Embodiments disclosed herein relate generally to hydroconversion processes, including processes for hydrocracking residue and other heavy hydrocarbon fractions. More specifically, embodiments disclosed herein relate to hydrocracking of a residuum hydrocarbon feedstock, solvent deasphalting of the unconverted residuum hydrocarbon feedstock, processing the resulting hydrocracked deasphalted oil in a separate residue hydrocracking unit, and processing the pitch from the solvent deasphalting unit in a separate residue hydrocracking unit.
As the worldwide demand for gasoline and other light refinery products has steadily increased, there has been a significant trend toward conversion of higher boiling compounds to lower boiling ones. To meet the increasing demand for distillate fuels increased, refiners have investigated various reactors, such as hydrocracking reactors, residual desulfurization units (RDS), and solvent deasphalting (SDA) units, to convert Residuum, Vacuum Gas Oil (VGO) and other heavy petroleum feedstocks to jet and diesel fuels.
Catalysts have been developed that exhibited excellent distillate selectivity, reasonable conversion activity and stability for heavier feedstocks. The conversion rates attainable by the various processes are limited, however. For example, RDS units alone can produce a 1 wt % sulfur fuel from high sulfur residua, but conversions are generally limited to about 35% to 40%, Others have proposed to use SDA units to solvent deasphalt the residuum feed and process the deasphalted oil only in a Residuum Hydrocracking Unit (RHU). Also, others have processed the unconverted vacuum residuum from a RHU in an SDA unit and recycled the deasphalted oil (DAO) back to the front end of the RHU. Still others have proposed to process the SDA pitch directly in a RHU. Nonetheless, economic processes to achieve high hydrocarbon conversions and sulfur removal are desired.
In one aspect, embodiments disclosed herein relate to a process for upgrading residuum hydrocarbons. The process may include the following steps: contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst in a first ebullated bed hydroconversion reactor system; recovering a first effluent from the first ebullated bed hydroconversion reactor system; solvent deasphalting a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst in a second hydroconversion reactor system; recovering a second effluent from the second hydroconversion reactor system; and fractionating the first effluent from the first ebullated bed hydroconversion reactor system and the second effluent from the second hydroconversion reactor system to recover one or more hydrocarbon fractions and the vacuum residuum fraction in a common fractionation system.
In another aspect, embodiments disclosed herein relate to a system for upgrading residuum hydrocarbons. The system may include the following: a first ebullated bed hydroconversion reactor system for contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst to produce a first effluent; a solvent deasphalting unit to solvent deasphalt a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; a second hydroconversion reactor system for contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst to produce a second effluent; and a fractionation unit to fractionate the first effluent and the second effluent to recover one or more hydrocarbon fractions and the vacuum residuum fraction.
In another aspect, embodiments disclosed herein relate to a system for upgrading residuum hydrocarbons. The system may include the following: a first ebullated bed hydroconversion reactor system for contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst to produce a first effluent; a solvent deasphalting unit to solvent deasphalt a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; a second hydroconversion reactor system for contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst to produce a second effluent; and a separator to separate a combined fraction of the first effluent and the second effluent to recover a liquid fraction and a vapor fraction; a fractionation unit to fractionate the liquid to recover the vacuum residuum fraction; a third hydroconversion reactor system for contacting the vapor fraction with a third hydroconversion catalyst to produce a third effluent; and a fractionation unit to fractionate the third effluent to recover one or more hydrocarbon fractions.
In another aspect, embodiments disclosed herein relate to a system for upgrading residuum hydrocarbons. The system may include the following: a first ebullated bed hydroconversion reactor system for contacting a residuum hydrocarbon fraction and hydrogen with a first hydroconversion catalyst to produce a first effluent; a solvent deasphalting unit to solvent deasphalt a vacuum residuum fraction to produce a deasphalted oil fraction and an asphalt fraction; a second hydroconversion reactor system for contacting the deasphalted oil fraction and hydrogen with a second hydroconversion catalyst to produce a second effluent; and a first fractionation unit to fractionate the first effluent and the second effluent to recover one or more hydrocarbon fractions and the vacuum residuum fraction; a third ebullated bed hydroconversion reactor system for contacting the asphalt fraction and hydrogen to produce third effluent; a separator to separate the third effluent and recover a liquid fraction and a vapor fraction; a second fractionation unit to fractionate the liquid to recover the vacuum residuum fraction; a fourth hydroconversion reactor system for contacting the vapor fraction with a fourth hydroconversion catalyst to produce a fourth effluent; and a third fractionation unit to fractionate the fourth effluent to recover one or more hydrocarbon fractions.
