The present invention relates generally to transferring information between a device placed outside a person's or patient's body and another device placed inside the person's or patient's body.
A medical device, designed to be subcutaneously implanted, may include e.g. electronic circuits and/or some other electric device and hence it needs, like any other similar device, electric power for its operation. Examples of such medical devices include e.g. electrical and mechanical stimulators, motors, pumps, valves and constriction devices that can support, stimulate or control various body functions of the person in which the medical device is implanted.
Electric power to a medical device implanted in a person's body can as conventional be supplied from an implanted electrical energy storage such as one or more electrochemical cells. Electric power to devices located inside a person's body can also be supplied from outside the body using wireless energy transfer, for example supplying electric power using electrical induction. An external device used in such case for transmitting electric power can be called an electric power transmitter. The wirelessly supplied power can be used to directly operate an implanted medical device or to charge an implanted electrical energy storage.
A device suited to be implanted can also require electrical signals in order to generally control its operation and its functions such as, in a simple case, to start or stop the operation of the device. For more complicated devices or devices having more complicated functions, the device could also be required to provide feedback, i.e. signals representing the current state of the device or its function or e.g. some value sensed by the implanted device. Such signals can be exchanged with an external device, e.g. a controller. Then, the signals can also be wirelessly transferred.
Wireless supply of power and wireless exchange of signals have for a medical implant the obvious advantage that no electrical line extending through the skin of the person having the implant is required.
Wireless communication of signals of course also requires electrical power. This is of special importance considering implanted devices and the communication should be designed to require as small electrical power and energy as possible from the implants.
In the system described herein for communication of information between a medical implant implanted in a patient's body and an external communication unit provided outside the patient's body, generally the external communication unit has a part adapted to be in contact with or be placed in a close vicinity of the patient's body when in use and the medical implant comprises an internal communication unit. The external communication unit and the internal communication unit communicates with each other using a communication path, a part of which uses or includes the patient's body for the communication of information.
The communicated information can be digital in the common way. It can then be represented as transitions of a signal, such as transitions between states or levels of a signal. For binary information two states or levels are used. The communicated information can also be generally represented as variations of the derivative of a signal, the derivative taken in regard of time. For a binary signal thus a zero is represented by a transition of a first kind and a one is represented by a transition of a second, different kind. Such a method of communicating information requires that in receiving and decoding the signal, a clock signal for the times when the transitions occur, such as for the start time of the transitions, is available.
In representing the communicated information, the states of a signal can e.g. include different frequencies of the signal, the derivate then taken of the frequency in regard of time. Thus, e.g. dual frequency communication can be used. Furthermore, in representing the communicated information, e.g. Manchester encoding can be used, i.e. the information can be coded according to the Manchester system.
In particular, the system is based on the realization that by using the patient's body as a communication medium and measuring the electric potential in different places, communication between a medical implant and a communication unit outside the patient's body can be established with a minimum of electric current flowing through the body. In particular, a portion of the patient's body is used as part of a capacitor. Generally then, the internal communication unit comprises a communication receiver, transmitter or transceiver that includes one part of a capacitive energy storage. The communicating of information using the capacitive coupling includes that an electrical current is injected into or is drawn from the capacitive energy storage:
In the system, the information can e.g. be represented as variations of the derivative of the voltage over the capacitive energy storage, i.e. as transitions in the voltage level.
Further embodiments are defined by the dependent claims.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the methods, processes, instrumentalities and combinations particularly pointed out in the appended claims.
While the novel features of the invention are set forth with particularly in the appended claims, a complete understanding of the invention, both as to organization and content, and of the above and other features thereof may be gained from and the invention will be better appreciated from a consideration of the following detailed description of non-limiting embodiments presented hereinbelow with reference to the accompanying drawings, in which:
The capacitor plates 1, 3 are electrically connected to driver circuits 9, 11, respectively, which basically can include transmitter, receiver or transceiver circuits. The driver circuits 11 for the internal capacitor plate 3 are thus also implanted and are electrically connected to the implanted device or a control device therefor, not shown. The external driver circuits 9 are connected to a control device, not shown. The driver circuits are powered by power supplies 13, 15, the internal one also being implanted. The driver circuits may require a common electrical ground potential which can make the transfer of information more secure. Thus, the driver circuits of the internal communication unit can include or be connected to an electrically conducting portion, such as a plate or electrode, suited to be in electrical contact and connection with internal body tissues. In another example, the housing of the internal driver circuits 11 is at least partly electrically conducting, so that the electrically conducting area thus is in electrical connection with the body tissues. For the same purpose, the external driver circuits 9 can be electrically connected to an electrically conducting portion, such as an electrically conducting plate or electrode 17, that is attached to and electrically connected to the skin of the person's body in the same way as electrodes e.g. for cardiography.
