The invention relates to the medical field and in particular to the treatment of unwanted tissue.
In many diseases it is desired to destroy or affect a non-desired tissue without harming the adjacent normal tissue. A non surgical approach has many advantages, such as shorter recovery time. Common non surgical approaches are:
In a patient suffering from emphysema, the diseased parts can not easily ventilate through the bronchi and trachea, thus preventing the lung from fully deflating and inflating. The trapped air does not allow the diaphragm to move up and down naturally. If the diseased area can be mildly heated such as to induce ablation, fibrosis or another mechanism to reduce volume, this would enable healthy tissue to fill the void and regenerate lung function. Another optional mechanism involves pneumothorax: upon heating the diseased area its ability to produce a surfactant coating and other chemicals can be to greatly reduced. This makes it possible to collapse the diseased area by collapsing the whole lung and re-inflating it. The healthy tissue will inflate while the diseased area will stay as a compressed lump. This will allow the diaphragm to move naturally and force air in and out of the healthy lung tissue. This procedure is well known in pulmonary medicine. Background on lung disease can be found in medical textbooks, such as “Pulmonary Pathophysiology” by Dr. John B. West, ISBN 0-683-08934-X. Prior art approaches to heat the diseased parts of the lung involve inserting an ablation device through the trachea and bronchi. This approach has two major shortcomings: only a small part of the lung is accessible, and precise mapping of the diseased area is required, as well as precise location of the ablation device. It is desired to have a system that automatically heats the diseased area without having to locate then precisely. It is also desired to be able to heat all diseased parts of the lung without excessively heating the healthy parts or the surrounding tissue. These and other objectives are achieved by the present invention.
The invention can selectively heat a diseased area in the lung while minimizing heating to the healthy area and surrounding tissue. This is done by exposing the lung to an electromagnetic field causing dielectric or eddy current heating. The invention is particularly useful for treating emphysema as the diseased area(s) have reduced blood flow. The diseased area(s) will heat up rapidly while the healthy tissue will be cooled by the blood flow. This is particularly effective for treating emphysema because of the low mass of the lungs and the high blood flow. To avoid heating of surrounding organs the direction of the electromagnetic energy is switched in a way it always passes through lungs but only intermittently passes through adjacent organs. If heat activated drugs are present in the lungs, they are selectively released in the heated tissue.
One aspect of the invention uses the fact that healthy lung tissue has much larger blood circulation than diseased tissue such as a lung affected by emphysema. When a non-contact heat source, such as radio-frequency (RF) energy, is directed at the lung the heat will be carried away from the healthy tissue by the blood flow while the diseased parts of the lung will heat up. When diseased tissue is heated up to around 60 deg C. it can lose the ability to expand back after lungs are collapsed (pneumothorax), because of damage to the surfactant layer and other physiological reasons. Causing the areas affected by emphysema to collapse prevents them from interfering with normal operation of the healthy parts of the lung, similar to what can be achieved by surgically removing the diseased part. Other mechanisms may exist that do not require pneumothorax: the heated diseased area can lose volume through ablation, fibrosis or other mechanisms and allow healthy lung tissue to fill the voids. The reason this procedure is effective on the lungs is that the mass of the lungs is low (about 1 Kg) while the blood flow through the lung is high (about 5 Kg/minute) and the blood flow tends to equalize the temperature of the healthy part of the lung with the rest of the body, representing a heat-sink of tens of kilograms. When lungs are exposed to a form of energy causing heating, such as RF or microwave, the amount of heating will be proportional to the heat-sinking mass. For a diseased lung it is typically below one Kg while for a healthy lung the heat transfer to the body represents a heat sink from 10 to 100 times larger. Based on this, when the diseased area will heat up to 50-70 degrees C., the healthy lung areas will only heat up a few degrees above normal body temperature. Another advantage of the method is that the location of the diseased area does not need to be precisely known: the heating energy can