This disclosure relates generally to a system for treating gas and, more particularly, to a system for effectively and efficiently treating exhaust gas from an engine.
Exhaust treatment systems for treating exhaust gas from an engine are typically mounted downstream from an engine and may include a diesel particulate filter or some other exhaust treatment element arranged within the flow path of exhaust gas. The exhaust gas is typically forced through the exhaust treatment element to positively impact the exhaust gas, for example by reducing the amount of particulate matter or NOx introduced into atmosphere as a result of engine operation.
Exhaust treatment systems may be designed for (i) maximum positive effect on engine exhaust gas and (ii) minimal negative impact on engine performance. For example, exhaust treatment systems may be designed with diffuser elements and/or various complex geometries intended to better distribute exhaust flow across the face of an exhaust treatment element while minimally impacting exhaust flow resistance.
U.S. Pat. No. 6,712,869 to Cheng et al. discloses an exhaust aftertreatment device with a flow diffuser positioned downstream of an engine and upstream of an aftertreatment element. The diffuser of the '869 patent is intended to de-focus centralized velocity force flow against the aftertreatment element and even out an exhaust flow profile across the aftertreatment element. The disclosed design of the '869 patent is intended to enable a space-efficient and flow-efficient aftertreatment construction.
It may be desirable to use an improved exhaust treatment system that effectively impacts exhaust gas while minimally impacting engine performance. Moreover, it may be desirable to use an improved exhaust treatment system that accomplishes desired performance characteristics in a cost-effective and practically manufacturable manner.
The present disclosure is directed, at least in part, to various embodiments that may achieve desirable impact on aftertreatment effectiveness while improving one or more aspects of prior systems.
In one aspect, a system for treating exhaust gas from an engine is disclosed. The system may include a housing with a first longitudinal axis, an inlet port, and an outlet port. The housing may define a first generally longitudinal flow path arranged generally along or generally parallel with the first longitudinal axis of the housing and between the inlet port and the outlet port. A fluid treatment element may be arranged in the first generally longitudinal flow path of the housing. The system may also include a conduit defining a second longitudinal axis and forming a second flow path generally along the second longitudinal axis. The second longitudinal axis may be generally transverse to the first longitudinal flow path. The conduit may be configured to communicate exhaust gas with a first port of the housing and may have first and second tubular portions generally aligned with the second longitudinal axis of the conduit. The first tubular portion may have a first cross-section defined in part by a first inner diameter measured in a direction generally parallel with the first longitudinal axis of the housing, and the second tubular portion may have a second cross-section arranged proximate the first port of the housing and defined in part by a second inner diameter measured in a direction generally parallel with the first longitudinal axis of the housing. The second inner diameter of the second cross-section may be less than the first inner diameter of the first cross-section. The centerpoint of the first inner diameter of the first cross-section may be offset from the centerpoint of the second inner diameter of the second cross-section by an offset amount measured in a direction generally parallel to the first longitudinal axis of the housing.