The capacitor formed by the capacitor plates 1, 3 is part of an electric circuit connection between the driver circuits 9, 11 and electric signals can be transmitted over this circuit connection. By selecting the dimensions of the plates and their location in relation to each other the capacitor can be given a capacitance suited for the signal transfer. Hence, the plates can be made to have as large a surface area as is possible for an implant, e.g. in the range of 2-8 cm2, and be configured in a suitable way. Of course, they may be rectangular or square plates but they may also e.g. have an elongated round shape or a circular shape. In particular, the internal capacitor plate 3 can be given a suitable shape, making it suitable to be implanted. Thus, it may e.g. have perforations or through-holes, not shown, allowing it to be securely attached in body tissues.
The driver circuits can be designed as is schematically illustrated in
The system can be arranged on a person's body such as illustrated in
In a special embodiment, the external capacitor plate 1 and its driver circuits 9 and power supply 13 can be integrated in a wristwatch 45. The internal capacitor plate 3, not seen in
In
The communication channel or path having a capacitive coupling as described above should have a constant impedance which is as small as possible in order to ensure that the communication signals are appropriately transferred. However, the capacitance of the capacitor used having one capacitor plate implanted in a patient's body is not constant due to the facts that the plates can move in relation to each other and that body functions in the tissues located between the capacitor plates can change. The frequency used for the communication is substantially constant if e.g. a carrier signal which is modulated is used or pulses of a definite frequency is used. Also, the frequency has to be as large as possible to make the impedance small.
In order to improve the total capacitive coupling between the capacitor plates 1, 3 they can be divided to each include a first plate and a second plate, see
The dual capacitor plates used in this case can for ease of positioning be configured as concentric circular fields as seen
Various ways of communicating signals over the communication path involving a capacitive coupling can be conceived, considering the above mentioned conditions of the signal transmission, and possible methods will now be described.
In the simplest case, the signals used in the communication between the external and internal devices can e.g. be electric pulses, e.g. substantially rectangular pulses. However, since the communication of information in most case must be made with a high degree of security, a suitable coding of the information could be used. Hence, e.g. Manchester coding can be used.
Manchester encoding is a special case of binary phase shift keying where each bit of data is signified by at least one transition. The encoding is therefore self-clocking which makes accurate synchronization of the data stream possible. For example, a “1” can be represented by a transition from a high to a low level and a “0” can be represented by a transition from a low to a high electrical level. This means that in the derivative of the electrical signal in regard of time, there are variations so that a “1” can be seen as a negative pulse and a “0” as a positive pulse. In the electrical signal there are also transitions between the two levels that do not represent any information but are necessary in order that the transitions representing information can be arranged in the electrical, such extra transitions thus inserted when sending two equal consecutive bits of information.
Generally, the digital information to be communicated can be represented as transitions of a signal, such as transitions between states or levels of a signal, these states or levels being for example different frequencies, different voltage levels or different levels of the amplitude of a carrier wave. For binary information only two states or levels are required. For a binary signal comprising two symbols thus a “0” is represented by a transition of a first kind such as from a first state to a second state and a “1” is represented by a transition of a second, different kind such as from a second state to a first state. In a signal containing information that is conveyed in the system considered here, however, there are always consecutive sequences of the same symbol, such as of “0:s” and “1:s”. The first symbol in such a sequence is then represented by the respective transition but for the following symbols in the sequence this transition can obviously not be used. Thus, in one case, for the following symbols no transition at all is used. Since the transitions are sent in a fixed rate, these following symbols can still be decoded. Thus, such a method requires that in receiving and decoding the signal, a clock signal for the times when the transitions are supposed to occur, such as for the start times of the transitions, is available. A clock signal can be obtained in the receiving side by sending, from the transmitting side, initially or at suitably repeated times, a sequence of transitions in the fixed rate, such a sequence then represented e.g. by the symbol sequence “10101010 . . . ”.
Each of the symbols or bits of the communicated information can thus be generally represented as a variation of the derivative of a signal, the derivative taken in regard of time. Such a variation can then be e.g. positive pulse or a negative pulse.
For the cases of simple pulse transmission, the transmitter output stage 23 and the oscillator 25 illustrated in the circuit diagram of
For receiving, the transmitted signal is picked up by the capacitor plate 1, 3. The DC level of the signal is by the resistor R22 pulled to 2.5V which is equal to VCC/2. The received signal is provided to a preamplifier stage 51 including an amplifier U9 before it is passed to filter stages. The amplifier has a high input impedance and a low bias current. The signal is then provided to a highpass filter stage 53 that is configured as a second order active high pass filter including an amplifier U10 as its active element. This filter stage removes low frequency interfering signals and noise. Then, the signal is passed to a lowpass filter stage 55 being a passive filter of RC-type, comprising a resistor R41 and a capacitor C8 to remove high frequency noise.
