1. Field of the Invention
The present invention relates to a system for trapping flying insects such as mosquitoes, no-see-ums, and other insects
2. Description of Related Art
Each year mosquito-transmitted diseases are responsible for over 3 million deaths and 300 million clinical cases. It is estimated that the worldwide costs associated with the treatment of such mosquito-transmitted diseases runs well into the billions of dollars. In many regions mosquitoes are the primary transmitters of debilitating diseases such as malaria, yellow fever, dengue fever, encephalitis, West Nile virus, sleeping sickness, filariasis, typhus and plague. In addition to the illnesses and deaths caused to humans, mosquito-transmitted diseases are a major cause of economic losses to livestock industries due to veterinary diseases. Further, mosquito-transmitted diseases pose an ever-present concern to regions dependent on revenues from tourism. Specifically, the presence of such diseases in a given region is believed to impact the willingness of tourists to select that region as a tourism destination.
With increased travel and world commerce it also is expected that some of these diseases will become major health problems in the continental United States and elsewhere. For example, the emergence of the West Nile virus in temperate regions of Europe and North America supports this expectation, which represents a threat to the health of the general public, as well as to the health of horses and other animals. The West Nile virus can result in encephalitis (inflammation of the brain) in humans and horses, and mortality in domestic animals and wild birds.
A number of methods for controlling mosquito populations or repelling mosquitoes have been proposed in the past. Examples of these are discussed herein below. As will be appreciated from the following discussion, each of these methods have significant drawbacks which render them impractical or ineffective.
One well-known method for suppressing mosquito populations is the use of chemical pesticides, such as DDT and Malathion. There are basically two types of mosquito pesticides available—adulticides and larvicides. Adulticides are chemicals used to kill mosquitoes that have developed to the adult stage. Infested areas are sprayed primarily from aircraft or motor vehicles. Efficacy of the sprayed chemicals is typically dependent upon wind, temperature, humidity, and time of day, the particular mosquito's resistance to the chemical used, and the base efficacy of the particular chemical. Adulticides must be applied for each generation of adults produced by rain, tidal flooding, or other periodic egg hatching trigger, and have a typical efficacy window of only ½ day. As such, these chemicals must be applied at a time when maximum contact with adult mosquitoes can be expected.
Larvicides, on the other hand, are applied to water sources to kill the larvae before they become adult mosquitoes. Larvicides generally take the form of one of three varieties: (1) an oil applied to the water surface that prevents the larvae from breathing and thus drowns them, (2) a bacteria, such as BTI (bacillus thuringiensis israelensis), which attacks the larvae and kills them, or (3) a chemical insect growth regulator (e.g., methoprene) that prevents the larvae from developing to the adult stage. However, larvicides often are not particularly effective for a variety of reasons. For example, most larvicides have a short efficacy period and must be applied to the water while the immature mosquitoes are at a particular stage of growth. Also, several species of mosquitoes, such as tree-hole breeders, root-swamp breeders, and cattail-marsh breeders, are not easily controlled with larvicides since the larvae either do not come to the surface (e.g., cattail marsh mosquito) or the water sources are so difficult to locate that the larvicide's cannot be economically applied (e.g., tree holes). Additionally, the mosquito that carries the West Nile virus (Culex Pippiens) lives and breeds around humans in gutters, underground drains, flower pots, birdbaths, etc. This not only makes the spraying of insecticides impractical due to the difficulty associated with effectively targeting such areas, many people are also uncomfortable with the use of chemical pesticides so close to their homes.
Regardless of their alleged efficacy, or lack thereof, the use of chemical pesticides has been reduced dramatically in both the United States and worldwide. A primary reason for this reduction is attributable to the rising public awareness of the potential health hazards related to pesticide use. Specifically, general public perception of the long-term health hazards presented by certain chemicals, such as DDT, has led to the banning of their use for mosquito control in many parts of the United States and other countries. Additionally, increasing pesticide resistance among mosquitoes has reduced the effectiveness of the chemicals conventionally used, thus bolstering the argument that the supposed benefits of chemical pesticides do not outweigh public health risks.