Other aspects and advantages will be apparent from the following description and the appended claims.
In one aspect, embodiments herein relate generally to hydroconversion processes, including processes for hydrocracking residue and other heavy hydrocarbon fractions. More specifically, embodiments disclosed herein relate to hydrocracking of a residuum hydrocarbon feedstock, solvent deasphalting of the unconverted residuum hydrocarbon feedstock, processing the resulting hydrocracked deasphalted oil in a separate residue hydrocracking unit, and processing the pitch from the solvent deasphalting in a separate residue hydrocracking unit.
Hydroconversion processes disclosed herein may be used for reacting residuum hydrocarbon feedstocks at conditions of elevated temperatures and pressures in the presence of hydrogen and one or more hydroconversion catalyst to convert the feedstock to lower molecular weight products with reduced contaminant (such as sulfur and/or nitrogen) levels. Hydroconversion processes may include, for example, hydrogenation, desulfurization, denitrogenation, cracking, conversion, demetallization, and removal of metals, Conradson Carbon Residue (CCR) or asphaltenes removal, etc.
As used herein, residuum hydrocarbon fractions, or like terms referring to residuum hydrocarbons, are defined as a hydrocarbon fraction having boiling points or a boiling range above about 340° C. but could also include whole heavy crude processing. Residuum hydrocarbon feedstocks that may be used with processes disclosed herein may include various refinery and other hydrocarbon streams such as petroleum atmospheric or vacuum residua, deasphalted oils, deasphalter pitch, hydrocracked atmospheric tower or vacuum tower bottoms, straight run vacuum gas oils, hydrocracked vacuum gas oils, fluid catalytically cracked (FCC) slurry oils, vacuum gas oils from an ebullated bed hydrocracking process, shale-derived oils, coal-derived oils, tar sands bitumen, tall oils, bio-derived crude oils, black oils, as well as other similar hydrocarbon streams, or a combination of these, each of which may be straight run, process derived, hydrocracked, partially desulfurized, and/or partially demetallized streams. In some embodiments, residuum hydrocarbon fractions may include hydrocarbons having a normal boiling point of at least 480° C., at least 524° C., or at least 565° C.
Referring now to
Reactors in ebullated bed reactor 42 may be operated at temperatures in the range from about 380° C. to about 450° C., hydrogen partial pressures in the range from about 70 bara to about 170 bara, and liquid hourly space velocities (LHSV) in the range from about 0.2 h−1 to about 2.0 h−1. Within the ebullated bed reactors, the catalyst may be back mixed and maintained in random motion by the recirculation of the liquid product. This may be accomplished by first separating the recirculated oil from the gaseous products. The oil may then be recirculated by means of an external pump, or, as illustrated, by a pump having an impeller mounted in the bottom head of the reactor.
Target conversions in ebullated bed reactor system 42 may be in the range from about 30 wt % to about 75 wt %, depending upon the feedstock being processed. In any event, target conversions should be maintained below the level where sediment formation becomes excessive and thereby prevent continuity of operations. In addition to converting the residuum hydrocarbons to lighter hydrocarbons, sulfur removal may be in the range from about 40 wt % to about 65 wt %, metals removal may be in the range from about 40 wt % to 65 wt % and Conradson Carbon Residue (CCR) removal may be in the range from about 30 wt % to about 60 wt %.
Reactor severity may be defined as the catalyst average temperature in degrees Fahrenheit of the catalysts loaded in the one or more ebullated bed hydrocracking reactors multiplied by the average hydrogen partial pressure of the ebullated bed hydrocracking reactors in Bar absolute and divided by the LHSV in the ebullated bed hydrocracking reactors. The reactor severity of the ebullated bed reactor system 42 may be in the range from about 105,000° F.-Bara-Hr to about 446,000° F.-Bara-Hr.