In another aspect, a system for treating exhaust gas from an engine is disclosed. The system may include a housing with a first longitudinal axis, an inlet port, and an outlet port. The housing may define a first generally longitudinal flow path arranged generally along or parallel with the first longitudinal axis of the housing and between the inlet port and the outlet port. A fluid treatment element may be arranged in the first generally longitudinal flow path of the housing. The system may also include an inlet conduit defining a second longitudinal axis and forming a second flow path generally along the second longitudinal axis. The second longitudinal axis may be generally transverse to the first longitudinal flow path. The inlet conduit may be configured to communicate exhaust gas toward the inlet port of the housing and may have first and second tubular portions generally along the second longitudinal axis of the inlet conduit. The first tubular portion may have a first cross-section defined in part by a first inner diameter measured in a direction generally parallel with the first longitudinal axis of the housing, and the second tubular portion may have a second cross-section arranged proximate the inlet port of the housing and defined in part by a second inner diameter measured in a direction generally parallel with the first longitudinal axis of the housing. A centerpoint of the first inner diameter of the first cross-section may be offset from the centerpoint of the second inner diameter of the second cross-section by a first offset amount measured in a direction generally parallel to the first longitudinal axis of the housing. The system may further include an outlet conduit defining a third longitudinal axis and forming a third flow path generally along the third longitudinal axis. The third longitudinal axis may be generally transverse to the first longitudinal flow path. The outlet conduit may be configured to communicate exhaust gas away from the outlet port of the housing and may have third and fourth tubular portions generally along the third longitudinal axis of the outlet conduit. The third tubular portion may have a third cross-section defined in part by a third inner diameter measured in a direction generally parallel with the first longitudinal axis of the housing, and the fourth tubular portion may have a fourth cross-section arranged proximate the outlet port of the housing and defined in part by a fourth inner diameter measured in a direction generally parallel with the first longitudinal axis of the housing. The centerpoint of the third inner diameter of the third cross-section may be offset from the centerpoint of the fourth inner diameter of the fourth cross-section by a second offset amount measured in a direction generally parallel to the first longitudinal axis of the housing.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of inventive scope, as claimed.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate exemplary embodiments or features of the disclosure and, together with the description, help explain principles of the disclosure. In the drawings,
Although the drawings depict exemplary embodiments or features of the present disclosure, the drawings are not necessarily to scale, and certain features may be exaggerated in order to provide better illustration or explanation. The exemplifications set out herein illustrate exemplary embodiments or features, and such exemplifications are not to be construed as limiting the inventive scope in any manner.
Reference will now be made in detail to specific embodiments or features, examples of which are illustrated in the accompanying drawings. Generally, the same or corresponding reference numbers will be used throughout the drawings to refer to the same or corresponding parts. It should be appreciated that the terms width and length as used herein do not necessarily mean shortest dimension or longest dimension, respectively, and are merely used in conjunction with the drawings and the explanations herein to help describe and compare various relative dimensions of an embodiment. It should also be appreciated that the term diameter used herein does not necessarily connote a circular cross-section.
Referring now to
The housing 12 may generally define a longitudinal axis A1, along which the length of the housing 12 may generally extend. In one embodiment, the housing 12 may be formed from one or more generally cylindrical housing members 28a, 28b, 28c having generally tubular walls 36a, 36b, 36c that may cooperate to define a flow path 24 within the housing 12 extending generally along or generally parallel to the longitudinal axis A1. It should be appreciated that exhaust gas may flow in various directions at specific locations within the housing 12, and that the general resulting flow path 24 of exhaust gas through the housing 12 may be in a direction generally along or generally parallel to the longitudinal axis A1, i.e., away from the inlet conduit 20a and toward the outlet conduit 20c. The tubular walls 36a, 36b, 36c may each have an internal diameter D1, D2, D3 (
The housing 12 may have a first opening 30a (
As best seen in
It should be appreciated that in some embodiments the openings 30a, 30c may have the same or substantially the same configuration. Alternatively, the openings 30a, 30c may have similar or substantially different configurations. For example, opening 30c may be the same width as, wider, or narrower than opening 30a and may be the same length as, longer, or shorter than opening 30a.
As referenced above, the fluid treatment element 16 may be arranged in the flow path 24 of the housing 12 and may be configured to treat exhaust gas from an engine. For example, the fluid treatment element 16 may be a filter element configured to remove particulate matter from exhaust gas. The element 16 may further or alternatively be a catalyzed substrate for catalyzing NOx. Further or alternatively, the element 16 may be any type of element for treating exhaust gas from an engine, for example by removing, storing, oxidizing, or otherwise interacting with exhaust gas to accomplish or help accomplish a desired impact on the exhaust gas or a constituent thereof.
