Unmanned aerial vehicles (UAVs) are becoming more prevalent in modern warfare. In addition to land-based launches of UAVs, water-based UAV launches are desirable in many operational scenarios. However, the general instability of the water environment makes successful water-based UAV launches difficult to achieve. As an example, due to wave turbulence, many UAVs are unable to be launched at an angle that allows the UAV to readily transition to flight, resulting in the UAV being lost to the water environment. A need exists for a water-based system that can successfully and reliably launch a UAV.
Pneumatic launch assembly 30 may include a launch tube 32 and a cap retaining ring 34 connected thereto. Cap retaining ring 34 secures a cap (not shown) to launch tube 32. In other embodiments, the cap may be pressure fit within launch tube 32 or hingedly connected to launch tube 32. Inflatable bladder 50 may be disposed around at least a portion of a region defined by support structure 20 and pneumatic launch assembly 30. A collapsible stabilizing weight 60 may be coupled to the other end of support structure 20. Battery pack 70 may be coupled to stabilizing weight 60. An electrical cable 62 may be connected to battery pack 70. Cable 62 may run through support structure 20 and connect to communications and control circuitry contained within launch tube 32, such as communications and control circuitry 270 shown in system 200 of
System 10 may further include an antenna 80, which may be connected to communications circuitry contained within launch tube 32. The placement of antenna 80 within system 10 may vary. For example, antenna 80 may be coupled to launch tube 32 or support 20 structure 20. Antenna 80 allows communications from a UAV 100 (see
When system 10 is deployed, collapsible stabilizing weight 60 is extended and inflatable bladder 50 is inflated. Inflatable bladder 50 may be inflated manually by a diver (in a diver-deployed scenario), or autonomously based upon actions taken by the onboard control circuitry, or based upon a signal received by fiber-optic cable 90 and transmitted to control circuitry (not shown) contained within launch tube 32. Similarly, collapsible stabilizing weight 60 may be either manually or automatically extended depending on the deployment scenario.
Fiber-optic cable 90 extends from the end of collapsible stabilizing weight 60. Fiber-optic cable 90 may extend within collapsible stabilizing weight 60, through support structure 20, to communications circuitry contained within launch tube 32. Support structure 20 may include a compressed air tank 22 stored therein. In some embodiments, system 10 includes a fiber spool (not shown) connected to collapsible stabilizing weight 60 that allows fiber-optic cable 90 to be extended a desired length from system 10. Such embodiments allow for a “base” vehicle to be located at various distances from system 10. Compressed air tank 22 may include various types of compressed air. As an example, compressed air tank may include CO2 stored therein.
Support structure 20 may also include protrusions 24 extending from one end. Protrusions 24 may be coupled to pneumatic launching assembly 30 such that the angle of pneumatic launch assembly 30 with respect to support structure 20 is adjustable. As an example, a pair of protrusions 24 may be connected to a pair of protrusions on one end of pneumatic launching assembly 30 by a pin. In other embodiments, support structure 20 may be hingedly coupled to pneumatic launching assembly 30 to allow for angular adjustment of pneumatic launching assembly 30 with respect to support structure 20. In some embodiments, actuators controlled by control circuitry contained within launch tube 32 may adjust the angle of pneumatic launch assembly 30 with respect to support structure 20. In some embodiments, inflatable bladder 50 is sized and positioned such that pneumatic launch assembly 30 relies on contact with an inflated inflatable bladder 50 to reach the appropriate launch angle.
In embodiments where system 10 is either deployed from an underwater vehicle or by a diver, system 10 may include a fiber spool (not shown) coupled to the distal end of collapsible stabilizing weight 60. The fiber spool may have at least a portion of fiber-optic cable 90 wound thereabout. The fiber spool may be configured to extend fiber-optic cable 90 from collapsible stabilizing weight 60 as system 10 travels further from its deployment location. The other end of fiber-optic cable 90 may be connected to an underwater vehicle to which system 10 communicates.
