The present disclosure relates to a system for vehicle lift monitoring and prognostics.
This section provides background information related to the present disclosure which is not necessarily prior art.
Vehicle lift systems may be used to lift various kinds of vehicles relative to the ground. Some vehicle lift systems are formed by a set of mobile above-ground lift columns. The mobile columns may be readily positioned in relation to the vehicle. The mobile columns may then be activated to lift the vehicle from the ground in a coordinated/synchronized fashion. It may be desirable to provide a system for vehicle lift monitoring and prognostics.
This section provides a general summary of the disclosure, and is not a comprehensive disclosure of its full scope or all of its features.
A vehicle lift system includes a plurality of mobile lift columns each including a wireless communication system for sending and receiving wireless signals, each of the plurality of mobile lift columns further including an inclinometer for detecting an amount of tilt of the plurality of mobile lift columns. A remote control unit includes a wireless communication system capable of transmitting wireless control signals to the plurality of mobile lift columns. A control unit is associated with the plurality of mobile lift columns for controlling operation of the plurality of lift columns, the control unit further receiving a signal indicative of an amount of tilt of the plurality of mobile lift columns and providing a warning signal if any column has an amount of tilt exceeding a predetermined amount.
According to a further aspect, a vehicle lift system includes a plurality of mobile lift columns each including a hydraulic lift system having a battery for powering the hydraulic lift system. Columns could also be powered from AC mains lines. The plurality of mobile lift columns each include a wireless communication system for sending and receiving wireless signals. Communication could also be through wires between columns. Each of the plurality of mobile lift columns further including a battery voltage sensor and a hydraulic pressure sensor. A remote control unit includes a wireless communication system capable of transmitting wireless control signals to the plurality of mobile lift columns. A control unit is associated with the plurality of mobile lift columns for controlling operation of the plurality of lift columns, the control unit estimating and reporting a current battery condition based upon signals from the battery voltage sensors and the hydraulic pressure sensors of the plurality of mobile lift columns. The control unit can determine a battery deterioration condition based upon a rate of change of voltage of the batter while the battery is under load. Alternatively, the control unit can determine a battery deterioration condition based upon a change in resting voltage between cycles.
According to a further aspect, a vehicle lift system includes a plurality of mobile lift columns each including a hydraulic lift system having a battery for powering the hydraulic lift system. The plurality of mobile lift columns includes a wireless communication system for sending and receiving wireless signals. Each of the plurality of mobile lift columns further includes a battery voltage sensor. A remote control unit having a wireless communication system is capable of transmitting wireless control signals to the plurality of mobile lift columns. A control unit associated with the plurality of lift columns controls operation of the plurality of mobile lift columns. The control unit calculates an amount of charge variation in the system based upon signals from the battery voltage sensors of the mobile lift columns, wherein the control unit provides a warning message if an amount of charge variation between the plurality of mobile lift columns exceeds a predetermined level.
A vehicle lift system includes a plurality of mobile lift columns each including a hydraulic lift system having a battery for powering the hydraulic lift system. The plurality of mobile lift columns each includes a wireless communication system for sending and receiving wireless signals. Each of the plurality of mobile lift columns further includes a hydraulic pressure sensor. A remote control unit includes a wireless communication system capable of transmitting wireless control signals to the plurality of mobile lift columns. A control unit is associated with the plurality of lift columns for controlling operation of the plurality of mobile lift columns. The control unit calculates an amount of load variation in the system based upon the hydraulic pressure sensors of the plurality of mobile lift columns, wherein the control unit provides a warning message if an amount of load variation between the plurality of mobile lift columns exceeds a predetermined level. Alternatively, load could be sensed using a load cell or motor amp draw.
A vehicle lift system includes a plurality of mobile lift columns each including a wireless communication system for sending and receiving wireless signals. A remote control unit includes a wireless communication system capable of transmitting wireless control signals to the plurality of mobile lift columns. A control unit associated with the plurality of mobile lift columns controls operation of the plurality of lift columns. The control unit monitors a message error rate between the remote control unit and the plurality of mobile lift columns and provides a warning signal if the message error rate between the remote control unit and any one of the plurality of mobile lift columns exceeds a predetermined threshold.
Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of the present disclosure.
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
Example embodiments will now be described more fully with reference to the accompanying drawings.
Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer, or section from another region, layer, or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer, or section discussed below could be termed a second element, component, region, layer, or section without departing from the teachings of the example embodiments.