be directed at the whole lung, but only the diseased areas will heat up significantly. To assist in keeping down the temperature of the healthy parts of the lung, the patient can be breathing chilled air during the procedure. The diseased parts will not get a sufficient amount of chilled air to keep them cool. In one embodiment of the invention further treatment would not be necessary as the treatment will achieve sufficient volume reduction via fibrosis, ablation or other processes. In another embodiment, the treatment would need to be repeated several times over the course of days, weeks or months. In yet another embodiment, pneumothorax would be required to complete the process: after heating the lung, an operation than can take seconds or minutes, the lung can be collapsed by inserting a hypodermic needle into the pleural space, in order to allow air to leak into this space. Supplying the lung with pure oxygen will speed up the collapse as it is fully absorbed in the blood. After leaving the lung in a collapsed state long enough to allow the diseased area to collapse into a small volume, the lung is re-inflated by evacuating the pleural space via the same needle used to collapse the lungs. Obviously the procedure can be done on one lung at a time, as the patient can breathe with remaining lung. The procedure of collapsing and inflating the lung is done routinely in pulmonary medicine and need not be detailed here. This procedure can increase the effectiveness of the invention but is not a necessary part of it.
In
RF generator 13 supplies RF energy to the electrodes via an impedance matching network 14 and electrode selector 16, supplying energy to multiple electrodes via wires 16. The power of RF generator 13 is typically 1-5 KW at a frequency of 10-100 Mhz. It is desirable to choose frequencies in the ISM bands of the spectrum, such as 13.56 MHz. Since the output impedance of the generator is typically 50 Ohms and the body impedance is complex, impedance matching network 14 is required. Such a network is well known in the art and for the current invention involved a series capacitor followed by a parallel inductor. The values of the capacitor and inductor are determined after measuring the resistance and capacitance between the electrodes touching the body. To avoid resistive currents going through the body, and for electrical safety, it is desired to coat electrodes 7, 8, 9, 10 with a very thin layer of an insulating material. In testing the invention on rats, a 25 um layer of self-adhesive Kapton tape was used. The tape does not attenuate the capacitive currents much because it is very thin, therefore allowing high capacitance between electrode and the body. In order to minimize heating to adjacent organs the direction of the electromagnetic field is switched around, but it is always made to pass through the lungs. This can be achieved by moving around the energy source in order for the heating to arrive from different directions, or by electrode switching. If all these directions pass through the lung, the diseased lung area will be heated continuously while the surrounding tissue will be heated intermittently. A similar method is employed today in radiation therapy for cancer, however using heat energy has a significant advantage: the effect or radiation, such as X-ray or radioactivity, is cumulative while the effect of heating is non-cumulative. Heating a tissue by 30 degrees will permanently change it, while heating it 10 times by 3 degrees will have no effect. In the case of radiation the effect will be cumulative.
The heating process can be done open-loop (i.e. based on a previous experimental calibration of power and duration), or can be done using sensing or even close loop control. It was found out that the best sensors to sense the temperature inside the lung during the procedure were miniature glass encased thermistors such as Digikey part number 495-5820-ND. Such a thermistor 17 can control the RF power of generator 13 and stop the RF power when the correct ablation temperature was reached, typically 55-65 degrees C.
Referring now to
Referring now to
It is well known in the art of electromagnetism that an electromagnetic field contains both an electric field and a magnetic field. Any alternating electric field creates an alternating magnetic field and vice versa, however the heating mechanism can be dielectric heating, i.e. mainly responding to the electric field or can be mainly eddy current heating, the eddy currents induced by a changing magnetic field. For dielectric heating, the electrode arrangement shown in
The system was tested on several rats with induced emphysema in one of the lungs. The parameters used were:
Reflected power was under 5%. Each electrode was approximately 25×50 mm, coated with 25 μm Kapton tape. Rats were shaved in contact area.