The inlet conduit 20a may be configured and arranged to communicate exhaust gas with the inlet port 32a of the housing 12. The inlet conduit 20a may be rigidly fluidly connected with the inlet port 32a, for example via a welded connection between the conduit 20a and the tubular wall 36a around the circumference of the inlet port 32a. In the embodiment of
The inlet conduit 20a may generally define a longitudinal axis A2a and may form a flow path 40a arranged generally along the longitudinal axis A2a. The longitudinal axis A2a may extend in a direction generally transverse to the first longitudinal flow path 24, for example so that exhaust gas transmitted through the inlet conduit 20a into the housing 12 substantially changes direction to flow generally along the flow path 24.
The inlet conduit 20a may include first and second tubular portions 44a, 48a arranged generally along the longitudinal axis A2a of the inlet conduit 20a. The first tubular portion 44a may have a generally circular cross-section 46a with an inner diameter D4a (
The second tubular portion 48a may be arranged proximate the inlet port 32a of the housing 12 and may have a generally elongated cross-section 50a proximate the inlet port 32a. The cross section 50a of the second tubular portion 48a may have an inner diameter or length L3a (
As shown in
The cross section 50a of the second tubular portion 48a may have an internal width W3a (
The cross sectional area of the cross section 50a of the second tubular portion 48a may be greater than the cross sectional area of the cross section 46a of the first tubular portion 44a. A cross-sectional area ratio AR may be defined by the cross-sectional area of the cross section 50a divided by the cross-sectional area of the cross section 46a. In one embodiment, the cross-sectional area ratio AR may be equal to or greater than about 1.1. In another embodiment, the cross-sectional area ratio AR may be equal to or greater than about 1.2. In another embodiment, the cross-sectional area ratio AR may be equal to or greater than about 1.5. In a further embodiment, the cross-sectional area ratio AR may be in the range of about 1.6 to 1.8, for example about 1.7. Controlling the cross-sectional area ratio AR helps control backpressure on the engine as well as velocity of exhaust flowing into the housing 12. The cross-sectional area ratio AR also helps control flow distribution into the housing 12 and toward the treatment element 16.
As indicated in
The outlet conduit 20c may be configured and arranged to communicate exhaust gas with the outlet port 32c of the housing 12. The outlet conduit 20c may be rigidly fluidly connected with the outlet port 32c, for example via a welded connection between the conduit 20c and the tubular wall 36c around the circumference of the outlet port 32c. In the embodiment of
The outlet conduit 20c may generally define a longitudinal axis A2c and may form a flow path 40c arranged generally along the longitudinal axis A2c. The longitudinal axis A2c may extend in a direction generally transverse to the first longitudinal flow path 24, for example so that exhaust gas transmitted from the housing 12 into the outlet conduit 20c substantially changes direction to flow generally along the flow path 40c.
The outlet conduit 20c may include first and second tubular portions 44c, 48c arranged generally along the longitudinal axis A2c of the outlet conduit 20c. The first tubular portion 44c may have a generally circular cross-section 46c with an inner diameter D4c (measured in a direction generally parallel with the first longitudinal axis A1 of the housing 12) and an associated cross-sectional area through which exhaust gas may flow. The inner diameter D4c may have a centerpoint C4c dividing the inner diameter D4c in half.
The second tubular portion 48c may be arranged proximate the outlet port 32c of the housing 12 and may have a generally elongated cross-section 50c proximate the outlet port 32c. The cross section 50c of the second tubular portion 48c may have an inner diameter or length L3c, for example measured in a direction generally parallel with the first longitudinal axis A1 of the housing 12. As shown in the embodiment of
The centerpoint C4c of the inner diameter D4c of the cross-section 46c may be offset from the centerpoint C3c of the inner diameter L3c of the cross-section 50c by an offset amount Zc, for example measured in a direction generally parallel to the first longitudinal axis A1 of the housing 12. In one example embodiment, the inner diameter D4c could be approximately 120 mm, the inner diameter L3c could be approximately 75 mm, and the offset amount could be approximately 24 mm.