To some extent, natural predators also control mosquito populations. For example, certain fish and dragonflies (as both nymphs and adults) are reported to eat mosquito larvae and adults. Additionally, it is known that certain bats and birds also prey on mosquitoes. Some people, particularly those opposed to the use of chemical pesticides, have advocated that natural predators should be relied on as an environmentally safe means for controlling mosquito populations. Unfortunately, efforts in the past to utilize natural predators for effectively controlling mosquito populations have proven ineffective. For example, large bat towers were erected in three cities in the South during the 1920's with high expectations that the bats living in these towers would control mosquito populations. However, these towers were ineffective at adequately controlling the local mosquito populations. Studies of the stomach contents of the bats found that mosquitoes made up less than 1% of their food source.
Many people rely on repellents to keep mosquitoes away from their person, or from a certain area. These repellents by their nature do nothing to actually control the mosquito population; instead, they simply offer temporary relief to the person employing the repellent. Repellents can be either topical or aerial, and can take many forms, including lotions, sprays, oils (e.g., “Skin-So-Soft”), coils, and candles (e.g. citronella), among others. The most common repellents (lotions, sprays, and oils) are those that are used on the clothing or body. Many of these repellents do not actually “repel” mosquitoes per se—instead, some repellents simply mask the factors (carbon dioxide, moisture, warmth and lactic acid), which attract a mosquito to its host. Although these repellents are fairly inexpensive, they often have an offensive odor, are greasy, and are effective for only a limited duration. It has also been found that repellents, which contain DEET, or ethyl hexanediol, actually become attractive to mosquitoes after a period of time. Therefore, it is advisable when using repellents to wash them off or reapply fresh repellent when the protective period has passed.
In addition to being unpleasant, many repellents are coming under close scrutiny with respect to the potential long-term health hazards they may pose. DEET, considered by many entomologists to be the best repellent available, has been marketed for over 30 years, and is the primary ingredient of many well-known commercial sprays and lotions. Despite the long-term widespread use of DEET, the U.S. Environmental Protection Agency (EPA) believes that DEET may have the ability to cause cancers, birth defects, and reproductive problems. In fact, the EPA issued a consumer bulletin in August 1990 in which they stated that a small segment of the population may be sensitive to DEET. Repeated applications—particularly on small children—may sometimes cause headaches, mood changes, confusion, nausea, muscle spasms, convulsions or unconsciousness.
Mosquito coils have been sold for many years as a means for repelling mosquitoes. These coils are burnt to emit a repellent smoke. Products manufactured some 20 years ago were sold under the trade name Raid Mosquito Coils and contained the chemical Allethrin. Recent products are trade named OFF Yard & Patio Bug Barriers and contain the chemical Esbiothrin. These products may provide some relief from mosquito activity; however, they do not reduce the number of mosquitoes in a region, and they emit smoke and chemicals into the vicinity. Also, with even the slightest breeze, their potential effect is diminished, as the smoke and chemicals are dispersed over a large area and thus become diluted and less effective.
Many people have also touted the benefits of citronella in repelling mosquitoes, whether it is in the form of candles, plants, incense, or other mechanisms. According to a recent study, citronella-based products have been shown to be only mildly effective in repelling mosquitoes and then only when the candles were placed every three feet around a protected area. This treatment was only slightly more effective than burning plain candles around a protected area. In fact, it is believed that burning the candles increases the amount of carbon dioxide in the air, causing more mosquitoes to be drawn into the general area rather than reducing the number of mosquitoes in the area. Despite these drawbacks, the current market for citronella-based products is quite large.
Introduced in the late 1970s, the familiar “black-light” electrocution devices, referred to as “bug zappers,” were initially a commercial success. Although essentially ineffective at killing mosquitoes, bug zappers sell at a current rate of over 2,000,000 units annually. The ineffectiveness of these devices at killing mosquitoes has been proven in academic studies and the personal experiences of many bug zapper owners. Specifically, electrocution devices are ineffective at killing mosquitoes because they do not attract most mosquitoes. The reason for this is that these devices only attract insects that are attracted to light, which is not the case with most species of mosquitoes.