Heating time was about 100 seconds. The healthy lung reached about 41 degrees C., while the areas with emphysema reached about 55 degrees C. All rats survived the treatment. Subsequent autopsy verified scar tissue in the areas of induced emphysema.
One or more heat activated drugs can be introduced into the patient to aid the process of neutralizing the diseased regions of the lung. These drugs are activated at the higher temperatures in the diseased lung regions when the invention in applied to the lung tissue. These drugs are not activated at typical body temperatures.
For example, these drugs can activate above 45 degrees Celcius, and therefore not affect the healthy lung tissue which does not reach 45 degrees Celcius. Non-limiting examples of the types of drugs that can be used in this application are drugs that become a strong toxin when activated.
For a list of non-limiting methods of drug delivery, the following are provided:
If the drug or drugs are not naturally heat activated, it can be delivered in heat activated encapsulations. Non-limiting examples are:
Number | Name | Date | Kind |
---|---|---|---|
3927557 | Viertl | Dec 1975 | A |
4298009 | Mezrich et al. | Nov 1981 | A |
4632127 | Sterzer | Dec 1986 | A |
5010897 | Leveen | Apr 1991 | A |
5117829 | Miller et al. | Jun 1992 | A |
5451221 | Cho et al. | Sep 1995 | A |
5571154 | Ren | Nov 1996 | A |
6328689 | Gonzalez et al. | Dec 2001 | B1 |
6428532 | Doukas et al. | Aug 2002 | B1 |
6610043 | Ingenito | Aug 2003 | B1 |
6613005 | Friedman et al. | Sep 2003 | B1 |
6692494 | Cooper et al. | Feb 2004 | B1 |
6708401 | Miyakawa et al. | Mar 2004 | B2 |
6712816 | Hung et al. | Mar 2004 | B2 |
6997918 | Soltesz et al. | Feb 2006 | B2 |
7004940 | Ryan et al. | Feb 2006 | B2 |
7300428 | Ingenito | Nov 2007 | B2 |
7412977 | Fields et al. | Aug 2008 | B2 |
7587230 | Litovitz | Sep 2009 | B2 |
7770584 | Danek et al. | Aug 2010 | B2 |
8444635 | Lictenstein | May 2013 | B2 |
20030018327 | Truckai | Jan 2003 | A1 |
20040047855 | Ingenito | Mar 2004 | A1 |
20040147915 | Hasebe | Jul 2004 | A1 |
20050038339 | Chauhan | Feb 2005 | A1 |
20050085801 | Cooper et al. | Apr 2005 | A1 |
20050281800 | Gong | Dec 2005 | A1 |
20060047291 | Barry | Mar 2006 | A1 |
20060135947 | Soltesz et al. | Jun 2006 | A1 |
20060161233 | Barry et al. | Jul 2006 | A1 |
20060259103 | Stenzel | Nov 2006 | A1 |
20070043350 | Soltesz et al. | Feb 2007 | A1 |
20080033412 | Whelan | Feb 2008 | A1 |
20080097139 | Clerc et al. | Apr 2008 | A1 |
20080132826 | Shadduck | Jun 2008 | A1 |
20080167555 | Qian | Jul 2008 | A1 |
20080228137 | Aljuri et al. | Sep 2008 | A1 |
20080249503 | Fields | Oct 2008 | A1 |
20100042020 | Ben-Ezra | Feb 2010 | A1 |
20100125225 | Gelbart | May 2010 | A1 |
20100125271 | Lichtenstein | May 2010 | A1 |
20120089209 | Schoenbach et al. | Apr 2012 | A1 |
20120310140 | Kramer | Dec 2012 | A1 |
Entry |
---|
The BSD-2000/3D/MR http://www.pyrexar.com/hyperthermia/bsd-2000-3d RF Therapeutic Hyperthermia. |
Number | Date | Country | |
---|---|---|---|
62305042 | Mar 2016 | US |