System having an improved user interface for reading code symbols

Information

  • Patent Grant
  • 9235737
  • Patent Number
    9,235,737
  • Date Filed
    Tuesday, March 10, 2015
    10 years ago
  • Date Issued
    Tuesday, January 12, 2016
    9 years ago
Abstract
A system for reading code symbols includes a camera, a user interface system, and a processor communicatively coupled to the camera and the user interface system. The user interface system includes a visual display. The processor is configured for (i) capturing an image including a code symbol, (ii) displaying the image on the visual display, (iii) determining whether the code symbol in the image is readable by the processor, and (iv) displaying on the visual display a positive indicator overlaying the code symbol in the image when the processor determines that the code symbol in the image is readable by the processor. The processor is further configured for reading the code symbol in the image in response to a selection input received from the user interface system.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims the benefit of U.S. patent application Ser. No. 13/930,913 for a Mobile Device Having an Improved User Interface for Reading Code Symbols filed Jun. 28, 2013 (and published Jan. 1, 2015 as U.S. Patent Application Publication No. 2015/0001302), now U.S. Pat. No. 8,985,461. Each of the foregoing patent application, patent publication, and patent is hereby incorporated by reference in its entirety.


FIELD OF THE INVENTION

The present disclosure generally relates to the field of mobile devices. More specifically, the present disclosure relates to mobile devices having an improved user interface for reading code symbols.


BACKGROUND

Over the past forty years, businesses have sought to maximize efficiency by using various devices to automate data entry. In the important area of inventory management, in particular, the symbol reading device (e.g., barcode reader, barcode scanner or RFID reader) has greatly reduced the time and errors inherent to manual data entry. Symbol reading devices are often employed to decode barcodes. A barcode is a machine-readable representation of information in graphic format. Traditionally, a barcode is a series of parallel bars and spaces of varying widths (e.g., a linear barcode or 1D barcode). More recently, there has been an increase in the use of alternatives to the linear barcode, for example matrix codes (e.g., 2D barcodes, QR Code, Aztec Code, Data Matrix) and Optical Character Recognition (OCR) have enjoyed increasing popularity as the technology advances. As used herein, the terms barcode and code symbol are intended in their broadest sense to include linear barcodes, matrix barcodes, and OCR-enabled labels. Barcode readers (e.g., optical readers) tend to fall into one of three categories: wand readers, laser scan engine barcode readers, and image sensor based barcode readers.


Wand readers generally comprise a single light source and single photodetector housed in a pen shaped housing. A user drags the wand reader across a decodable symbol (e.g., a barcode) and a signal is generated representative of the bar space pattern of the barcode.


Laser scan engine based barcode readers comprise a laser diode assembly generating a laser light beam and a moving mirror for sweeping the laser light beam across a decodable symbol, wherein a signal is generated corresponding to the decodable symbol.


Image sensor based barcode readers comprise multi element image sensors such as CID, CMOS, or CCD image sensors and an imaging optic for focusing an image onto the image sensor. In the operation of an image sensor based barcode reader, an image of a decodable symbol is focused on an image sensor and a signal is generated corresponding to the signal. Image sensor elements may be arrayed in a line or in a rectangular matrix or area. Area image sensors capture a digital picture and use software algorithms to find and decode one or more symbols.


Users of laser scanner engine based barcode readers have been switching in increasing numbers to image sensor based barcode readers. Image sensor based barcode readers are more durable and offer additional features relative to laser scan engine based barcode readers. Features and functions which have been incorporated into image sensor based barcode readers involve image processing.


Exemplary optical readers are described in U.S. Pat. No. 6,298,176; U.S. Pat. No. 7,159,783; and U.S. Pat. No. 7,413,127; each of which is hereby incorporated by reference in its entirety.


Recently, the widespread availability of mobile devices such as smartphones and tablet computers, and their continually improving functionality, has led businesses and consumers alike to employ these mobile devices as code symbol readers. In this regard, smartphones and tablet computers typically have an internal video camera that can be employed for image scanning.


Unlike conventional symbol reading devices, which typically have an aiming indicator that can be projected onto a code symbol (e.g., barcode, linear barcode, matrix barcode, letter strings, number strings) with an LED or laser, smartphones and tablet computers typically lack a built-in aiming indicator. Accordingly, decoding software for smartphones and tablet computers typically utilizes a user interface with a real-time display from the internal video camera to aid users in aiming at the code symbol. A continuous graphic pattern is typically overlaid on the real-time display to further aid with aiming. For example, a horizontal line that mimics a laser scan line may be painted on the display, so that a user can orient the device so that the horizontal line cuts through the barcode. Alternatively, a graphic pattern delimiting a reduced region of interest may be painted on the display, so that a user can position the barcode within the region of interest. In addition to lacking a satisfactory way to direct the aim of the scanning operation of the mobile device, mobile devices also lack an intuitive trigger to activate the scanning operation. Typically, scanning is initiated whenever a readable barcode enters the mobile device's field of view in a proper orientation. When multiple barcodes are in the field of view, however, it can lead to user confusion about which barcode was actually scanned. Accordingly, a need exists for a mobile device with an improved user interface for code symbol reading.


SUMMARY

The present invention embraces a mobile device (e.g., smartphone, tablet computer) that includes a camera, a user interface system having a visual display, and a processor. The processor is communicatively coupled to the camera and the user interface system. The processor is configured for capturing from the camera an image depicting a code symbol; displaying the image on the visual display; and determining whether the code symbol in the image is readable by the processor. The processor is further configured for displaying on the visual display a positive indicator overlaying the code symbol in the image when the processor determines that the code symbol in the image is readable by the processor.


In another aspect, the disclosure embraces a method of reading a code symbol with a mobile device. A mobile device is provided. The mobile device includes a camera, a user interface system having a visual display, and a processor communicatively coupled to the camera and the user interface system. An image that includes a code symbol is captured with the camera. The image is displayed on the visual display. The processor determines whether the code symbol is readable by the processor. When the processor determines that the code symbol is readable by the processor, a positive indicator is displayed on the display screen overlaying the code symbol.


An object of the present disclosure is to provide a mobile device having an improved user interface for code symbol reading.


Another object of the present disclosure is to provide a mobile device having a user interface that simplifies the selection of the code symbol that the user desires to decode.


Another object of the present disclosure is to provide a mobile device having an improved user interface that automatically indicates to the user whether a code symbol is readable.


Another object of the present disclosure is to provide a mobile device having an improved user interface featuring an intuitive means of selecting a code symbol.


The foregoing illustrative summary, as well as other exemplary objectives and/or advantages of the disclosure, and the manner in which the same are accomplished, are further explained within the following detailed description and its accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

To more fully understand the objects of the disclosure, the following detailed description of the illustrative embodiments should be read in conjunction with the accompanying drawings, wherein:



FIG. 1 is a schematic block diagram of an exemplary mobile device according to the present disclosure;



FIG. 2 is a schematic block diagram of an alternative embodiment of an exemplary mobile device according to the present disclosure;



FIG. 3 is a graphic depiction of a user interface of a mobile device according to the present disclosure; and



FIG. 4 is a graphic depiction of a user interface of a mobile device according to the present disclosure.





DETAILED DESCRIPTION

The present invention embraces a mobile device (e.g., cellular phone, smartphone, tablet device, personal digital assistant, portable computer, vehicle-mount computer) having an improved user interface for reading code symbols. The mobile device according to the present disclosure includes a camera, a user interface system having a visual display, and a processor. The processor is communicatively coupled to the camera and the user interface system. The processor is configured for capturing from the camera an image depicting a code symbol; displaying the image on the visual display; and determining whether the code symbol in the image is readable by the processor. The processor is further configured for displaying on the visual display a positive indicator overlaying the code symbol in the image when the processor determines that the code symbol in the image is readable by the processor.