U.S. Pat. No. 6,145,243 (“the '243 patent”) discloses an insect trapping device developed by the assignee of the present application, American Biophysics Corporation of East Greenwich, R.I. The device of the '243 patent discloses the basic construction of a device that uses combustion to generate a flow of carbon dioxide for attracting mosquitoes and other flying insects towards an inlet on the device. A vacuum draws the insects attracted by the carbon dioxide through the inlet and into a trap chamber. The trap chamber includes a disposable mesh bag in which the mosquitoes become dehydrated. When the bag becomes full, it can be removed and replaced. U.S. patent application Ser. No. 2003/0084604A1 (“the '604 application”), also owned by American Biophysics, discloses another device for attracting and capturing insects that also uses combustion to generate carbon dioxide.
While the device disclosed in the '243 patent and the '604 application have been commercially successful for American Biophysics Corporation, it would be desirable to provide a system that is of significantly lower cost, and thus available to more consumers. It is believed that the additive impact of widespread use of this technology will help lead to better control of mosquito and other flying insect populations and, in turn, to reduced incidents of insect transmitted diseases.
One aspect of the invention provides a device for attracting and capturing flying insects. The device comprises a frame, an insect trap chamber, a supply of a diffusible insect attractant, at least one electrically-powered airflow generator, and an electrically-powered heater. The frame provides at least one outlet opening and at least one inlet opening. Each of the outlet and inlet openings are communicated to a surrounding atmosphere. The insect trap chamber is communicated to the surrounding atmosphere through the at least one inlet opening. The at least one airflow generator is operable to generate an outflow flowing outwardly to the surrounding atmosphere through the at least one outflow opening, the outflow consisting essentially of ambient air from the surrounding atmosphere with the insect attractant diffused therein from the supply thereof. The at least one airflow generator is also operable to generate an inflow flowing inwardly from the surrounding atmosphere through the at least one inlet opening and then into the insect trap chamber. This enables the inflow to draw insects attracted to the device by the insect attractant diffused in the outflow into the insect trap chamber. The heater is operable to heat the supply of the insect attractant above ambient temperature so as to facilitate diffusion of the insect attractant.
Another aspect of the present invention provides a method for attracting and capturing flying insects. The method comprises:
Other object, features, and advantages of the present invention will become apparent from the following detailed description, the accompanying drawings, and the appended claims.
The device 10 comprises a supporting frame, generally indicated at 14. The supporting frame 14 includes a housing 16 supported on at least one leg 17. In the illustrated embodiment, a single leg 17 is used to support the housing 16. The supporting frame 14, however, may have any construction or configuration suitable for carrying the operative components discussed herein below, for example a tripod arrangement may also be used. Additionally, the frame may include wheels, as shown in the aforementioned U.S. Pat. No. 6,145,243 and U.S. patent application Ser. No. 2003/0084604A1, the entirety of each of which is hereby incorporated into the present application by reference. Alternatively, instead of using legs, the frame may include a bracket (not shown) for mounting the device 10 to the interior or exterior wall of a building, a fence, etc., or a hanger (not shown) for suspending the device from a post or ceiling.
The housing 16 includes a shell 18. In the illustrated embodiment, the shell 18 is molded from plastic. However, the housing 16 in general may be made from any materials and may take any shape, configuration, or construction.
A tubular intake nozzle 22 protrudes downwardly from the bottom of shell 18 and is formed integrally therewith. The intake nozzle 22 has a flared lower end 24. The flared lower end 24 defines an insect inlet opening 26 that opens to the surrounding atmosphere. As will be appreciated from the details provided below, a vacuum is applied to the nozzle 22 and the insects attracted to the device 10 will be drawn into the insect inlet opening 26 for capture. The intake nozzle 22 and the inlet opening 26 provided thereby may be carried on the frame 14 in any suitable matter and the construction illustrated and described is only an exemplary construction. Thus, other constructions or configurations may be used. For example, multiple insect inlet openings, and/or openings with other locations, shapes or orientations may be used.
