. Gifford, Wim Lan, Virtual Reality Welder Training, Paper No. 2005-P19, 2005, pp. 1-14. |
Asciencetutor.Com, A Division of Advanced Science and Automation Corp., VWL (Virtual Welding Lab), 2007, 2 pages. |
Edison Welding Institute, E-Weld Predictor, 3 pages, 2008, Columbus, OH. |
Tim Heston, Virtually welding, The Fabricator, Mar. 2008, 4 pages. FMA Communications Inc., Rockford, IL, www.thefabricator.com. NSRP ASE, Low-Cost Virtual Reality Welder Training System, 2008, 1 page. |
Steven White, Mores Prachyabrued, Dhruva Baghi, Amit Aglawe, Dirk Reiners, Christoph Borst, Terry Chambers, Virtual Welder Trainer, IEEE Virtual Reality 2009, p. 303. |
Nancy Porter, J. Allan Cote, Timothy Gifford, Virtual Reality Welder Training, CRP Cooperative Research Program, Summary Report SR 0512, Jul. 2005, 4 pages. |
Weld Into the Future, Eduwelding+, Training Activities with arc+simulator, 2005, 4 pages. |
Claude Choquet, ARC+: Today's Virtual Reality Solution for Welders, 123 Certification In.,Montreal, Quebec, CA, May 2008, 6 pages. |
Laurent Da Dalto, Dominique Steib, Daniel Mellet-d'Huart, Olivier Balet, CS WAVE A Virtual learning tool for the welding motion, http://www,c-s.fr, Mar. 14, 2008, 10 pages. |
CS WAVE, The Virtual Welding Trainer, 6 pages, 2007. |
Fronius—virtual welding, www.fh-joanneum.at/ca/cn/yly/?lan=en, 2 pages, May 12, 2008. |
Fronius, ARS Electronica, 2 pages, May 18, 1997. |
P/NA.3 Process Modelling and Optimization, www.natech-inc.com/pna3/index.html, 11 pages, Jun. 4, 2008. |
“RV-Sold” Welding Simulator Technical and Functional Features, SIMFOR, pp. 1-20, date unknown. |
Juan Vicente Rosell, RV-Sold: Simulador virtual para la formacion de soldadores, Deformacion Metalica, Es. vol. 34, No. 301, 14 pages, Jan. 1, 2008. |
Kenneth Fast, Timothy Gifford, Robert Yancy, Virtual Training for Welding, 3rd IEEE and ACM International symposium on Mixed and Augmented Reality (ISMAR 2004), 2 pages, 2004. |
D. Mavrikios, V. Karabatsou, D. Fragos, G. Chryssolouris, A proto-type virtual reality-0cased demonstrator for immersive and interactive simulation of welding processes, International Journal of Computer Integrated Manufacturing, 294-301, 2006. |
PCT/IB2009/00605 International Search Report. |
PCT/IB2009/00605 Written Opinion. |
U.S. Appl. No. 29/399,980, filed Jul. 10, 2009, issued May 11, 2010 as D615,573. |
U.S. Appl. No. 29/339,979, filed Jul. 10, 2009, issued Apr. 20, 2010 as D614,217. |
U.S. Appl. No. 29/339,978, filed Jul. 10, 2009. |
U.S. Appl. No. 12/504,870, filed Jul. 17, 2009 claiming priority to U.S. Appl. No. 61/090,794. |
U.S. Appl. No. 12/501,263, filed Jul. 10, 2009 claiming priority to U.S. Appl. No. 61/090,794. |
U.S. Appl. No. 12/501,257, filed Jul. 10, 2009 claiming priority to U.S. Appl. No. 61/090,764. |
Number | Date | Country | |
---|---|---|---|
61158578 | Mar 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14177692 | Feb 2014 | US |
Child | 12719053 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12719053 | Mar 2010 | US |
Child | 14589317 | US | |
Parent | 12719053 | Mar 2010 | US |
Child | 14177692 | US |