FIGS. 1 and 2 schematically depict two exemplary mobile devices 10 in accordance with the present disclosure. The mobile device 10 typically includes a processor 11, a memory 12, a camera 13, a user interface 14, and a wireless communication system 16. The processor 11 is communicatively coupled to the memory 12, the camera 13, the user interface 14, and the wireless communication system 16.


Exemplary mobile devices may include a system bus 17 and/or one or more interface circuits (not shown) for coupling the processor 11 and other components to the system bus 17. In this regard, the processor 11 may be communicatively coupled to each of the other components via the system bus 17 and/or the interface circuits. Similarly, the other components (e.g., the memory 12, the camera 13, the user interface 14, and the wireless communication system 16) may each be communicatively coupled to other components via the system bus 17 and/or the interface circuits. Other embodiments of system bus architecture providing for efficient data transfer and/or communication between the components of the device may also be employed in exemplary embodiments in accordance with the present disclosure.


Typically, the processor 11 is configured to execute instructions and to carry out operations associated with the mobile device 10. For example, using instructions retrieved from the memory 12 (e.g., a memory block), the processor 11 may control the reception and manipulation of input and output data between components of the mobile device 10. The processor 11 typically operates with an operating system to execute computer code and produce and use data. The operating system, other computer code, and data may reside within the memory 12 that is operatively coupled to the processor 11. The memory 12 generally provides a place to store computer code and data that are used by the mobile device 10. The memory 12 may include Read-Only Memory (ROM), Random-Access Memory (RAM), a hard disk drive, and/or other non-transitory storage media. The operating system, other computer code, and data may also reside on a removable non-transitory storage medium that is loaded or installed onto the mobile device 10 when needed. Exemplary removable non-transitory storage media include CD ROM, PC-CARD, memory card, floppy disk, and/or magnetic tape.


The user interface system 14 includes one or more components capable of interacting with a user (e.g., receiving information from a user or outputting information to a user). As depicted in FIG. 1, the user interface system 14 includes a visual display 15. Typically, the visual display 15 is a touchscreen, which is capable of displaying visual information and receiving tactile commands from a user (e.g., selections made by touching the screen with a finger or a stylus, by pointing at a desired selection, or by looking at a desired selection for a predefined period of time). In addition to the visual display 15, the user interface system 14 may also include one or more speakers, buttons, keyboards, and/or microphones.


As noted, the mobile device 10 typically includes a wireless communication system 16. The wireless communication system 16 enables the mobile device 10 to communicate with a wireless network, such as a cellular network (e.g., a GSM network, a CDMA network, or an LTE network), a local area network (LAN), and/or an ad hoc network.


The camera 13 may be any device that is able to capture still photographs and/or video. Typically, the camera 13 is able to capture both still photographs and video. Although FIG. 1 depicts the mobile device 10 as having a single camera 13, it is within the scope of the present invention for the mobile device 10 to include more than one camera.


The processor 11 is typically in communication with a database 18. As depicted in FIG. 1, the database 18 may be stored within the memory 12. In an alternative embodiment depicted in FIG. 2, the processor 11 may access the database 18 via the wireless communication system 16. In other words, the processor may access the database 18 through the internet or a local area network via the wireless communication system 16.


The database 18 includes information associated with a code symbol. Typically, the database 18 includes information relevant to stock management and/or retail transactions. For example, the database 18 may include relevant information (e.g., name, price, size, associated barcode, stocking location, and/or quantity) regarding goods sold in a retail store. It will be appreciated by one of ordinary skill in the art that the processor 11 does not necessarily need to be in communication with a database 18. For instance, some code symbols (e.g., matrix barcodes) may contain all the necessary data, thereby eliminating a need for the processor 11 to look up associated data on a database 18.


Turning now to FIGS. 4 and 5, which graphically depict an exemplary user interface of a mobile device 10 according to the present disclosure. To read a code symbol, the processor 11 is configured to capture an image from the camera 13 (e.g., after receiving a user command from the user interface 14 to begin a code symbol reading sequence). Typically the image will contain one or more code symbols 22. For example, an image 21 of a shipped package may show a shipping barcode and a product barcode. The processor 11 displays the image 21 on the visual display 15. Typically, the image 21 is a real-time video feed, which advantageously allows the user to determine what code symbols 22 will appear in the display by maneuvering the mobile device 10 to bring the desired code symbols 22 into the field of view of the camera 13. The processor 11 dynamically analyzes the displayed image 21 to determine whether a code symbol 22 in the image 21 is readable by the processor 11. A code symbol 22 is readable by the processor 11 if the processor is able to completely decode the code symbol 22. Typically, the processor 11 can verify that it has obtained a complete (e.g., accurate) decoding of a code symbol 22 by error detection means such as checksum functions. Various factors can contribute to the processor's inability to read a given code symbol 22. Some examples include marring of the code symbol 22, blurring of the image 21, an image 21 depicting only a portion of a code symbol 22, or another object obstructing the view of a portion of the code symbol 22. Because the processor 11 typically dynamically analyzes the image 21, a resolution of any of these factors can result in the processor 11 recognizing a previously unrecognized code symbol 22.


Whenever the processor 11 determines that a code symbol 22 in the image 21 is readable by the processor 11, the processor 11 displays on the visual display 15 a positive indicator 25 overlaying the code symbol 22 in the image 21. It will be understood that the term “overlaying” is not intended to mean that the positive indicator 25 completely obscures or covers the code symbol 22. Rather, the term “overlaying” is used to indicate the superimposing of a graphic (e.g., a positive indicator 25) over some or all of a code symbol 22, or in proximity to a code symbol 22, in a manner sufficient to associate the graphic with the code symbol 22 when viewed on the visual display 15. The positive indicator 25 may embrace a variety of different graphics, including a circle (e.g., a circle positioned near the center portion of the code symbol 22), a line (e.g., a line drawn substantially along the perimeter of the code symbol 22), a color highlight of some portion or all of the code symbol 22, or any other suitable graphic. When this positive indicator 25 is displayed in association with a code symbol 22, the user readily understands that the mobile device 10 is ready and able to read that code symbol 22, thereby alleviating uncertainty and improving the user experience.



FIG. 4 depicts an alternative embodiment of the mobile device 10 according to the present disclosure is graphically depicted. In this alternative embodiment, the processor 11 is further configured for displaying on the visual display 15 a negative indicator 26 overlaying the code symbol 22 in the image 21. The negative indicator 26 is displayed when the processor 11 is unable to properly read the code symbol 22. In this way, the user receives intuitive and dynamic feedback indicating that the code symbol 22 cannot be read under current conditions. Furthermore, this functionality serves to prompt the user in real-time to address any factors that may be contributing to the inability of the processor 11 to read the code symbol 22 (e.g., repair the code symbol 22, adjust the camera angle, adjust the camera focus). The negative indicator 26 may be any designated graphic suitable for conveying to the user that the associated code symbol 22 is not readable (e.g., exclamation point, caution symbol, triangle, etc.). To avoid confusion, the negative indicator 26 should be readily distinguishable from the positive indicator 25.


Another advantageous feature of an embodiment of the mobile device 10 according to the present disclosure is that it allows for selectively reading a code symbol 22 in response to input from a user. More particularly, in an alternative embodiment, the processor 11 is configured to read the code symbol 22 in the image in response to a selection input (e.g., a user-initiated direction to read a certain code symbol 22) received from the user interface system 14. When the processor 11 reads the code symbol 22, it both converts the code symbol 22 into data and outputs the data (e.g., to an application interface or to a memory). Typically, the user input is obtained via interaction with a touchscreen. Consequently, in one embodiment, the visual display 15 comprises a touchscreen. The user simply looks at the visual display 15 and selects the code symbol 22 to be decoded. The selection input is sent to the processor 11, which then reads the selected image. The resulting data may then be used by the processor 11 to obtain information corresponding to the code symbol 22 (e.g., by querying the database 18). This approach of allowing the user to select which code symbol 22 to read (e.g., by touching the code symbol 22 on the touch screen) greatly reduces user confusion, particularly when multiple code symbols 22 are in the field of view of the camera 13. Under prior systems, decoding in such a multi-code symbol environment often left the user uncertain as to which code symbol 22 was actually read by the mobile device 10. Allowing the user to select the code symbol 22 to read more closely approximates the use of a trigger on a traditional code reader system. This approach is both more intuitive, especially to users accustomed to a trigger-equipped code reader system, and more precise.