Concentrically mounted within the intake nozzle 22 is an outlet nozzle 28. The outlet nozzle 28 provides an exhaust outlet opening 30 on the lower end thereof that opens to the surrounding atmosphere. The function of the outlet nozzle 28 and its exhaust outlet opening 30 is to allow an outflow containing insect attractant to flow outwardly and downwardly therefrom. As the downward flow or “plume” of the exhaust gas reaches the ground, it flows radially outwardly from the device 10 along the ground. Mosquitoes and other insects will be able to sense the insect attractant and follow the same to its source, namely the exhaust outlet opening 30.
As can be appreciated from the construction disclosed, because the outlet nozzle 28 is concentric with the intake nozzle 22, the attracted insects will follow the insect attractant to its source (i.e., the outlet opening 30) and thus they will intersect the inflow prior to reaching the outlet opening 30. As a result, the attracted insects will be “vacuumed” by the inflow into the intake nozzle 22 whereby they are drawn into the device 10 and captured therein. The respective flows of the vacuum intake and the exhaust gas outflow are indicated by the inflow and outflow arrows in
The housing 16 includes an access door 32 (which may be opaque, translucent, or transparent) that can be moved between open and closed positions to open and close an access opening 34 formed in the housing wall. The access door 32 and the access opening 34 opened and closed thereby is best illustrated in
As will be described in further detail below, a mesh bag (shown in phantom at 40), the interior of which defines an insect trap chamber, is removably mounted within the housing 16. The chamber defined by the bag 40 is communicated to the insect inlet 26 so that the insects drawn in by the vacuum will be deposited in the bag 40 whereat they will become dehydrated and perish. Alternatively, the material of the bag 40 may be treated with a poison for purposes of facilitating the insect termination function; however, that is not a necessary feature of the invention. The access door 32 and its associated opening 34 permit access into the interior of the housing 16 to allow the user to access the mesh bag 40 as desired for purposes of removal/replacement. Also, as another alternative, a plastic box or any other suitable structure may be used in place of mesh bag 40. In the disclosed embodiment, the door 32 may be formed from a transparent material to enable to user to visually inspect the bag 40 to determine whether it needs removal/replacement. Specifically, a door 32 made of transparent material would enable the user to visually verify whether the bag 40 is at or near its full capacity of insects. In the broader aspects of the invention, the door 32 need not be transparent, and further, as mentioned previously, the device does not necessarily require the door 32 and its associated opening 34.
Additionally, ambient air may exit the shell 18 through a vent, such as the vents 46, shown in
Although not shown in the Figures, the fan 42 may be powered by a number of different methods, including an array of solar power panels, a battery or via a standard electrical plug.
Before exiting the outlet 30 the ambient air flows through an insect attractant receptacle device 50 containing a supply of an insect attractant. The insect attractant receptacle 50 may include a cartridge 49 that can be inserted into the device 10 through an opening 43 formed in a wall of the housing 16. The receptacle 50 may also include a chamber 68 that extends inwardly from the opposite wall of the housing. The cartridge 49 is received within the chamber 68 as it is inserted through the opening 43, and an adjusting knob 51 on one end of the cartridge 49 sits within the opening 43. The chamber 68 and the adjusting knob 51 will be discussed below. As can be seen in the Figures, the receptacle 50 has openings that allow ambient air to flow through the receptacle 50, whereby the attractant can diffuse into the flowing air, and then the air with the attractant diffused therein can flow out as the outflow.