Referring to
Pneumatic launch assembly 200 includes a launch tube 210 having a cap 212 secured at one end. A compressed air manifold 220 may be contained within launch tube 210 and may be in fluid connection with a compressed air tank stored within a support structure. As an example, a tube 221 may be connected between compressed air manifold 220 and the compressed air tank (such as compressed air tank 22 of
A telescoping guide rod 230 may be connected to compressed air manifold 220 by guide rod mounts 232. Telescoping guide rod 230 may include a shuttle stopping mechanism 234 at the distal end thereof. A shuttle 240 may be slidably coupled to telescoping guide rod 230 by shuttle mounts 242. Shuttle mounts 242 may be slidably engaged with telescoping guide rod 230 such that shuttle 240 may slide along telescoping guide rod 230. Shuttle 240 may be at least partially disposed over air outlet 222. Telescoping guide rod 230 helps ensure successful UAV transition to flight by providing added stability as the UAV exits the launch tube. Telescoping guide rod 230 should be configured such that its extended height allows for the UAV to fully exit the launch tube before shuttle 240 contacts shuttle stopping mechanism 234. Such a configuration helps ensure a successful transition to flight performance for, in particular, a foldable wing UAV assembly.
Shuttle 240 includes a UAV attachment mechanism 244 for attachment of UAV 250 to shuttle 240. UAV attachment mechanism 244 may be configured in various ways to engage various types of UAVs. For example, UAV attachment mechanism 244 may be configured to engage a hook-shaped member extending from UAV 250 such that, when UAV 250 is within launch tube 210 it remains upright (see
To launch UAV 250, compressed air flows from a compressed air tank through tube 221, into compressed air manifold 220, and out of air outlet 222, causing an upward force on shuttle 240. Shuttle 240 slides up telescoping guide rod 230 until the top shuttle mount 242 contacts shuttle stopping mechanism 234 (see
Pneumatic launch assembly 200 may further include an antenna 260, which may be connected to communications and control circuitry 270 contained within launch tube 210 by cable 262. As shown, antenna 260 is connected to launch tube 210. Such connection may occur by various methods as recognized by one having ordinary skill in the art.
Referring to
Pneumatic launch assembly 300 includes a launch tube 310 having a cap 312 at one end. Cap 312 may be pressure fit within launch tube 310. In other embodiments, cap 312 may be secured to launch tube 310, as shown in
A piston housing 330 may be coupled to compressed air manifold 320 and disposed over air outlet 322. Pneumatic launch assembly 300 may further include a first piston 340 slidably disposed within piston housing 330, a second piston 350 slidably disposed within first piston 340, and a UAV attachment mechanism 360 coupled to second piston 350. UAV attachment mechanism 360 may be configured in various ways to engage various types of UAVs. For example, UAV attachment mechanism 360 may be configured to engage a hook-shaped member extending from UAV 370 such that, when UAV 370 is within launch tube 310 it remains upright (see
To launch UAV 370, compressed air flows from a compressed air tank though tube 321, into compressed air manifold 320, and out of air outlet 322, causing first piston 340 to extend within piston housing 330 and second piston 350 to extend within first piston 340. During the extension of first piston 340 and second piston 350, UAV 370 will contact cap 312 and force cap 312 to be disengaged from launch tube 310. In some embodiments, cap 312 is tethered to launch tube 310. In other embodiments, cap 312 is not tethered to launch tube 310. After first piston 340 and second piston 350 have been fully extended, UAV attachment mechanism 360 allows for UAV 370 to be disengaged and carried out of launch tube 310 by the upward force exerted by the compressed air.
Pneumatic launch assembly 300 may further include an antenna 380, which may be connected to communications and control circuitry 390 contained within launch tube 310 by cable 382. As shown, antenna 380 is connected to launch tube 310. Such connection may occur by various methods as recognized by one having ordinary skill in the art.