The signal is then provided to a signal detector stage that here is designed as a comparator 57 stage having hysteresis. Thus, the received and filtered signal is fed to the inverting input of a comparator U7. The same signal is also first even more low pass filtered in a passive RC-filter including R41 and C14 and then fed to the non-inverting input of the comparator via a resistor R6. The resistor R6 and the feedback resistor R12 form the hysteresis feedback. The comparator U7 has hysteresis in order to output a square wave in Manchester code even if the signal drops down below the DC level. An example of a received and filter signal can be seen in
The microcontroller U19 is used to decode the received Manchester stream into useful data. This is achieved by measuring the time between rising and falling edges. When a reception is initialized, the microcontroller receives a preamble consisting of the repeated pattern “10101010”. Since the only transitions that occur in that pattern are the bit transitions the preamble can be used to synchronize the data, i.e. to form a clock signal. When synchronization has been accomplished, the microcontroller can begin to translate the Manchester stream into useful data.
Another method mentioned above is to use amplitude modulation to transfer data. For instance, a carrier frequency can be on/off-modulated to output bursts of the electrical signal.
For this method driver circuits like those illustrated in
For receiving information, the transmitted signal is picked up by the capacitor plate connected to J4. The DC level of the received signal is by the resistor 22 pulled to 2.5V which is equal to VCC/2. The received is provided to a preamplifier stage 61 including an amplifier U9 having a high input impedance and a low bias current. The amplified signal is passed to a bandpass filter 63. The bandpass filter is a second order active band pass filter including an amplifier U10 as its active element. The filtered signal is provided to a variable gain amplifier 65 including a non-inverting amplifier U13. A resistor connects the inverting input of the non-inverting amplifier to a reference voltage that can be chosen by setting an analog switch U17. The gain of the variable gain amplifier 65 can therefore be set by the microcontroller 27 by control signals “VGA1-4”. After having passed the variable gain amplifier, the signal is half-wave rectified in a rectifier stage 67 including an the amplifier U18 having two diodes D14 connected in its feedback loop. The rectified signal is by a passive low pass RC-filter 69 including a resistor R50 and a capacitor C28 to output a rectangular wave. The rectangular wave is high when the amplitude of the received signal is high or on and it is low when the amplitude is off or zero. Finally, the wanted signal is detected in a signal detector or comparator stage 35 by being provided to the non-inverting input of a comparator U21. The signal is also simultaneously low pass filtered by the RC-filter arranged by the resistor R52 and the capacitor C40 to provide an averaged signal to the inverting input. The signal “DATA” output from the comparator U21 is fed to the microcontroller 27 to decode the received data.
For the data reception to work properly in this case it may be important that the transmitted signal is balanced in the meaning that it is on and off for the same amount of time. The data can for that reason, also in this case, be encoded using Manchester code as described above.
A development of the simple amplitude modulation method using a carried that is switched on and off is the method called frequency shift keying (FSK). This modulation scheme represents a digital ‘0’ with a first frequency and a ‘1’ with a second, different frequency where these frequencies can be selected to be as large as possible. If possible, also rectangular waves can be used instead of sine waves to get a better transmission through the capacitive link.
In demodulating, in this case a received frequency is transformed into a ‘0’ or ‘1’. This can be done using a phase locked loop (PLL), in particular a digital phase locked loop (DPLL). Such a digital demodulating circuit comprises a pfd or phase detector, a loop filter, a VCO counter and a decider. The phase detector looks on the incoming signal and compares it to the generated signal in the VCO counter. If any of the signals goes high before the other, this information is sent to the loop filter. The loop filter gets the information about which signal goes high first and translates this to a control signal for the VCO counter. This signal is the preset for the counter inside VCO counter. The VCO counter is a counter that always counts down and has a load and preset inputs. These inputs are controlled by the loop filter. The decider is a unit or circuit which creates the data signal. This is done by looking at the preset signals and, depending on the value, choosing between a ‘0’ and a ‘1’.
While specific embodiments of the invention have been illustrated and described herein, it is realized that numerous other embodiments may be envisaged and that numerous additional advantages, modifications and changes will readily occur to those skilled in the art without departing from the spirit and scope of the invention. Therefore, the invention in its broader aspects is not limited to the specific details, representative devices and illustrated examples shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents. It is therefore to be understood that the appended claims are intended to cover all such modifications and changes as fall within a true spirit and scope of the invention. Numerous other embodiments may be envisaged without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
0802163-8 | Oct 2008 | SE | national |
This application is a continuation of U.S. patent application Ser. No. 13/123,252, filed Apr. 8, 2011, which is a National Stage Entry of International Application PCT/SE09/51159, which claims priority and benefit from Swedish patent application No. 0802163-6, filed Oct. 10, 2008, and U.S. provisional patent application No. 61/227,822, filed Jul. 23, 2009, the entire teachings of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
61227822 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13123252 | Apr 2011 | US |
Child | 18905159 | US |