The present invention generally relates to a combustor for use in a gas turbine. More particularly, this invention relates to a fuel nozzle support collar for reducing fuel nozzle vibration.
A typical gas turbine includes an inlet section, a compressor section, a combustion section, a turbine section, and an exhaust section. The inlet section cleans and conditions a working fluid (e.g., air) and supplies the working fluid to the compressor section. The compressor section progressively increases the pressure of the working fluid and supplies a compressed working fluid to the combustion section. The compressed working fluid and a fuel are mixed within the combustion section and burned in a combustion chamber to generate combustion gases having a high temperature and pressure. The combustion gases are routed along through a hot gas path into the turbine section where they expand to produce work. For example, expansion of the combustion gases in the turbine section may rotate a shaft connected to a generator to produce electricity.
The combustion section generally includes a plurality of combustors annularly arranged and disposed between the compressor section and the turbine section. An outer casing at least partially surrounds the combustors and each combustor includes an end cover that is coupled to the outer casing. At least one axially extending fuel nozzle extends downstream from each end cover within the outer casing. An upstream or forward end of the fuel nozzle is rigidly connected to the end cover. In some combustor configurations, a downstream or aft end of the fuel nozzle is generally unsupported, thereby creating a cantilever. In alternate designs, the aft end of the fuel nozzle may be at least partially supported within an opening in a cap assembly that extends radially and axially within the outer casing downstream from the end cover.
During operation of the gas turbine, various factors such as combustion dynamics, rotor vibration and/or flow induced excitation may cause the cantilevered fuel nozzle to vibrate at various resonant frequencies which may affect fuel nozzle/combustor durability due to high cycle fatigue related issues. Various systems and methods have been deployed and/or considered to dampen the cantilevered fuel nozzles. For example, one system includes spring supports to shift or increase the natural frequency of the fuel nozzle. Other attempts to shift or increase the natural frequency of the fuel nozzle have included connecting the aft end of the fuel nozzle to a rigid structure within the combustor using a tether or braided wire.
Although the systems previously mentioned are generally effective, each may require additional hardware and add complexity to new combustor designs. In addition, the systems previously mentioned may not be practical for retrofitting existing combustor designs. Accordingly, an improved system for damping a fuel nozzle within a combustor of a gas turbine would be useful.
Aspects and advantages of the invention are set forth below in the following description, or may be obvious from the description, or may be learned through practice of the invention.
One embodiment of the present invention is a system for vibration damping a fuel nozzle within a combustor. The system includes a support plate, a fuel nozzle passage that extends through the support plate and a cylindrical damping insert that is coaxially aligned within the fuel nozzle passage and at least partially defines the fuel nozzle passage.
Another embodiment of the present invention is a combustor for a gas turbine. The combustor generally includes an outer casing and an end cover that is coupled to the outer casing and a fuel nozzle that extends downstream from the end cover within the outer casing. A cap assembly extends radially and axially within the outer casing. The cap assembly includes a support plate and a cap plate that is disposed downstream from the support plate. The cap plate includes an opening. A fuel nozzle passage extends through the support plate and is aligned with the opening in the cap plate. The fuel nozzle extends at least partially through the fuel nozzle passage and the opening. A cylindrical damping insert is coaxially aligned with the fuel nozzle passage and extends circumferentially around the fuel nozzle.
Another embodiment of the present invention includes a gas turbine. The gas turbine includes a compressor and a combustor that is disposed downstream from the compressor. The combustor includes an outer casing, an end cover coupled to the outer casing and a fuel nozzle that extends axially downstream from the end cover within the outer casing. A turbine is disposed downstream from the combustor. The gas turbine further includes a system for vibration damping of the fuel nozzle. The system is disposed within the outer casing downstream from the end cover. The system includes a support plate, a fuel nozzle passage that extends through the support plate, and a cylindrical damping insert coaxially aligned within the fuel nozzle passage. The damping insert comprises a metallic-mesh liner that circumferentially surrounds a portion of the fuel nozzle. The damping insert at least partially defines the fuel nozzle passage.
Those of ordinary skill in the art will better appreciate the features and aspects of such embodiments, and others, upon review of the specification.
A full and enabling disclosure of the present invention, including the best mode thereof to one skilled in the art, is set forth more particularly in the remainder of the specification, including reference to the accompanying figures, in which:
Reference will now be made in detail to present embodiments of the invention, one or more examples of which are illustrated in the accompanying drawings. The detailed description uses numerical and letter designations to refer to features in the drawings. Like or similar designations in the drawings and description have been used to refer to like or similar parts of the invention.
As used herein, the terms “first”, “second”, and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. The terms “upstream,” “downstream,” “radially,” and “axially” refer to the relative direction with respect to fluid flow in a fluid pathway. For example, “upstream” refers to the direction from which the fluid flows, and “downstream” refers to the direction to which the fluid flows. Similarly, “radially” refers to the relative direction substantially perpendicular to the fluid flow, and “axially” refers to the relative direction substantially parallel to the fluid flow. The term “circumferentially” refers to a relative direction that extends around an axial centerline of a particular component.
Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that modifications and variations can be made in the present invention without departing from the scope or spirit thereof. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents.
Referring now to the drawings, wherein identical numerals indicate the same elements throughout the figures,
The compressed working fluid 18 is mixed with a fuel from a fuel supply 20 to form a combustible mixture within one or more combustors 22. The combustible mixture is burned to produce combustion gases 24 having a high temperature and pressure. The combustion gases 24 flow through a turbine 26 of a turbine section to produce work. For example, the turbine 26 may be connected to a shaft 28 so that rotation of the turbine 26 drives the compressor 16 to produce the compressed working fluid 18. Alternately or in addition, the shaft 28 may connect the turbine 26 to a generator 30 for producing electricity. Exhaust gases 32 from the turbine 26 flow through an exhaust section 34 that connects the turbine 26 to an exhaust stack 36 downstream from the turbine 26. The exhaust section 34 may include, for example, a heat recovery steam generator (not shown) for cleaning and extracting additional heat from the exhaust gases 32 prior to release to the environment.
The combustors 22 may be any type of combustor known in the art, and the present invention is not limited to any particular combustor design unless specifically recited in the claims.
At the end cover 42, the compressed working fluid 18 reverses flow direction. A portion of the compressed working fluid 18 is routed through at least one fuel nozzle 52 where a fuel is injected into the compressed working fluid 18 to provide a combustible mixture 54. The combustible mixture 54 is injected into a combustion chamber 56 for combustion. In particular embodiments, the combustor 22 includes an annular cap assembly 58 that at least partially surrounds a portion of the fuel nozzle 52. The cap assembly 58 may be connected to the outer casing 40.
As shown, the cap assembly 58 generally extends radially and axially within the outer casing 40 downstream from the end cover 42. In particular embodiments, the cap assembly 58 includes a cap plate 64 disposed at an aft/downstream end 66 of the cap assembly 58. An aft or downstream portion 68 of each fuel nozzle 52 extends at least partially through a corresponding opening 70 that extends through the cap plate 64. The cap plate 64 is generally disposed adjacent to the combustion chamber 56 (
In various embodiments, as shown in
In particular embodiments, as shown in
In one embodiment, as shown in
As shown in
The various embodiments as disclosed herein and as illustrated in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other and examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.