It is within the scope of the present disclosure for the foregoing steps of the disclosed method of reading a code symbol with a mobile device—namely the steps of (i) providing a mobile device 10 having a camera 13, a user interface system 14 having a visual display 15, and a processor 11 communicatively coupled to the camera 13 and the user interface system 14; (ii) capturing with the camera 13 an image 21 including a code symbol 22; (iii) displaying the image 21 on the visual display 15; (iv) determining with the processor 11 whether the code symbol 22 is readable by the processor 11; and (v) displaying on the visual display 15 a positive indicator 25 overlaying the code symbol 22 when the processor 11 determines that the code symbol 22 is readable by the processor—to be interrupted by another process on the mobile device 10. For example, these steps may be interrupted if the mobile device 10 receives a phone call. During the interruption, these steps may be paused or continued in the background of the mobile device 10. Once the interruption has concluded (e.g., the call has ended), these steps may be resumed and/or returned to the foreground of the mobile device 10.


To supplement the present disclosure, this application incorporates entirely by reference the following patents, patent application publications, and patent applications: U.S. Pat. No. 6,832,725; U.S. Pat. No. 7,159,783; U.S. Pat. No. 7,413,127; U.S. Pat. No. 7,726,575; U.S. Pat. No. 8,390,909; U.S. Pat. No. 8,294,969; U.S. Pat. No. 8,408,469; U.S. Pat. No. 8,408,468; U.S. Pat. No. 8,381,979; U.S. Pat. No. 8,408,464; U.S. Pat. No. 8,317,105; U.S. Pat. No. 8,366,005; U.S. Pat. No. 8,424,768; U.S. Pat. No. 8,322,622; U.S. Pat. No. 8,371,507; U.S. Pat. No. 8,376,233; U.S. Pat. No. 8,457,013; U.S. Pat. No. 8,448,863; U.S. Pat. No. 8,459,557; U.S. Pat. No. 8,469,272; U.S. Pat. No. 8,474,712; U.S. Pat. No. 8,479,992; U.S. Patent Application Publication No. 2012/0111946; U.S. Patent Application Publication No. 2012/0223141; U.S. Patent Application Publication No. 2012/0193423; U.S. Patent Application Publication No. 2012/0203647; U.S. Patent Application Publication No. 2012/0248188; U.S. Patent Application Publication No. 2012/0228382; U.S. Patent Application Publication No. 2012/0193407; U.S. Patent Application Publication No. 2012/0168511; U.S. Patent Application Publication No. 2012/0168512; U.S. Patent Application Publication No. 2010/0177749; U.S. Patent Application Publication No. 2010/0177080; U.S. Patent Application Publication No. 2010/0177707; U.S. Patent Application Publication No. 2010/0177076; U.S. Patent Application Publication No. 2009/0134221; U.S. Patent Application Publication No. 2012/0318869; U.S. Patent Application Publication No. 2013/0043312; U.S. Patent Application Publication No. 2013/0068840; U.S. Patent Application Publication No. 2013/0070322; U.S. Patent Application Publication No. 2013/0075168; U.S. Patent Application Publication No. 2013/0056285; U.S. Patent Application Publication No. 2013/0075464; U.S. Patent Application Publication No. 2013/0082104; U.S. Patent Application Publication No. 2010/0225757; U.S. patent application Ser. No. 13/347,219 for an OMNIDIRECTIONAL LASER SCANNING BAR CODE SYMBOL READER GENERATING A LASER SCANNING PATTERN WITH A HIGHLY NON-UNIFORM SCAN DENSITY WITH RESPECT TO LINE ORIENTATION, filed Jan. 10, 2012 (Good); U.S. patent application Ser. No. 13/347,193 for a HYBRID-TYPE BIOPTICAL LASER SCANNING AND DIGITAL IMAGING SYSTEM EMPLOYING DIGITAL IMAGER WITH FIELD OF VIEW OVERLAPPING FIELD OF FIELD OF LASER SCANNING SUBSYSTEM, filed Jan. 10, 2012 (Kearney et al.); U.S. patent application Ser. No. 13/367,047 for LASER SCANNING MODULES EMBODYING SILICONE SCAN ELEMENT WITH TORSIONAL HINGES, filed Feb. 6, 2012 (Feng et al.); U.S. patent application Ser. No. 13/400,748 for a LASER SCANNING BAR CODE SYMBOL READING SYSTEM HAVING INTELLIGENT SCAN SWEEP ANGLE ADJUSTMENT CAPABILITIES OVER THE WORKING RANGE OF THE SYSTEM FOR OPTIMIZED BAR CODE SYMBOL READING PERFORMANCE, filed Feb. 21, 2012 (Wilz); U.S. patent application Ser. No. 13/432,197 for a LASER SCANNING SYSTEM USING LASER BEAM SOURCES FOR PRODUCING LONG AND SHORT WAVELENGTHS IN COMBINATION WITH BEAM-WAIST EXTENDING OPTICS TO EXTEND THE DEPTH OF FIELD THEREOF WHILE RESOLVING HIGH RESOLUTION BAR CODE SYMBOLS HAVING MINIMUM CODE ELEMENT WIDTHS, filed Mar. 28, 2012 (Havens et al.); U.S. patent application Ser. No. 13/492,883 for a LASER SCANNING MODULE WITH ROTATABLY ADJUSTABLE LASER SCANNING ASSEMBLY, filed Jun. 10, 2012 (Hennick et al.); U.S. patent application Ser. No. 13/367,978 for a LASER SCANNING MODULE EMPLOYING AN ELASTOMERIC U-HINGE BASED LASER SCANNING ASSEMBLY, filed Feb. 7, 2012 (Feng et al.); U.S. patent application Ser. No. 13/852,097 for a System and Method for Capturing and Preserving Vehicle Event Data, filed Mar. 28, 2013 (Barker et al.); U.S. patent application Ser. No. 13/780,356 for a Mobile Device Having Object-Identification Interface, filed Feb. 28, 2013 (Samek et al.); U.S. patent application Ser. No. 13/780,158 for a Distraction Avoidance System, filed Feb. 28, 2013 (Sauerwein); U.S. patent application Ser. No. 13/784,933 for an Integrated Dimensioning and Weighing System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/785,177 for a Dimensioning System, filed Mar. 5, 2013 (McCloskey et al.); U.S. patent application Ser. No. 13/780,196 for Android Bound Service Camera Initialization, filed Feb. 28, 2013 (Todeschini et al.); U.S. patent application Ser. No. 13/792,322 for a Replaceable Connector, filed Mar. 11, 2013 (Skvoretz); U.S. patent application Ser. No. 13/780,271 for a Vehicle Computer System with Transparent Display, filed Feb. 28, 2013 (Fitch et al.); U.S. patent application Ser. No. 13/736,139 for an Electronic Device Enclosure, filed Jan. 8, 2013 (Chaney); U.S. patent application Ser. No. 13/771,508 for an Optical Redirection Adapter, filed Feb. 20, 2013 (Anderson); U.S. patent application Ser. No. 13/750,304 for Measuring Object Dimensions Using Mobile Computer, filed Jan. 25, 2013; U.S. patent application Ser. No. 13/471,973 for Terminals and Methods for Dimensioning Objects, filed May 15, 2012; U.S. patent application Ser. No. 13/895,846 for a Method of Programming a Symbol Reading System, filed Apr. 10, 2013 (Corcoran); U.S. patent application Ser. No. 13/867,386 for a Point of Sale (POS) Based Checkout System Supporting a Customer-Transparent Two-Factor Authentication Process During Product Checkout Operations, filed Apr. 22, 2013 (Cunningham et al.); U.S. patent application Ser. No. 13/888,884 for an Indicia Reading System Employing Digital Gain Control, filed May 7, 2013 (Xian et al.); U.S. patent application Ser. No. 13/895,616 for a Laser Scanning Code Symbol Reading System Employing Multi-Channel Scan Data Signal Processing with Synchronized Digital Gain Control (SDGC) for Full Range Scanning, filed May 16, 2013 (Xian et al.); U.S. patent application Ser. No. 13/897,512 for a Laser Scanning Code Symbol Reading System Providing Improved Control over the Length and Intensity Characteristics of a Laser Scan Line Projected Therefrom Using Laser Source Blanking Control, filed May 20, 2013 (Brady et al.); U.S. patent application Ser. No. 13/897,634 for a Laser Scanning Code Symbol Reading System Employing Programmable Decode Time-Window Filtering, filed May 20, 2013 (Wilz, Sr. et al.); U.S. patent application Ser. No. 13/902,242 for a System For Providing A Continuous Communication Link With A Symbol Reading Device, filed May 24, 2013 (Smith et al.); U.S. patent application Ser. No. 13/902,144, for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Chamberlin); U.S. patent application Ser. No. 13/902,110 for a System and Method for Display of Information Using a Vehicle-Mount Computer, filed May 24, 2013 (Hollifield); U.S. patent application Ser. No. 13/912,262 for a Method of Error Correction for 3D Imaging Device, filed Jun. 7, 2013 (Jovanovski et al.); U.S. patent application Ser. No. 13/912,702 for a System and Method for Reading Code Symbols at Long Range Using Source Power Control, filed Jun. 7, 2013 (Xian et al.); U.S. patent application Ser. No. 13/922,339 for a System and Method for Reading Code Symbols Using a Variable Field of View, filed Jun. 20, 2013 (Xian et al.); and U.S. patent application Ser. No. 13/927,398 for a Code Symbol Reading System Having Adaptive Autofocus, filed Jun. 26, 2103 (Todeschini).