Following conversion in ebullated bed reactor system 42, the partially converted hydrocarbons may be recovered via flow line 44 as a mixed vapor/liquid effluent and fed to a fractionation system 46 to recover one or more hydrocarbon fractions. As illustrated, fractionation system 46 may be used to recover an offgas 48 containing light hydrocarbon gases and hydrogen sulfide (H2S), a light naphtha fraction 50, a heavy naphtha fraction 52, a kerosene fraction 54, a diesel fraction 56, a light vacuum gas oil fraction 58, a heavy gas oil fraction 60, and a vacuum residuum fraction 62. In some embodiments, vacuum residuum fraction 62 may be recycled for further processing, such as to a solvent deasphalting (SDA) unit 12, the ebullated bed reactor system 42, or other reaction units 70, 20 discussed below. When the vacuum residuum fraction 62 is sent to the SDA unit 12, a portion of the heavy gas oil fraction 60 may also be routed to the SDA unit 12.
Fractionation system 46 may include, for example, a high pressure high temperature (HF/HT) separator to separate the effluent vapor from the effluent liquids. The separated vapor may be routed through gas cooling, purification, and recycle gas compression, or may be first processed through an Integrated Hydroprocessing Reactor System (IHRS), which may include one or more additional hydroconversion reactors, alone or in combination with external distillates and/or distillates generated in the hydrocracking process, and thereafter routed for gas cooling, purification, and compression.
In some embodiments, the vacuum resid fraction 62 is fed to a Solvent Deasphalting Unit (SDA) 12. In SDA 12, the vacuum residuum fraction 62 is contacted with a solvent to selectively dissolve asphaltenes and similar hydrocarbons to produce a deasphalted oil (DAG) fraction 14 and a pitch fraction 15. In other embodiments, a portion of the heavy gas oil fraction 60 may also be fed to the SDA 12.
Solvent deasphalting may be performed in the SDA 12, for example, by contacting the residuum hydrocarbon feed with a light hydrocarbon solvent at temperatures in the range from about 38° C. to about 204° C. and pressures in the range from about 7 Barg to about 70 barg Solvents useful in the SDA 12 may include C3, C4, C5, C6 and/or C7 hydrocarbons, such as propane, butane, isobutene, pentane, isopentane, hexane, heptane, or mixtures thereof, for example. The use of the light hydrocarbon solvents may provide a high lift (high DAO yield). In some embodiments, the DAO fraction 14 recovered from the SDA unit 12 may contain 500 wppm to 5000 wppm asphaltenes heptane insoluble), 50 to 150 wppm metals (such as Ni, V, and others), and 5 wt % to 15 wt % Conradson Carbon Residue (CCR).
The DAO fraction 14 and hydrogen 23 may be fed to a hydrocracking reactor system 20, which may include one or more hydrocracking reactors, arranged in series or parallel. In reactor system 20, the DAO fraction 14 may be hydrocracked under hydrogen partial pressures in the range from about 70 bara to about 180 bara, temperatures in the range from about 390° C. to about 460° C., and LHSV in the range from about 0.1 h−1 to about 2.0 h−1 in the presence of a catalyst. In some embodiments, operating conditions in hydrocracking reactor system 20 may be similar to those described above for ebullated bed reactor system 42. In other embodiments, such as where hydrocracking reactor system 20 includes one or more ebullated bed reactors, the ebullated bed reactors may be operated at higher severity conditions than those in reactor system 42, higher severity referring to a higher temperature, a higher pressure, a lower space velocity or combinations thereof.