As further shown in
As shown in
As shown in further detail in
A processor 34 is in electrical communication with the pump 28 and the valves 30 to control operation of the pump 28 and the valves 30. Of course, any other suitable structures, components, or techniques may be used for a hydraulic system 24. For instance, any suitable systems, features, mechanisms, or components may be used in addition to or in lieu of hydraulic system 24, including but not limited to a screw, belt, or gear mechanism, such as to raise or lower carrier 18.
Each lift column 12 further includes a control unit 36, which may be used to control the operation, monitoring, and/or programming of lift system 10. For instance, any one of the control units 36 may be used to define participation in ad hoc column control groups based on available mobile lift columns 12, then control the mobile lift columns 12 while in the ad hoc column control group. Control unit 36 can also have a display 38 that is configured to provide the operator with a visual indication of mobile lift columns 12 have been assigned to the ad hoc column control group. Display 38 may include a graphical representation of a vehicle and graphical representations of the available mobile lift columns 12 positioned in relation to the graphical representation of the vehicle. Control unit 36 may illuminate the graphical representations of the available mobile lift columns 12 that have been selected for the ad hoc control group, providing the operator with immediate visual confirmation mobile of which lift columns 12 have been selected and where those mobile lift columns 12 are in relation to the vehicle. Control unit 36 includes a processor 34, which is operable to process and relay information/commands to/from other components of the control unit 36.
It should be understood that each control unit 36 may be in communication with a remote control unit 14. For instance, when an operator uses a control unit 36 to create an ad hoc column control group, the identity of the columns 12 in that control group may be transmitted to the remote control unit 14. In addition, a lift command entered through control unit 36 may be sent to the remote control unit 14, and remote control unit 14 may then relay the lift command to the mobile lift columns 12 that have been assigned to the ad hoc column control group. The remote control unit may function as the system controller. In alternate embodiments, the system controller may be a separate unit in wireless communication with both the remote control unit 14 and the control unit 36, or the system controller may be one of the control units 36 on one of the columns 12 existing in the system.
A wireless transceiver 42 is also provided at each column 12 represented in
As also shown in
The remote control unit 14 can include a housing 50 having a display 52 and a series of input buttons 54. Input buttons may be designated for controlling lift motion or for navigating display menus on the remote control. Input buttons designated for controlling lift motion may only be enabled when the lift system is enabled for wireless remote lift operation. The remote control unit 14 can further include a processor 56 in communication with the display 52 and the series of input buttons 54 as well as a wireless transmitter/receiver 58. The remote control unit 14 includes a battery 62. The battery 62 can be rechargeable and operable to power all aspects of operation of the remote control unit 14. In particular, the battery 62 is operable to power the display 52, the processor 56, the wireless transmitter/receiver 58, and/or any other electrically powered component in the remote control unit 14. The input buttons 54 can be incorporated into a touch screen of the display 52 or can be separate input buttons.
As shown in
With reference to
As shown in
In a lift system, the system controller will monitor the position of separate lifting cylinders and equalize them. In the current state, lift equalization problems may only be found when the component deteriorates to the point of causing out-of-level error messages. The lift will engage a hydraulic correction valve to divert flow and equalize the lift cylinders in the system under normal conditions. In abnormal cases, the controller will have to engage a secondary valve to provide hard equalization in order to equalize the system. Particular factors contributing to hard equalization include an unequal battery state-of-charge amongst mobile lift columns 12, an unequal amount of load amongst the mobile lift columns 12, and the component issues such as a blocked hydraulic valve, a leaky pump and motor wear. The battery voltage sensors 72 and the hydraulic pressure sensors 74 can be utilized to monitor and understand the amount of equalization caused by abnormal causes and provide an indicator that an equalization component may be out-of-tolerance for troubleshooting and maintenance purposes.
As shown in
The present disclosure can also monitor the message error rate between the individual mobile lift columns 12 and the system controller of the mobile column lift system. The systems can give a user an indication of marginally performing radio links before communication errors start to occur frequently. As shown in
The foregoing description of the embodiments has been provided for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure. Individual elements or features of a particular embodiment are generally not limited to that particular embodiment, but, where applicable, are interchangeable and can be used in a selected embodiment, even if not specifically shown or described. The same may also be varied in many ways. Such variations are not to be regarded as a departure from the disclosure, and all such modifications are intended to be included within the scope of the disclosure.
This application is a divisional of U.S. application Ser. No. 16/862527, filed Apr. 29, 2020, which claims the benefit of U.S. Provisional Application No. 62/853248, filed May 28, 2019. The entire disclosures of the above applications are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62853248 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16862527 | Apr 2020 | US |
Child | 18346320 | US |