In the specification and/or figures, typical embodiments of the invention have been disclosed. The present invention is not limited to such exemplary embodiments. The use of the term “and/or” includes any and all combinations of one or more of the associated listed items. The figures are schematic representations and so are not necessarily drawn to scale. Unless otherwise noted, specific terms have been used in a generic and descriptive sense and not for purposes of limitation.

Claims
  • 1. A system for reading code symbols, comprising: a camera;a user interface system comprising a visual display; anda processor communicatively coupled to the camera and the user interface system, the processor being configured for: capturing from the camera an image depicting a code symbol;displaying the image on the visual display;determining whether the code symbol in the image is readable by the processor; anddisplaying on the visual display a visual indicator overlaying the code symbol in the image when the processor determines that the code symbol in the image is readable by the processor.
  • 2. The system for reading code symbols of claim 1, wherein the code symbol comprises a barcode symbol.
  • 3. The system for reading code symbols of claim 1, wherein the visual indicator comprises a circle.
  • 4. The system for reading code symbols of claim 1, wherein the visual indicator comprises a line drawn substantially along the perimeter of said code symbol.
  • 5. The system for reading code symbols of claim 1, wherein the visual indicator comprises a color highlight of the code symbol.
  • 6. The system for reading code symbols of claim 1, wherein the processor is configured for displaying on the visual display a negative indicator overlaying the code symbol in the image when the processor determines that the code symbol in the image is not readable by the processor.
  • 7. A method of reading a code symbol with a system, comprising: providing a system having a camera, a user interface system having a visual display, and a processor communicatively coupled to the camera and the user interface system;capturing with the camera an image including a code symbol;displaying the image on the visual display;determining with the processor whether the code symbol is readable by the processor; anddisplaying on the visual display a visual indicator overlaying the code symbol when the processor determines that the code symbol is readable by the processor.
  • 8. The method of claim 7, comprising: reading the code symbol with the processor in response to a selection input from the user interface system.
  • 9. The method of claim 8, wherein the visual display comprises a touchscreen and the selection input is initiated by a user's tactile command selecting the code symbol in the image appearing on the touchscreen.
  • 10. The method of claim 7, comprising: displaying on the visual display a negative indicator overlaying the code symbol when the processor determines that the code symbol is not readable by the processor.
  • 11. The method of claim 7, wherein the code symbol comprises a barcode symbol.
  • 12. The method of claim 7, wherein the visual indicator comprises a circle.
  • 13. The method of claim 7, wherein the visual indicator comprises a line drawn substantially along the perimeter of the code symbol.
  • 14. The method of claim 7, wherein the visual indicator comprises a color highlight of the code symbol.
  • 15. A system for reading code symbols, comprising: a camera;a user interface system comprising a touchscreen; anda processor communicatively coupled to the camera and the user interface system, the processor being configured for: capturing from the camera an image depicting a code symbol;displaying the image on the touchscreen;determining whether the code symbol in the image is readable by the processor;displaying on the touchscreen a visual indicator overlaying the code symbol in the image when the processor determines that the code symbol in the image is readable by the processor; andreading the code symbol in the image in response to a selection input received from the user interface system.
  • 16. The system for reading code symbols of claim 15, wherein the selection input is initiated by a user's tactile command selection of the code symbol in the image appearing on the touchscreen.
  • 17. The system for reading code symbols of claim 16, wherein the tactile command comprises touching the code symbol on the touchscreen with the user's finger.
  • 18. The system for reading code symbols of claim 16, wherein the tactile command comprises pointing at the code symbol on the touchscreen.
  • 19. The system for reading code symbols of claim 16, wherein the tactile command comprises touching the code symbol on the touchscreen with a stylus.
  • 20. The system for reading code symbols of claim 16, wherein the tactile command comprises looking at the code symbol on the touchscreen for a predetermined period of time.
US Referenced Citations (411)
Number Name Date Kind
6832725 Gardiner et al. Dec 2004 B2
7128266 Zhu et al. Oct 2006 B2
7159783 Walczyk et al. Jan 2007 B2
7413127 Ehrhart et al. Aug 2008 B2
7726575 Wang et al. Jun 2010 B2
8294969 Plesko Oct 2012 B2
8317105 Kotlarsky et al. Nov 2012 B2
8322622 Liu Dec 2012 B2
8366005 Kotlarsky et al. Feb 2013 B2
8371507 Haggerty et al. Feb 2013 B2
8376233 Van Horn et al. Feb 2013 B2
8381979 Franz Feb 2013 B2
8390909 Plesko Mar 2013 B2
8408464 Zhu et al. Apr 2013 B2
8408468 Horn et al. Apr 2013 B2
8408469 Good Apr 2013 B2
8424768 Rueblinger et al. Apr 2013 B2
8437530 Mennie et al. May 2013 B1
8448863 Xian et al. May 2013 B2
8457013 Essinger et al. Jun 2013 B2
8459557 Havens et al. Jun 2013 B2
8469272 Kearney Jun 2013 B2