Depending on the vacuum residuum feedstock properties, the extent to which metals and Conradson Carbon Residue are removed in the ebullated bed reactor system 42, and the SDA solvent used, the DAO recovered may be treated in a fixed bed reaction system or an ebullated bed reactor system 20, as illustrated, which may be similar to that described above for ebullated bed reactor system 42 with respect to gas/liquid separations and catalyst recirculation, among other similarities. A fixed bed reactor system may be used, for example, where the metals and Conradson Carbon. Residue content of the DAO is less than 80 wppm and 10 wt %, respectively, such as less than 50 wppm ad 7 wt %, respectively. An ebullated bed reactor system may be used, for example, when the metals and Conradson Carbon Residue contents are higher than those listed above for the fixed bed reactor system. In either hydrocracking reactor system 20, the number of reactors used may depend on the charge rate, the overall target residue conversion level, and the level of conversion attained in ebullated bed reactor system 42, among other variables. In some embodiments, one or two hydrocracking reactors may be used in hydrocracking reactor system 20. For an ebullated bed reactor system 20, the reactor severity may be in the range from about 215,000° F.-Bara-Hr to about 755,000° F.-Bara-Hr.
Following conversion in hydrocracking reactor system 20, the partially converted hydrocarbons may be recovered via flow line 25 as a mixed vapor/liquid effluent and fed to the fractionation system 46 to recover one or more hydrocarbon fractions as described above.
The pitch fraction 15 and hydrogen 16 may be fed to an ebullated bed reactor system 70, which may include one or more ebullated bed reactors, where the hydrocarbons and hydrogen are contacted with a hydroconversion catalyst to react at least a portion of the pitch with hydrogen to form lighter hydrocarbons, demetallize the pitch hydrocarbons, remove Conradson Carbon Residue, or otherwise convert the pitch to useful products. In some embodiments, a portion of the residuum hydrocarbon fraction 10 may also be fed to the ebullated bed reactor system 70. The ratio of the residuum hydrocarbon fraction 10 in the ebullated bed reactor system 70 to the ebullated bed reactor system 42 may range from about 0.1/1 to about 10/1. In other embodiments, the ratio of the residuum hydrocarbon fraction 10 in the ebullated bed reactor system 70 to the ebullated bed reactor system 42 may be about 1/1.
The fixed-bed hydrotreating reactors 66 or 166 may contain hydroprocessing catalysts tailored to hydrotreating reactions such as hydrodesulfurization, hydrodenitrogenation, olefins saturation, hydrodeoxygenation and hydrodearomatization. Alternatively, the fixed-bed hydrotreating reactors 66 or 166 can contain hydroprocessing catalysts tailored to hydrocracking reactions. In other embodiments, the fixed-bed hydrotreating reactors 66 or 166 can contain a mixture of hydrotreating catalysts and hydrocracking catalysts. Examples of catalysts which may be utilized, but are not limited to, may be found in U.S. Pat. No. 4,990,243; U.S. Pat. No. 5,215,955; and U.S. Pat. No. 5,177,047, all of which are hereby incorporated by reference in their entirety. In some embodiments, the fixed-bed hydrotreating reactors 66 or 166 may not provide any demetallization and demetallization catalysts may not be necessary.
Reactors in the ebullated bed reactor system 70 may be operated at temperatures in the range from about 380° C. to about 450° C., hydrogen partial pressures in the range from about 90 bara to about 170 bara, and liquid hourly space velocities (LHSV) in the range from about 0.15 h−1 to about 2.0 h−1. Within the ebullated bed reactors, the catalyst may be back mixed and maintained in random motion by the recirculation of the liquid product. This may be accomplished by first separating the recirculated oil from the gaseous products. The oil may then be recirculated by means of an external pump, or, as illustrated, by a pump having an impeller mounted in the bottom head of the reactor.
Target conversions in the ebullated bed reactor system 70 may be in the range from about 30 wt % to about 75 wt %, depending upon the feedstock being processed. In any event, target conversions should be maintained below the level where sediment formation becomes excessive and thereby prevent continuity of operations. In addition to converting the residuum hydrocarbons to lighter hydrocarbons, sulfur removal may be in the range from about 40 wt % to about 65 wt %, metals removal may be in the range from about 40 wt % to 65 wt % and Conradson Carbon Residue (CCR) removal may be in the range from about 30 wt % to about 60 wt %.
The reactor severity of the ebullated bed reactor system 70 may be in the range from about 255,000° F.-Bara-Hr to about 880,000° F.-Bara-Hr.