Additionally, an electrically-powered heater (interchangeably referred to as a heating element, not shown) may be provided within a chamber 76 (
In an embodiment, a heating coil, which may be a resistance heater powered by the same source as the fan 42, may be provided around the outer housing 62 of the insect attractant cartridge 49 by being mounted to the inside of chamber 68, preferably along substantially the entire length of the attractant for an even release of attractant and depletion along its length. This coil would have spaces between its helices to allow airflow therethrough and over the attractant. In another embodiment, the heating element may be a block heater mounted adjacent the chamber 68. Alternatively, the insect attractant could have an internal bore therein and the heater could be a resistance or other type of heater received within the bore. In the arrangement where the attractant has an internal bore, preferably the bore is elongated and extends for a substantial portion of the attractant, and the heater likewise is elongated and extends for the length of the bore. This encourages steady, even release rates. Any suitable construction or configuration may be used for the heater, and it is contemplated that multiple smaller heaters could be used.
The device 10 may include a temperature sensor (not shown) positioned along the outflow path and fed back to a controller (not shown) that controls the heater. The controller and feedback may be used to control the heater to keep the outflow within a desired temperature range (i.e., by turning the heater on/off or adjusting the current flow to the heater to vary its heat output). The device 10 may also have manually operable on/off switch, such as the push-button switch 80 shown mounted on the housing 16. The switch 80 is communicated to the controller and can be selectively pushed or otherwise actuated by the user to activate the controller to turn the heater and fan on and off. An optional LED on/off indicator 82 is positioned adjacent the switch 80. When the LED is illuminated, the user knows the device 10 is running; and when the LED is not illuminated, the user knows the device 10 is off. These features are all optional.
As best shown in
Additionally, as seen, chamber 76 may be very large compared with the air flow exiting the device through outlet 30. The large chamber allows the ambient air to remain in the chamber longer and therefore collect more insect attractant. Also, by remaining in the chamber longer, the heater may be better able to heat the air so it is above ambient temperature. In a sense, the chamber 76 acts as a fluid capacitor along the outflow path. The provision of such a chamber 76, however, is optional.
Although the insect attractant receptacle 50 is shown as being positioned after (i.e., downstream of the fan 42) it should be understood and appreciated that the attractant can be located at any point in the flow path, preferably within the device 10. For example the attractant may be located within the outlet nozzle 28 or may even be located before (i.e., upstream of) the fan 42.
The attractant is selected for its capability to attract flying insects. The attractant may be manufactured such that it is a solid plug sized to fit within housing 16 or within the insect attractant receptacle 50. Alternatively, the attractant may be impregnated into a carrier. Preferably, solid attractants are powders in free-flowing or compressed form. Compressed or molded forms of attractant include tablet or “bullet-shaped” forms of the compound, bricks, or layered cakes. Examples of preferred embodiments of the attractant lures include powdered mixtures of L(+) lactic acid and calcium lactate. In a particularly embodiment, at least one biochemical attractant is mixed with a suitable polymer and is molded into a three dimensional geometric shape designed to fit inside attractant receptacle 50. Alternatively, a semi-solid attractant having both a solid and a liquid phase, such as a gel, can be used. The invention contemplates the use of any attractant that can diffuse into an airflow. Preferably, the attractant is a solid or semi-solid, but it is contemplated that a diffusible liquid attractant could be used. For examples of such attractants, reference may be made to any of the patents/applications mentioned above, or U.S. patent application Ser. No. 10/431,586, owned by American Biophysics Corp., the assignee of this application, the entirety of which is incorporated into the present application by reference.
As shown in
As can be seen from
The illustrated and described construction for the attractant receptacle 50 should not be considered limiting and any other suitable construction may be used. For example, a construction wherein the outer housing 62, chamber 68, and knob 51 are integrated into the device 10 may be used, and the attractant could be inserted through a door on the knob 51 or on the wall of the housing 18 opposite the knob.
In another alternative wherein the heater is designed to be received in an internal bore of the attractant, the heater could be mounted to the housing wall at the distal end of the chamber 68 in a cantilevered manner to extend along the axis of the chamber 68. For this alternative, the cartridge 49 described and illustrated could be modified by providing a central hole in the cap 64 so that the hole in the cap 64 and the attractant's bore can heater can pass over the heater as the cartridge 49 is being inserted.