8474712 Kearney et al. Jul 2013 B2
8479992 Kotlarsky et al. Jul 2013 B2
8490877 Kearney Jul 2013 B2
8517271 Kotlarsky et al. Aug 2013 B2
8523076 Good Sep 2013 B2
8528818 Ehrhart et al. Sep 2013 B2
8544737 Gomez et al. Oct 2013 B2
8548420 Grunow et al. Oct 2013 B2
8550335 Samek et al. Oct 2013 B2
8550354 Gannon et al. Oct 2013 B2
8550357 Kearney Oct 2013 B2
8556174 Kosecki et al. Oct 2013 B2
8556176 Van Horn et al. Oct 2013 B2
8556177 Hussey et al. Oct 2013 B2
8559767 Barber et al. Oct 2013 B2
8561895 Gomez et al. Oct 2013 B2
8561903 Sauerwein Oct 2013 B2
8561905 Edmonds et al. Oct 2013 B2
8565107 Pease et al. Oct 2013 B2
8571307 Li et al. Oct 2013 B2
8579200 Samek et al. Nov 2013 B2
8583924 Caballero et al. Nov 2013 B2
8584945 Wang et al. Nov 2013 B2
8587595 Wang Nov 2013 B2
8587697 Hussey et al. Nov 2013 B2
8588869 Sauerwein et al. Nov 2013 B2
8590789 Nahill et al. Nov 2013 B2
8596539 Havens et al. Dec 2013 B2
8596542 Havens et al. Dec 2013 B2
8596543 Havens et al. Dec 2013 B2
8599271 Havens et al. Dec 2013 B2
8599957 Peake et al. Dec 2013 B2
8600158 Li et al. Dec 2013 B2
8600167 Showering Dec 2013 B2
8602309 Longacre et al. Dec 2013 B2
8608053 Meier et al. Dec 2013 B2
8608071 Liu et al. Dec 2013 B2
8611309 Wang et al. Dec 2013 B2
8615487 Gomez et al. Dec 2013 B2
8621123 Caballero Dec 2013 B2
8622303 Meier et al. Jan 2014 B2
8628013 Ding Jan 2014 B2
8628015 Wang et al. Jan 2014 B2
8628016 Winegar Jan 2014 B2
8629926 Wang Jan 2014 B2
8630491 Longacre et al. Jan 2014 B2
8635309 Berthiaume et al. Jan 2014 B2
8636200 Kearney Jan 2014 B2
8636212 Nahill et al. Jan 2014 B2
8636215 Ding et al. Jan 2014 B2
8636224 Wang Jan 2014 B2
8638806 Wang et al. Jan 2014 B2
8640958 Lu et al. Feb 2014 B2
8640960 Wang et al. Feb 2014 B2
8643717 Li et al. Feb 2014 B2
8646692 Meier et al. Feb 2014 B2
8646694 Wang et al. Feb 2014 B2
8657200 Ren et al. Feb 2014 B2
8659397 Vargo et al. Feb 2014 B2
8668149 Good Mar 2014 B2
8678285 Kearney Mar 2014 B2
8678286 Smith et al. Mar 2014 B2
8682077 Longacre Mar 2014 B1
D702237 Oberpriller et al. Apr 2014 S
8687282 Feng et al. Apr 2014 B2
8692927 Pease et al. Apr 2014 B2
8695880 Bremer et al. Apr 2014 B2
8698949 Grunow et al. Apr 2014 B2
8702000 Barber et al. Apr 2014 B2
8717494 Gannon May 2014 B2
8720783 Biss et al. May 2014 B2
8723804 Fletcher et al. May 2014 B2
8723904 Marty et al. May 2014 B2
8727223 Wang May 2014 B2
8740082 Wilz Jun 2014 B2
8740085 Furlong et al. Jun 2014 B2
8746563 Hennick et al. Jun 2014 B2
8750445 Peake et al. Jun 2014 B2
8752766 Xian et al. Jun 2014 B2
8756059 Braho et al. Jun 2014 B2
8757495 Qu et al. Jun 2014 B2
8760563 Koziol et al. Jun 2014 B2
8763909 Reed et al. Jul 2014 B2
8777108 Coyle Jul 2014 B2
8777109 Oberpriller et al. Jul 2014 B2
8779898 Havens et al. Jul 2014 B2
8781520 Payne et al. Jul 2014 B2
8783573 Havens et al. Jul 2014 B2
8789757 Barten Jul 2014 B2
8789758 Hawley et al. Jul 2014 B2
8789759 Xian et al. Jul 2014 B2
8794520 Wang et al. Aug 2014 B2
8794522 Ehrhart Aug 2014 B2
8794525 Amundsen et al. Aug 2014 B2
8794526 Wang et al. Aug 2014 B2
8798367 Ellis Aug 2014 B2
8807431 Wang et al. Aug 2014 B2
8807432 Van Horn et al. Aug 2014 B2
8820630 Qu et al. Sep 2014 B2
8822848 Meagher Sep 2014 B2
8824692 Sheerin et al. Sep 2014 B2
8824696 Braho Sep 2014 B2
8842849 Wahl et al. Sep 2014 B2
8844822 Kotlarsky et al. Sep 2014 B2
8844823 Fritz et al. Sep 2014 B2
8849019 Li et al. Sep 2014 B2
D716285 Chaney et al. Oct 2014 S
8851383 Yeakley et al. Oct 2014 B2
8854633 Laffargue Oct 2014 B2
8866963 Grunow et al. Oct 2014 B2
8868421 Braho et al. Oct 2014 B2
8868519 Maloy et al. Oct 2014 B2
8868802 Barten Oct 2014 B2
8868803 Bremer et al. Oct 2014 B2
8870074 Gannon Oct 2014 B1
8879639 Sauerwein Nov 2014 B2
8880426 Smith Nov 2014 B2
8881983 Havens et al. Nov 2014 B2
8881987 Wang Nov 2014 B2
8903172 Smith Dec 2014 B2
8908995 Benos et al. Dec 2014 B2
8910870 Li et al. Dec 2014 B2
8910875 Ren et al. Dec 2014 B2
8914290 Hendrickson et al. Dec 2014 B2
8914788 Pettinelli et al. Dec 2014 B2
8915439 Feng et al. Dec 2014 B2
8915444 Havens et al. Dec 2014 B2
8916789 Woodburn Dec 2014 B2
8918250 Hollifield Dec 2014 B2
8918564 Caballero Dec 2014 B2
8925818 Kosecki et al. Jan 2015 B2
8939374 Jovanovski et al. Jan 2015 B2
8942480 Ellis Jan 2015 B2
8944313 Williams et al. Feb 2015 B2
8944327 Meier et al. Feb 2015 B2
8944332 Harding et al. Feb 2015 B2
8950678 Germaine et al. Feb 2015 B2
D723560 Zhou et al. Mar 2015 S
8967468 Gomez et al. Mar 2015 B2
8971346 Sevier Mar 2015 B2
8976030 Cunningham et al. Mar 2015 B2
8976368 Akel et al. Mar 2015 B2
8978981 Guan Mar 2015 B2
8978983 Bremer et al. Mar 2015 B2
8978984 Hennick et al. Mar 2015 B2
8985456 Zhu et al. Mar 2015 B2
8985457 Soule et al. Mar 2015 B2
8985459 Kearney et al. Mar 2015 B2
8985461 Gelay et al. Mar 2015 B2
8988578 Showering Mar 2015 B2
8988590 Gillet et al. Mar 2015 B2
8991704 Hopper et al. Mar 2015 B2
8996194 Davis et al. Mar 2015 B2
8996384 Funyak et al. Mar 2015 B2
8998091 Edmonds et al. Apr 2015 B2
9002641 Showering Apr 2015 B2
9007368 Laffargue et al. Apr 2015 B2
9010641 Qu et al. Apr 2015 B2
9015513 Murawski et al. Apr 2015 B2
9016576 Brady et al. Apr 2015 B2
D730357 Fitch et al. May 2015 S
9022288 Nahill et al. May 2015 B2
9030964 Essinger et al. May 2015 B2
9033240 Smith et al. May 2015 B2
9033242 Gillet et al. May 2015 B2
9036054 Koziol et al. May 2015 B2
9037344 Chamberlin May 2015 B2
9038911 Xian et al. May 2015 B2
9038915 Smith May 2015 B2
D730901 Oberpriller et al. Jun 2015 S
D730902 Fitch et al. Jun 2015 S
D733112 Chaney et al. Jun 2015 S
9047098 Barten Jun 2015 B2
9047359 Caballero et al. Jun 2015 B2
9047420 Caballero Jun 2015 B2
9047525 Barber Jun 2015 B2
9047531 Showering et al. Jun 2015 B2
9049640 Wang et al. Jun 2015 B2
9053055 Caballero Jun 2015 B2