The cross section 50c of the second tubular portion 48c may have an internal width W3c, for example measured in a direction generally perpendicular to the inner diameter L3c. The internal width W3c of the cross section 50c may be greater than the inner diameter L3 of the cross section 50c such that the cross section 50c has an elongated configuration. The internal width W3c of the cross section 50c may also be greater than the inner diameter D4c of the cross section 46c of the first tubular portion 44c. In one embodiment, the internal width W3c of the cross section 50c may be equal to or greater than 50 percent of the inner diameter D3 of the tubular wall 36c of the housing 12. For example, the internal width W3c of the cross section 50c may be equal to or greater than 60 percent of the inner diameter D3 of the tubular wall 36c of the housing 12. In another embodiment, the internal width W3c of the cross section 50c may be equal to or greater than 70 percent of the inner diameter D3 of the tubular wall 36c of the housing 12. In one example, the internal width W3c could be approximately 175 mm, while the inner diameter D3 of the tubular wall 36c of the housing 12 could be approximately 245 mm, so that the internal width W3c of the cross section 50c would be approximately equal to 71 percent of the inner diameter D3 of the tubular wall 36c of the housing 12. In yet another embodiment, the internal width W3c of the cross section 50c may be equal to or greater than 80 percent of the inner diameter D3 of the tubular wall 36c of the housing 12.
The cross sectional area of the cross section 50c of the second tubular portion 48c may be greater than the cross sectional area of the cross section 46c of the first tubular portion 44c. A cross-sectional area ratio AR may be defined by the cross-sectional area of the cross section 50c divided by the cross-sectional area of the cross section 46c. In one embodiment, the cross-sectional area ratio AR may be equal to or greater than about 1.1. In another embodiment, the cross-sectional area ratio AR may be equal to or greater than about 1.2. In another embodiment, the cross-sectional area ratio AR may be equal to or greater than about 1.5. In a further embodiment, the cross-sectional area ratio AR may be in the range of about 1.6 to 1.8, for example about 1.7. Controlling the cross-sectional area ratio AR helps control backpressure on the engine. The cross-sectional area ratio AR also helps control flow distribution through the housing 12.
In one embodiment, the centerpoints C4a, C4c of the cross sections 46a, 46c may be separated by a first separation distance D7a measured in a direction generally parallel to the first longitudinal axis A1 of the housing 12. The centerpoints L3a, L3c of the cross sections 50a, 50c may be separated by a second separation distance D9a measured in a direction generally parallel to the first longitudinal axis A1 of the housing 12.
As illustrated in FIGS. 1 and 7-9, by varying configurations of the inlet and outlet conduits 20a, 20c, such as by selective orientation (e.g., rotation) of each or both conduit(s) during assembly, the distances D7, D9 may be managed as desired, for example to accommodate differing desired arrangements and differing exhaust system connection points. In
Conversely,
Moreover,
Referring to
With at least some of the foregoing arrangements and embodiments discussed herein (e.g.,
Moreover, it is expected that, in one embodiment, by using an inlet conduit 20a having a relatively wide opening (e.g., as indicated via dimension W3a in
Further, it is expected that, in one embodiment, by increasing the cross-sectional area of the inlet conduit 20a from a first cross-sectional area at a first cross-section 46a to a larger (for example wider) cross-sectional area at a second cross-section 48a, backpressure on the engine exhaust line (e.g., downstream of an engine combustion chamber) would be reduced, as compared with an inlet conduit having a relatively constant or decreasing cross-sectional area moving from the first cross-section to the second cross-section and into the inlet port of the housing. Moreover, such backpressure benefits are expected as well by using an outlet conduit 20c with differing first and second cross-sections 48c, 46c such as that described hereinabove relative to
From the foregoing it will be appreciated that, although specific embodiments have been described herein for purposes of illustration, various modifications or variations may be made without deviating from the spirit or scope of inventive features claimed herein. Other embodiments will be apparent to those skilled in the art from consideration of the specification and figures and practice of the arrangements disclosed herein. It is intended that the specification and disclosed examples be considered as exemplary only, with a true inventive scope and spirit being indicated by the following claims and their equivalents.