Likewise, in the construction described above wherein the outer housing 62, chamber 68, and knob 51 are integrated into the device 10, and a door is provided on the knob 51 or the wall of the housing opposite the knob 51, the heater could be mounted in a cantilevered manner within the chamber 68 such that the attractant's internal bore can be slid over the heater as it is being inserted. Further, it is contemplated that the broader aspects of the invention can be practiced without the use of an adjustable insect attractant receptacle 50.
The attractant used to lure flying insects to insect inlet 26 is preferably an organic acid similar to those present on animal skin due to the inclusion of such acids in sweat and breath. In particular, the organic acid may be 2-hydroxy-propionic acid, commonly known as lactic acid or a derivative thereof. Suitable derivatives of lactic acid, such as a lactic acid salt, are effective lures for flying insects. Such salts include ammonium lactate. More preferably, the attractant is L(+) lactic acid. Combinations of lactic acid and one or more salts thereof are also suitable attractants. Lactic acid or a derivative thereof may be combined with a second attractant. The second attractant may be mixed with the lactic acid, or may be housed separately within the insect trapping device. For example, the second attractant may be ammonia. The lactic acid attractants may be lures formulated in solid or semi-solid form.
In describing the attractant, the term solid may also be understood as encompassing attractants wherein a liquid attractant is soaked or embedded in a solid, porous structure, such as a sponge or a porous frit.
In the illustrated embodiments, the general construction is such that the inflow is drawn in by the fan 42 and then is exhausted as the outflow by the fan 42. In other words, the inflow, in a sense, “becomes” the outflow upon passing through the fan 42. Preferably, the fan 42 is downstream of the insect trap chamber 40 (i.e., the trap chamber 40 is positioned on the “inflow path” and the fan 42 is positioned between the chamber 40 and the “outflow path”) so that the insects drawn in by the inflow do not contact the fan blades. This keeps the fan blades cleaner.
However, any flow path configuration or structure for generating airflow may be used in place of the exemplary embodiment illustrated. Thus, the term “at least one airflow generator” is intended to encompass a construction wherein a single airflow generator, such as fan 42 is used to generate both the inflow and outflow, as well as constructions wherein multiple airflow generators are used for generating the inflow and outflow. For example, the inflow and outflow paths could be distinct and separate from one another, and the airflow generator of the device would comprise a fan for each flow path for generating airflow therethrough. Likewise, in place of the single fan 42 illustrated, the airflow generator of the device 10 could be constituted by any number of larger or smaller fans to provide the airflow. Also, the airflow generator could be constituted by one or more piston pumps or other structure suitable for generating airflow. Thus, in a broad sense, the invention may be practiced with any flow path configuration and any suitable form of an airflow generator. The term airflow generator as used herein is a generic structural term intended to encompass any structure suitable for generating the inflow and outflow, whether that structure be a fan, a pump, or any other such device or combination thereof.
In the illustrated embodiment, the use of a solid or semi-solid attractant is preferred. The advantage of using a solid or semi-solid attractant in a device that omits a combustion device is that the device can be made at a substantially lower cost, yet still function effectively. With a purely liquid attractant, the attractant tends to evaporate quicker and reloading/handling can be messy. With a combustion device, the parts associated with the burner and combustion chamber are relatively expensive and add significant cost to the device. With stored gaseous attractants (e.g., a tank of pressurized CO2), the provision of compressed gas and the valving for releasing the same also adds significant cost to the device. However, using a solid or semi-solid attractant that diffuses to produce an outflow consisting essentially of ambient air from the surrounding atmosphere and the diffused attractant provides a device that avoids the problems or higher costs associated with the other types discussed above. The provision of the heater is further advantageous because it elevates the temperature of the attractant and facilitates its diffusion, thereby enhancing its effectiveness.
The foregoing illustrated embodiment has been provided to illustrate the functional and structural principles of the present invention and is not intended to be limiting. To the contrary, the present invention is intended to encompass all alterations, additions, substitutions and equivalents within the spirit and scope of the following appended claims.
The present application claims priority to U.S. Provisional Application No. 60/419,085, filed Oct. 18, 2002, the entirety of which is hereby incorporated into the present application by reference.