9053378 Hou et al. Jun 2015 B1
9053380 Xian et al. Jun 2015 B2
9057641 Amundsen et al. Jun 2015 B2
9058526 Powilleit Jun 2015 B2
9064165 Havens et al. Jun 2015 B2
9064167 Xian et al. Jun 2015 B2
9064168 Todeschini et al. Jun 2015 B2
9064254 Todeschini et al. Jun 2015 B2
9066032 Wang Jun 2015 B2
9070032 Corcoran Jun 2015 B2
D734339 Zhou et al. Jul 2015 S
D734751 Oberpriller et al. Jul 2015 S
9082023 Feng et al. Jul 2015 B2
20050103850 Mergenthaler et al. May 2005 A1
20060010042 Gianakis et al. Jan 2006 A1
20070063048 Havens et al. Mar 2007 A1
20080105747 Orlassino May 2008 A1
20090134221 Zhu et al. May 2009 A1
20100177076 Essinger et al. Jul 2010 A1
20100177080 Essinger et al. Jul 2010 A1
20100177707 Essinger et al. Jul 2010 A1
20100177749 Essinger et al. Jul 2010 A1
20110169999 Grunow et al. Jul 2011 A1
20110202554 Powilleit et al. Aug 2011 A1
20110310274 Kuriyama Dec 2011 A1
20120111946 Golant May 2012 A1
20120168512 Kotlarsky et al. Jul 2012 A1
20120173347 De Almeida Neves et al. Jul 2012 A1
20120193423 Samek Aug 2012 A1
20120203647 Smith Aug 2012 A1
20120223141 Good et al. Sep 2012 A1
20130027757 Lee et al. Jan 2013 A1
20130043312 Van Horn Feb 2013 A1
20130075168 Amundsen et al. Mar 2013 A1
20130121468 Ohta et al. May 2013 A1
20130126615 McCloskey et al. May 2013 A1
20130135198 Hodge et al. May 2013 A1
20130175341 Kearney et al. Jul 2013 A1
20130175343 Good Jul 2013 A1
20130181053 Harris Jul 2013 A1
20130194192 Andolina Aug 2013 A1
20130257744 Daghigh et al. Oct 2013 A1
20130257759 Daghigh Oct 2013 A1
20130270346 Xian et al. Oct 2013 A1
20130287258 Kearney Oct 2013 A1
20130292475 Kotlarsky et al. Nov 2013 A1
20130292477 Hennick et al. Nov 2013 A1
20130293539 Hunt et al. Nov 2013 A1
20130293540 Laffargue et al. Nov 2013 A1
20130306728 Thuries et al. Nov 2013 A1
20130306731 Pedraro Nov 2013 A1
20130307964 Bremer et al. Nov 2013 A1
20130308625 Corcoran Nov 2013 A1
20130313324 Koziol et al. Nov 2013 A1
20130313325 Wilz et al. Nov 2013 A1
20130342717 Havens et al. Dec 2013 A1
20140001267 Giordano et al. Jan 2014 A1
20140002828 Laffargue et al. Jan 2014 A1
20140008439 Wang Jan 2014 A1
20140025584 Liu et al. Jan 2014 A1
20140027517 Gu Jan 2014 A1
20140034734 Sauerwein Feb 2014 A1
20140036848 Pease et al. Feb 2014 A1
20140039693 Havens et al. Feb 2014 A1
20140042814 Kather et al. Feb 2014 A1
20140049120 Kohtz et al. Feb 2014 A1
20140049635 Laffargue et al. Feb 2014 A1
20140061306 Wu et al. Mar 2014 A1
20140063289 Hussey et al. Mar 2014 A1
20140066136 Sauerwein et al. Mar 2014 A1
20140067692 Ye et al. Mar 2014 A1
20140070005 Nahill et al. Mar 2014 A1
20140071840 Venancio Mar 2014 A1
20140074746 Wang Mar 2014 A1
20140076974 Havens et al. Mar 2014 A1
20140078341 Havens et al. Mar 2014 A1
20140078342 Li et al. Mar 2014 A1
20140078345 Showering Mar 2014 A1
20140098792 Wang et al. Apr 2014 A1
20140100774 Showering Apr 2014 A1
20140100813 Showering Apr 2014 A1
20140103115 Meier et al. Apr 2014 A1
20140104413 McCloskey et al. Apr 2014 A1
20140104414 McCloskey et al. Apr 2014 A1
20140104416 Li et al. Apr 2014 A1
20140104451 Todeschini et al. Apr 2014 A1
20140106594 Skvoretz Apr 2014 A1
20140106725 Sauerwein Apr 2014 A1
20140108010 Maltseff et al. Apr 2014 A1
20140108402 Gomez et al. Apr 2014 A1
20140108682 Caballero Apr 2014 A1
20140110485 Toa et al. Apr 2014 A1
20140114530 Fitch et al. Apr 2014 A1
20140121438 Kearney May 2014 A1
20140121445 Ding et al. May 2014 A1
20140124577 Wang et al. May 2014 A1
20140124579 Ding May 2014 A1
20140125842 Winegar May 2014 A1
20140125853 Wang May 2014 A1
20140125999 Longacre et al. May 2014 A1
20140129378 Richardson May 2014 A1
20140131441 Nahill et al. May 2014 A1
20140131443 Smith May 2014 A1
20140131444 Wang May 2014 A1
20140131448 Xian et al. May 2014 A1
20140133379 Wang et al. May 2014 A1
20140136208 Maltseff et al. May 2014 A1
20140140585 Wang May 2014 A1
20140151453 Meier et al. Jun 2014 A1
20140152882 Samek et al. Jun 2014 A1
20140158770 Sevier et al. Jun 2014 A1
20140159869 Zumsteg et al. Jun 2014 A1
20140166755 Liu et al. Jun 2014 A1
20140166757 Smith Jun 2014 A1
20140166759 Liu et al. Jun 2014 A1
20140168787 Wang et al. Jun 2014 A1
20140175165 Havens et al. Jun 2014 A1
20140175172 Jovanovski et al. Jun 2014 A1
20140191644 Chaney Jul 2014 A1
20140191913 Ge et al. Jul 2014 A1
20140197238 Lui et al. Jul 2014 A1
20140197239 Havens et al. Jul 2014 A1
20140197304 Feng et al. Jul 2014 A1
20140203087 Smith et al. Jul 2014 A1
20140204268 Grunow et al. Jul 2014 A1
20140214631 Hansen Jul 2014 A1
20140217166 Berthiaume et al. Aug 2014 A1
20140217180 Liu Aug 2014 A1
20140231500 Ehrhart et al. Aug 2014 A1
20140232930 Anderson Aug 2014 A1
20140247315 Marty et al. Sep 2014 A1
20140263493 Amurgis et al. Sep 2014 A1
20140263645 Smith et al. Sep 2014 A1
20140270196 Braho et al. Sep 2014 A1
20140270229 Braho Sep 2014 A1
20140278387 DiGregorio Sep 2014 A1
20140282210 Bianconi Sep 2014 A1
20140284384 Lu et al. Sep 2014 A1
20140288933 Braho et al. Sep 2014 A1
20140297058 Barker et al. Oct 2014 A1
20140299665 Barber et al. Oct 2014 A1
20140312121 Lu et al. Oct 2014 A1
20140319220 Coyle Oct 2014 A1
20140319221 Oberpriller et al. Oct 2014 A1
20140326787 Barten Nov 2014 A1
20140332590 Wang et al. Nov 2014 A1
20140344943 Todeschini et al. Nov 2014 A1
20140346233 Liu et al. Nov 2014 A1
20140351317 Smith et al. Nov 2014 A1
20140353373 Van Horn et al. Dec 2014 A1
20140361073 Qu et al. Dec 2014 A1
20140361082 Xian et al. Dec 2014 A1
20140362184 Jovanovski et al. Dec 2014 A1
20140363015 Braho Dec 2014 A1
20140369511 Sheerin et al. Dec 2014 A1
20140374483 Lu Dec 2014 A1
20140374485 Xian et al. Dec 2014 A1
20150001301 Ouyang Jan 2015 A1
20150001304 Todeschini Jan 2015 A1
20150003673 Fletcher Jan 2015 A1
20150009338 Laffargue et al. Jan 2015 A1