Following conversion in the ebullated bed reactor system 70, the partially converted hydrocarbons may be recovered via flow line 22 as a mixed vapor/liquid effluent and fed to a fractionation system 24 to recover one or more hydrocarbon fractions. As illustrated, fractionation system 24 may be used to recover an offgas 26, a light naphtha fraction 28, a heavy naphtha fraction 30, a kerosene fraction 32, a diesel fraction 34, a light vacuum gas oil fraction 36, a heavy gas oil fraction 38, and a vacuum residuum fraction 40. In some embodiments, vacuum residuum fraction 40 may be recycled for further processing. In other embodiments, vacuum residuum fraction 40 may be blended with a cutter fraction 64 to produce fuel oil. In some embodiments, the fuel oil may have a sulfur content of less than about 1.5 weight percent.
Fractionation system 24 may include, for example, a high pressure high temperature (HP/HT) separator to separate the effluent vapor from the effluent liquids. The separated vapor may be routed through gas cooling, purification, and recycle gas compression, or may be first processed through an integrated Hydroprocessing Reactor System, alone or in combination with external distillates and/or distillates generated in the hydrocracking process and thereafter routed for gas cooling, purification, and compression.
The separated liquid from the HP/HT separator may be flashed and routed to an atmospheric distillation system along with other distillate products recovered from the gas cooling and purification section. The atmospheric tower bottoms, such as hydrocarbons having an initial boiling point of at least about 340° C., such as an initial boiling point in the range from about 340° C. to about 427° C., may then be further processed through a vacuum distillation system to recover vacuum distillates.
The vacuum tower bottoms product, such as hydrocarbons having an initial boiling point of at least about 480° C., such as an initial boiling point in the range from about 480° C. to about 565° C., may then be routed to tankage after cooling, such as by direct heat exchange or direct injection of a portion of the residuum hydrocarbon feed into the vacuum tower bottoms product.
Catalysts useful in the ebullated bed reactors or hydrocracking reactors may include any catalyst useful in the hydroconversion processes of hydrotreating or hydrocracking a hydrocarbon feedstock. A hydrotreating catalyst, for example, may include any catalyst composition that may be used to catalyze the hydrogenation of hydrocarbon feedstocks to increase its hydrogen content and/or remove heteroatom contaminants. A hydrocracking catalyst, for example, may include any catalyst composition that may be used to catalyze the addition of hydrogen to large or complex hydrocarbon molecules as well as the cracking of the molecules to obtain smaller, lower molecular weight molecules.
In some embodiments, the effluents from the hydrocracking reactor system 20, the ebullated bed reactor system 42, or the ebullated bed reactor system 70 may be processed prior to entering the fractionation system 24 or the fractionation system 46 through an Integrated Hydroprocessing Reactor System (IHRS). The IHRS is an inline fixed-bed hydrotreating system utilizing an upstream high pressure/high temperature vapor/liquid (HP/HT V/L) separator located between the ebullated-bed hydroprocessing reactor and the downstream IHRS. The separator allows for a separation between the unconverted residuum in the liquid effluent of the HP/HT V/L separator and the overhead vapor products boiling below about 1000° F. normal boiling point which may provide a lower cost route for further hydrotreating or hydrocracking of the gas oils, diesel and naphtha fractions formed by cracking of residuum in the upstream ebullated bed reactor.
The separated liquid from the HP/HT separator may be flashed and routed to an atmospheric distillation system along with other distillate products recovered from the gas cooling and purification section. The atmospheric tower bottoms, such as hydrocarbons having an initial boiling point of at least about 340° C., such as an initial boiling point in the range from about 340° C. to about 427° C., may then be further processed through a vacuum distillation system to recover vacuum distillates.
The vacuum tower bottoms product, such as hydrocarbons having an initial boiling point of at least about 480° C., such as an initial boiling point in the range from about 480° C. to about 565° C., may then be routed to tankage after cooling, such as by direct heat exchange or direct injection of a portion of the residuum hydrocarbon feed into the vacuum tower bottoms product.