A launch track may be disposed within launch tube 412. The launch track may include a first track member 418, a second track member 420 coupled on one end to first track member 418 such that second track member 420 is linearly translatable with respect to first track member 418, and a third track member 422 coupled to the other end of second track member 420. Second track member 420 may be linearly translated with respect to first track member 418 via actuators controlled by control circuitry (not shown) located within launch tube 412. Third track member 422 may be coupled to second track member 420 by various means. Third track member 422 may be angularly adjustable with respect to second track member 420. Such adjustment may occur by actuators controlled by control circuitry (not shown) located within launch tube 412.
Prior to launching UAV 470, second track member 420 is translated with respect to first track member 418 such that UAV 470 is out of launch tube 412. Then, third track member 422 is angularly adjusted with respect to second track member 420 such that UAV 470 is positioned at an appropriate launch angle. As an example, third track member 422 may be positioned at any angle within a range of 0 to 90 degrees.
A spring-loaded member 424 may be coupled to third track member 422. A UAV attachment mechanism 426 may be coupled to spring-loaded member 424. UAV attachment mechanism 426 may be configured in various ways to engage various types of UAVs 470. Spring-loaded member 424 may be pre-loaded with a UAV 470 such that when a control signal is received by system 400, the tension on a spring 428 within spring-loaded member 424 is released, exerting a lateral force on UAV attachment mechanism 426 and causing UAV 470 to be propelled from launching assembly 410 at an angled orientation.
Many modifications and variations of the System for Water-based Launch of an Unmanned Aerial Vehicle are possible in light of the above description. Within the scope of the appended claims, the System for Water-based Launch of an Unmanned Aerial Vehicle may be practiced otherwise than as specifically described. Further, the scope of the claims is not limited to the implementations and embodiments disclosed herein, but extends to other implementations and embodiments as may be contemplated by those having ordinary skill in the art.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 61/034,032, filed Mar. 5, 2008, entitled “System and Method for an Underwater Launched Unmanned Aerial Vehicle,” the content of which is fully incorporated by reference herein.
The System for Water-based Launch of an Unmanned Aerial Vehicle is assigned to the United States Government and is available for licensing for commercial purposes. Licensing and technical inquiries may be directed to the Office of Research and Technical Applications, Space and Naval Warfare Systems Center, San Diego, Code 2112, San Diego, Calif., 92152; voice (619) 553-2778; email T2@spawar.navy.mil. Reference Navy Case No. 99136.
Number | Name | Date | Kind |
---|---|---|---|
3208346 | Penza et al. | Sep 1965 | A |
3245318 | Finkelstein et al. | Apr 1966 | A |
3249014 | Daughenbaugh | May 1966 | A |
3279319 | Semonian et al. | Oct 1966 | A |
3340767 | Penza | Sep 1967 | A |
3513750 | Penza | May 1970 | A |
3755836 | Milazzo | Sep 1973 | A |
4383831 | Cupolo et al. | May 1983 | A |
5108326 | Seiler | Apr 1992 | A |
5615847 | Bourlett | Apr 1997 | A |
5695153 | Britton et al. | Dec 1997 | A |
6164179 | Buffman | Dec 2000 | A |
6286410 | Leibolt | Sep 2001 | B1 |
6487952 | Borgwarth et al. | Dec 2002 | B1 |
6502528 | MacLeod et al. | Jan 2003 | B1 |
6530305 | MacLeod et al. | Mar 2003 | B1 |
7032530 | Ansay et al. | Apr 2006 | B1 |
7226328 | Puzella et al. | Jun 2007 | B1 |
7243609 | Ansay et al. | Jul 2007 | B1 |
7472866 | Heaston et al. | Jan 2009 | B2 |
7779772 | Wallin | Aug 2010 | B2 |
7946241 | Sampson et al. | May 2011 | B2 |
20030033926 | MacLeod et al. | Feb 2003 | A1 |
20090107386 | Sampson et al. | Apr 2009 | A1 |
20090126619 | Woolwright et al. | May 2009 | A1 |
20100000463 | Root, Jr. | Jan 2010 | A1 |
20100024708 | Wallin | Feb 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
61034032 | Mar 2008 | US |