20150009610 London et al. Jan 2015 A1
20150014416 Kotlarsky et al. Jan 2015 A1
20150021397 Rueblinger et al. Jan 2015 A1
20150028102 Ren et al. Jan 2015 A1
20150028103 Jiang Jan 2015 A1
20150028104 Ma et al. Jan 2015 A1
20150029002 Yeakley et al. Jan 2015 A1
20150032709 Maloy et al. Jan 2015 A1
20150039309 Braho et al. Feb 2015 A1
20150040378 Saber et al. Feb 2015 A1
20150048168 Fritz et al. Feb 2015 A1
20150049347 Laffargue et al. Feb 2015 A1
20150051992 Smith Feb 2015 A1
20150053766 Havens et al. Feb 2015 A1
20150053768 Wang et al. Feb 2015 A1
20150053769 Thuries et al. Feb 2015 A1
20150062366 Liu et al. Mar 2015 A1
20150063215 Wang Mar 2015 A1
20150063676 Lloyd et al. Mar 2015 A1
20150069130 Gannon Mar 2015 A1
20150071818 Todeschini Mar 2015 A1
20150083800 Li et al. Mar 2015 A1
20150086114 Todeschini Mar 2015 A1
20150088522 Hendrickson et al. Mar 2015 A1
20150096872 Woodburn Apr 2015 A1
20150099557 Pettinelli et al. Apr 2015 A1
20150100196 Hollifield Apr 2015 A1
20150102109 Huck Apr 2015 A1
20150115035 Meier et al. Apr 2015 A1
20150127791 Kosecki et al. May 2015 A1
20150128116 Chen et al. May 2015 A1
20150129659 Feng et al. May 2015 A1
20150133047 Smith et al. May 2015 A1
20150134470 Hejl et al. May 2015 A1
20150136851 Harding et al. May 2015 A1
20150136854 Lu et al. May 2015 A1
20150142492 Kumar May 2015 A1
20150144692 Hejl May 2015 A1
20150144698 Teng et al. May 2015 A1
20150144701 Xian et al. May 2015 A1
20150149946 Benos et al. May 2015 A1
20150161429 Xian Jun 2015 A1
20150169925 Chang et al. Jun 2015 A1
20150169929 Williams et al. Jun 2015 A1
20150186703 Chen et al. Jul 2015 A1
20150193644 Kearney et al. Jul 2015 A1
20150193645 Colavito et al. Jul 2015 A1
20150199957 Funyak et al. Jul 2015 A1
20150204671 Showering Jul 2015 A1
Foreign Referenced Citations (5)
Number Date Country
2093695 Aug 2009 EP
2013163789 Nov 2013 WO
2013173985 Nov 2013 WO
2014019130 Feb 2014 WO
2014110495 Jul 2014 WO
Non-Patent Literature Citations (86)
Entry
EP Search Report and Opinion for EP Application No. 14173165.3-1811 dated Nov. 19, 2014. 6 pages Previously submitted in Parent Application.
U.S. Appl. No. 13/367,978, filed Feb. 7, 2012, (Feng et al.); now abandoned.
U.S. Appl. No. 14/462,801 for Mobile Computing Device With Data Cognition Software, filed Aug. 19, 2014 (Todeschini et al.); 38 pages.
U.S. Appl. No. 14/724,134 for Electronic Device With Wireless Path Selection Capability filed May 28, 2015 (Wang et al.); 42 pages.
U.S. Appl. No. 14/277,337 for Multipurpose Optical Reader, filed May 14, 2014 (Jovanovski et al.); 59 pages.
U.S. Appl. No. 14/200,405 for Indicia Reader for Size-Limited Applications filed Mar. 7, 2014 (Feng et al.); 42 pages.
U.S. Appl. No. 14/724,849 for Method of Programming the Default Cable Interface Software in an Indicia Reading Device filed May 29, 2015 (Barten); 29 pages.
U.S. Appl. No. 14/446,391 for Multifunction Point of Sale Apparatus With Optical Signature Capture filed Jul. 30, 2014 (Good et al.); 37 pages.
U.S. Appl. No. 14/722,608 for Interactive User Interface for Capturing a Document in an Image Signal filed May 27, 2015 (Showering et al.); 59 pages.
U.S. Appl. No. 29/528,890 for Mobile Computer Housing filed Jun. 2, 2015 (Fitch et al.); 61 pages.
U.S. Appl. No. 14/614,796 for Cargo Apportionment Techniques filed Feb. 5, 2015 (Morton et al.); 56 pages.
U.S. Appl. No. 29/516,892 for Table Computer filed Feb. 6, 2015 (Bidwell et al.); 13 pages.
U.S. Appl. No. 29/523,098 for Handle for a Tablet Computer filed Apr. 7, 2015 (Bidwell et al.); 17 pages.
U.S. Appl. No. 14/578,627 for Safety System and Method filed Dec. 22, 2014 (Ackley et al.); 32 pages.
U.S. Appl. No. 14/573,022 for Dynamic Diagnostic Indicator Generation filed Dec. 17, 2014 (Goldsmith); 43 pages.
U.S. Appl. No. 14/724,908 for Imaging Apparatus Having Imaging Assembly filed May 29, 2015 (Barber et al.); 39 pages.
U.S. Appl. No. 14/519,195 for Handheld Dimensioning System With Feedback filed Oct. 21, 2014 (Laffargue et al.); 39 pages.
U.S. Appl. No. 14/519,211 for System and Method for Dimensioning filed Oct. 21, 2014 (Ackley et al.); 33 pages.
U.S. Appl. No. 14/519,233 for Handheld Dimensioner With Data-Quality Indication filed Oct. 21, 2014 (Laffargue et al.); 36 pages.
U.S. Appl. No. 14/679,275 for Dimensioning System Calibration Systems and Methods filed Apr. 6, 2015 (Laffargue et al.); 47 pages.
U.S. Appl. No. 14/744,633 for Imaging Apparatus Comprising Image Sensor Array Having Shared Global Shutter Circuitry filed Jun. 19, 2015 (Wang); 65 pages.
U.S. Appl. No. 29/528,590 for Electronic Device filed May 29, 2015 (Fitch et al.); 9 pages.
U.S. Appl. No. 14/519,249 for Handheld Dimensioning System With Measurement-Conformance Feedback filed Oct. 21, 2014 (Ackley et al.); 36 pages.
U.S. Appl. No. 14/744,836 for Cloud-Based System for Reading of Decodable Indicia filed Jun. 19, 2015 (Todeschini et al.); 26 pages.
U.S. Appl. No. 14/398,542 for Portable Electronic Devices Having a Separate Location Trigger Unit for Use in Controlling an Application Unit filed Nov. 3, 2014 (Bian et al.); 22 pages.
U.S. Appl. No. 14/405,278 for Design Pattern for Secure Store filed Mar. 9, 2015 (Zhu et al.); 23 pages.
U.S. Appl. No. 14/745,006 for Selective Output of Decoded Message Data filed Jun. 19, 2015 (Todeschini et al.); 36 pages.
U.S. Appl. No. 14/568,305 for Auto-Contrast Viewfinder for an Indicia Reader filed Dec. 12, 2014 (Todeschini); 29 pages.
U.S. Appl. No. 29/526,918 for Charging Base filed May 14, 2015 (Fitch et al.); 10 pages.
U.S. Appl. No. 14/580,262 for Media Gate for Thermal Transfer Printers filed Dec. 23, 2014 (Bowles); 36 pages.
U.S. Appl. No. 14/590,024 for Shelving and Package Locating Systems for Delivery Vehicles filed Jan. 6, 2015 (Payne); 31 pages.