As shown in
As shown in
Hydroconversion catalyst compositions for use in the hydroconversion process according to embodiments disclosed herein are well known to those skilled in the art and several are commercially available from W.R. Grace & Co., Criterion Catalysts & Technologies, and Albemarle, among others. Suitable hydroconversion catalysts may include one or more elements selected from Groups 4-12 of the Periodic Table of the Elements. In some embodiments, hydroconversion catalysts according to embodiments disclosed herein may comprise, consist of, or consist essentially of one or more of nickel, cobalt, tungsten, molybdenum and combinations thereof, either unsupported or supported on a porous substrate such as silica, alumina, titania, or combinations thereof. As supplied from a manufacturer or as resulting from a regeneration process, the hydroconversion catalysts may be in the form of metal oxides, for example. In some embodiments, the hydroconversion catalysts may be pre-sulfided and/or pre-conditioned prior to introduction to the hydrocracking reactor(s).
Distillate hydrotreating catalysts that may be useful include catalyst selected from those elements known to provide catalytic hydrogenation activity. At least one metal component selected from Group 840 elements and/or from Group 6 elements is generally chosen. Group 6 elements may include chromium, molybdenum and tungsten. Group 8-10 elements may include iron, cobalt, nickel, ruthenium, rhodium, palladium, osmium, iridium and platinum. The amount(s) of hydrogenation component(s) in the catalyst suitably range from about 0.5% to about 10% by weight of Group 8-10 metal component(s) and from about 5% to about 25% by weight of Group 6 metal component(s), calculated as metal oxide(s) per 100 parts by weight of total catalyst, where the percentages by weight are based on the weight of the catalyst before sulfiding. The hydrogenation components in the catalyst may be in the oxidic and/or the sulphidic form. If a combination of at least a Group 6 and a Group 8 metal component is present as (mixed) oxides, it will be subjected to a sulfiding treatment prior to proper use in hydrocracking. In some embodiments, the catalyst comprises one or more components of nickel and/or cobalt and one or more components of molybdenum and/or tungsten or one or more components of platinum and/or palladium. Catalysts containing nickel and molybdenum, nickel and tungsten, platinum and/or palladium are useful.
Residue hydrotreating catalyst that may be useful include catalysts generally composed of a hydrogenation component, selected from Group 6 elements (such as molybdenum and/or tungsten) and Group 840 elements (such as cobalt and/or nickel), or a mixture thereof, which may be supported on an alumina support. Phosphorous (Group 15) oxide is optionally present as an active ingredient. A typical catalyst may contain from 3 to 35 wt % hydrogenation components, with an alumina binder. The catalyst pellets may range in size from 1/32 inch to ⅛ inch, and may be of a spherical, extruded, trilobate or quadrilobate shape. In some embodiments, the feed passing through the catalyst zone contacts first a catalyst preselected for metals removal, though some sulfur, nitrogen and aromatics removal may also occur. Subsequent catalyst layers may be used for sulfur and nitrogen removal, though they would also be expected to catalyze the removal of metals and/or cracking reactions. Catalyst layer(s) for demetallization, when present, may comprise catalyst(s) having an average pore size ranging from 1.25 to 225 Angstroms and a pore volume ranging from 0.5-1.1 cm3/g. Catalyst layer(s) for denitrogenation/desulfurization may comprise catalyst(s) having an average pore size ranging from 100 to 190 Angstroms with a pore volume of 0.54.1 cm3/g. U.S. Pat. No. 4,990,243 describes a hydrotreating catalyst having a pore size of at least about 60 Angstroms, and preferably from about 75 Angstroms to about 120 Angstroms. A demetallization catalyst useful for the present process is described, for example, in U.S. Pat. No. 4,976,848, the entire disclosure of which is incorporated herein by reference for all purposes. Likewise, catalysts useful for desulfurization of heavy streams are described, for example, in U.S. Pat. Nos. 5,215,955 and 5,177,047, the entire disclosures of which are incorporated herein by reference for all purposes. Catalysts useful for desulfurization of middle distillate, vacuum gas oil streams and naphtha streams are described, for example, in U.S. Pat. No. 4,990,243, the entire disclosures of which are incorporated herein by reference for all purposes.