Number | Name | Date | Kind |
---|---|---|---|
1693368 | Cherry | Nov 1928 | A |
2470564 | Lawrence, Jr. et al. | May 1949 | A |
2818110 | Rulseh | Dec 1957 | A |
2893161 | Reid | Jul 1959 | A |
2938577 | Hughey | May 1960 | A |
3196577 | Plunkett | Jul 1965 | A |
3217782 | Vosper | Nov 1965 | A |
3381896 | Winters | May 1968 | A |
3852042 | Wagner | Dec 1974 | A |
4215549 | Daeschner | Aug 1980 | A |
4265611 | Reed et al. | May 1981 | A |
4421095 | Kreis | Dec 1983 | A |
4424017 | Okigami et al. | Jan 1984 | A |
4506473 | Waters, Jr. | Mar 1985 | A |
4519776 | Deyoreo et al. | May 1985 | A |
4559006 | McGill et al. | Dec 1985 | A |
4603505 | Millard | Aug 1986 | A |
4608774 | Sherman | Sep 1986 | A |
4625453 | Smith | Dec 1986 | A |
4634369 | McGill et al. | Jan 1987 | A |
4747391 | Hanagan et al. | May 1988 | A |
4785573 | Millard | Nov 1988 | A |
4829978 | Schlosser | May 1989 | A |
4891904 | Tabita | Jan 1990 | A |
4962611 | Millard | Oct 1990 | A |
5157865 | Chang | Oct 1992 | A |
5167090 | Code | Dec 1992 | A |
5177961 | Whittenberger | Jan 1993 | A |
5189830 | Montemurro | Mar 1993 | A |
5195883 | Hanna et al. | Mar 1993 | A |
5205064 | Nolen | Apr 1993 | A |
5205065 | Wilson et al. | Apr 1993 | A |
5255468 | Cheshire, Jr. | Oct 1993 | A |
5274609 | Bradley | Dec 1993 | A |
5282334 | Kimura et al. | Feb 1994 | A |
5301458 | Deyoreo et al. | Apr 1994 | A |
5311697 | Cavanaugh et al. | May 1994 | A |
5329725 | Bible | Jul 1994 | A |
5382422 | Dieguez et al. | Jan 1995 | A |
5408970 | Burkhard et al. | Apr 1995 | A |
5417009 | Butler et al. | May 1995 | A |
5566502 | Shigetoyo | Oct 1996 | A |
5595018 | Wilbanks | Jan 1997 | A |
5644866 | Katsuda et al. | Jul 1997 | A |
5647164 | Yates | Jul 1997 | A |
5651211 | Regan et al. | Jul 1997 | A |
5657576 | Nicosia | Aug 1997 | A |
5669176 | Miller | Sep 1997 | A |
6050025 | Wilbanks | Apr 2000 | A |
6132203 | Masin | Oct 2000 | A |
6145243 | Wigton et al. | Nov 2000 | A |
6240248 | Fore | May 2001 | B1 |
6286249 | Miller et al. | Sep 2001 | B1 |
6381408 | Jaworski | Apr 2002 | B1 |
6443434 | Prather | Sep 2002 | B1 |
6446583 | Vieira | Sep 2002 | B2 |
6594946 | Nolen et al. | Jul 2003 | B2 |
6675528 | Jablin | Jan 2004 | B2 |
20030084604 | Durand et al. | May 2003 | A1 |
20030154643 | Spiro et al. | Aug 2003 | A1 |
20030154645 | Spiro et al. | Aug 2003 | A1 |
20030208951 | Bossler | Nov 2003 | A1 |
Number | Date | Country |
---|---|---|
19961133 | Dec 1999 | DE |
717903 | Jan 1932 | FR |
1-14128 | Apr 1989 | JP |
2-63679 | May 1990 | JP |
WO 9952352 | Oct 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20040139648 A1 | Jul 2004 | US |
Number | Date | Country | |
---|---|---|---|
60419085 | Oct 2002 | US |