Useful residue hydrotreating catalysts include catalysts having a porous refractory base made up of alumina, silica, phosphorous, or various combinations of these. One or more types of catalysts may be used as residue hydrotreating catalyst, and where two or more catalysts are used, the catalysts may be present in the reactor zone as layers. The catalysts in the lower layer(s) may have good demetallization activity. The catalysts may also have hydrogenation and desulfurization activity, and it may be advantageous to use large pore size catalysts to maximize the removal of metals. Catalysts having these characteristics are not optimal for the removal of Conradson Carbon Residue and sulfur. The average pore size for catalyst in the lower layer or layers will usually be at least 60 Angstroms and in many cases will be considerably larger. The catalyst may contain a metal or combination of metals such as nickel, molybdenum, or cobalt. Catalysts useful in the lower layer or layers are described in U.S. Pat. Nos. 5,071,805, 5,215,955, and 5,472,928. For example, those catalysts as described in U.S. Pat. No. 5,472,928 and having at least 20% of the pores in the range of 130 to 170 Angstroms, based on the nitrogen method, may be useful in the lower catalysts layer(s). The catalysts present in the upper layer or layers of the catalyst zone should have greater hydrogenation activity as compared to catalysts in the lower layer or layers. Consequently, catalysts useful in the upper layer or layers may be characterized by smaller pore sizes and greater Conradson Carbon Residue removal, denitrogenation and desulfurization activity. Typically, the catalysts will contain metals such as, for example, nickel, tungsten, and molybdenum to enhance the hydrogenation activity. For example, those catalysts as described in U.S. Pat. No. 5,472,928 and having at least 30% of the pores in the range of 95 to 135 Angstroms, based on the nitrogen method, may be useful in the upper catalysts layers. The catalysts may be shaped catalysts or spherical catalysts. In addition, dense, less friable catalysts may be used in the upflow fixed catalyst zones to minimize breakage of the catalyst particles and the entrainment of particulates in the product recovered from the reactor.
One skilled in the art will recognize that the various catalyst layers may not be made up of only a single catalyst, but may be composed of an intermixture of different catalysts to achieve the optimal level of metals or Conradson Carbon Residue removal and desulfurization for that layer. Although some hydrogenation will occur in the lower portion of the zone, the removal of Conradson Carbon Residue, nitrogen, and sulfur may take place primarily in the upper layer or layers. Obviously additional metals removal also will take place. The specific catalyst or catalyst mixture selected for each layer, the number of layers in the zone, the proportional volume in the bed of each layer, and the specific hydrotreating conditions selected will depend on the feedstock being processed by the unit, the desired product to be recovered, as well as commercial considerations such as cost of the catalyst. All of these parameters are within the skill of a person engaged in the petroleum refining industry and should not need further elaboration here.
While described above with respect to two separate fractionation systems 24, 46, embodiments disclosed herein also contemplate fractionating the effluents 22, 44, and 25 in a common fractionation system. For example, the effluents may be fed into a common gas cooling, purification, and compression loop before further processing in an atmospheric tower and a vacuum tower as described above. The use of a combined separation scheme may provide for a reduced capital investment, when desired, but may result in the production of a single fuel oil fraction having a sulfur level intermediate those achieved by separate processing.
As described above, embodiments disclosed herein effectively processes vacuum residue and intermediate streams through multiple hydrocracking reactors, each operating at different severities and processing different feed compositions with a SDA located within the process, extending the residue conversion limits above those which can be attained by residue hydrocracking alone. Further, the higher conversions may be attained using less catalytic reactor volume as compared to other schemes proposed to achieve similar conversions. As a result, embodiments disclosed herein may provide comparable or higher conversions but requiring a lower capital investment requirement. Further, embodiments disclosed herein may be used to produce a fuel oil having less than 1 wt % sulfur from a high sulfur containing residue feed while maximizing overall conversion.
The overall processing schemes disclosed herein may be performed using low reactor volumes while still achieving high conversions. Likewise, other resulting advantages may include: reduced catalyst consumption rates due to rejecting metals in the asphalt from the SDA unit; reduced capital investment; and elimination or significant reduction in the need for injection of slurry oil upstream of the ebullated bed reactors, among other advantages.
While the disclosure includes a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments may be devised which do not depart from the scope of the present disclosure. Accordingly, the scope should be limited only by the attached claims.
Number | Date | Country | |
---|---|---|---|
Parent | 13758554 | Feb 2013 | US |
Child | 15848666 | US |