U.S. Appl. No. 29/519,017 for Scanner filed Mar. 2, 2015 (Zhou et al.); 11 pages.
U.S. Appl. No. 14/748,446 for Cordless Indicia Reader With a Multifunction Coil for Wireless Charging and Eas Deactivation, filed Jun. 24, 2015 (Xie et al.); 34 pages.
U.S. Appl. No. 14/529,857 for Barcode Reader With Security Features filed Oct. 31, 2014 (Todeschini et al.); 32 pages.
U.S. Appl. No. 29/528,165 for In-Counter Barcode Scanner filed May 27, 2015 (Oberpriller et al.); 13 pages.
U.S. Appl. No. 14/662,922 for Multifunction Point of Sale System filed Mar. 19, 2015 (Van Horn et al.); 41 pages.
U.S. Appl. No. 14/596,757 for System and Method for Detecting Barcode Printing Errors filed Jan. 14, 2015 (Ackley); 41 pages.
U.S. Appl. No. 14/533,319 for Barcode Scanning System Using Wearable Device With Embedded Camera filed Nov. 5, 2014 (Todeschini); 29 pages.
U.S. Appl. No. 14/519,179 for Dimensioning System With Multipath Interference Mitigation filed Oct. 21, 2014 (Thuries et al.); 30 pages.
U.S. Appl. No. 14/264,173 for Autofocus Lens System for Indicia Readers filed Apr. 29, 2014, (Ackley et al.); 39 pages.
U.S. Appl. No. 14/453,019 for Dimensioning System With Guided Alignment, filed Aug. 6, 2014 (Li et al.); 31 pages.
U.S. Appl. No. 14/452,697 for Interactive Indicia Reader , filed Aug. 6, 2014, (Todeschini); 32 pages.
U.S. Appl. No. 14/231,898 for Hand-Mounted Indicia-Reading Device with Finger Motion Triggering filed Apr. 1, 2014 (Van Horn et al.); 36 pages.
U.S. Appl. No. 29/486,759 for an Imaging Terminal, filed Apr. 2, 2014 (Oberpriller et al.); 8 pages.
U.S. Appl. No. 14/513,808 for Identifying Inventory Items in a Storage Facility filed Oct. 14, 2014 (Singel et al.); 51 pages.
U.S. Appl. No. 29/458,405 for an Electronic Device, filed Jun. 19, 2013 (Fitch et al.); 22 pages.
U.S. Appl. No. 29/459,620 for an Electronic Device Enclosure, filed Jul. 2, 2013 (London et al.); 21 pages.
U.S. Appl. No. 14/483,056 for Variable Depth of Field Barcode Scanner filed Sep. 10, 2014 (McCloskey et al.); 29 pages.
U.S. Appl. No. 14/531,154 for Directing an Inspector Through an Inspection filed Nov. 3, 2014 (Miller et al.); 53 pages.
U.S. Appl. No. 29/525,068 for Tablet Computer With Removable Scanning Device filed Apr. 27, 2015 (Schulte et al.); 19 pages.
U.S. Appl. No. 29/468,118 for an Electronic Device Case, filed Sep. 26, 2013 (Oberpriller et al.); 44 pages.
U.S. Appl. No. 14/340,627 for an Axially Reinforced Flexible Scan Element, filed Jul. 25, 2014 (Reublinger et al.); 41 pages.
U.S. Appl. No. 14/676,327 for Device Management Proxy for Secure Devices filed Apr. 1, 2015 (Yeakley et al.); 50 pages.
U.S. Appl. No. 14/257,364 for Docking System and Method Using Near Field Communication filed Apr. 21, 2014 (Showering); 31 pages.
U.S. Appl. No. 14/327,827 for a Mobile-Phone Adapter for Electronic Transactions, filed Jul. 10, 2014 (Hejl); 25 pages.
U.S. Appl. No. 14/334,934 for a System and Method for Indicia Verification, filed Jul. 18, 2014 (Hejl); 38 pages.
U.S. Appl. No. 29/530,600 for Cyclone filed Jun. 18, 2015 (Vargo et al); 16 pages.
U.S. Appl. No. 14/707,123 for Application Independent Dex/Ucs Interface filed May 8, 2015 (Pape); 47 pages.
U.S. Appl. No. 14/283,282 for Terminal Having Illumination and Focus Control filed May 21, 2014 (Liu et al.); 31 pages.
U.S. Appl. No. 14/619,093 for Methods for Training a Speech Recognition System filed Feb. 11, 2015 (Pecorari); 35 pages.
U.S. Appl. No. 29/524,186 for Scanner filed Apr. 17, 2015 (Zhou et al.); 17 pages.
U.S. Appl. No. 14/705,407 for Method and System to Protect Software-Based Network-Connected Devices From Advanced Persistent Threat filed May 6, 2015 (Hussey et al.); 42 pages.
U.S. Appl. No. 14/614,706 for Device for Supporting an Electronic Tool on a User's Hand filed Feb. 5, 2015 (Oberpriller et al.); 33 pages.
U.S. Appl. No. 14/628,708 for Device, System, and Method for Determining the Status of Checkout Lanes filed Feb. 23, 2015 (Todeschini); 37 pages.
U.S. Appl. No. 14/704,050 for Intermediate Linear Positioning filed May 5, 2015 (Charpentier et al.); 60 pages.
U.S. Appl. No. 14/529,563 for Adaptable Interface for a Mobile Computing Device filed Oct. 31, 2014 (Schoon et al.); 36 pages.
U.S. Appl. No. 14/705,012 for Hands-Free Human Machine Interface Responsive to a Driver of a Vehicle filed May 6, 2015 (Fitch et al.); 44 pages.
U.S. Appl. No. 14/715,672 for Augumented Reality Enabled Hazard Display filed May 19, 2015 (Venkatesha et al.); 35 pages.
U.S. Appl. No. 14/695,364 for Medication Management System filed Apr. 24, 2015 (Sewell et al.); 44 pages.
U.S. No. 14/664,063 for Method and Application for Scanning a Barcode With a Smart Device While Continuously Running and Displaying an Application on the Smart Device Display filed Mar. 20, 2015 (Todeschini); 37 pages.
U.S. Appl. No. 14/735,717 for Indicia-Reading Systems Having an Interface With a User's Nervous System filed Jun. 10, 2015 (Todeschini); 39 pages.
U.S. Appl. No. 14/527,191 for Method and System for Recognizing Speech Using Wildcards in an Expected Response filed Oct. 29, 2014 (Braho et al.); 45 pages.
U.S. Appl. No. 14/702,110 for System and Method for Regulating Barcode Data Injection Into a Running Application on a Smart Device filed May 1, 2015 (Todeschini et al.); 38 pages.
U.S. Appl. No. 14/535,764 for Concatenated Expected Responses for Speech Recognition filed Nov. 7, 2014 (Braho et al.); 51 pages.
U.S. Appl. No. 14/687,289 for System for Communication Via a Peripheral Hub filed Apr. 15, 2015 (Kohtz et al.); 37 pages.
U.S. Appl. No. 14/747,197 for Optical Pattern Projector filed Jun. 23, 2015 (Thuries et al.); 33 pages.
U.S. Appl. No. 14/674,329 for Aimer for Barcode Scanning filed Mar. 31, 2015 (Bidwell); 36 pages.
U.S. Appl. No. 14/702,979 for Tracking Battery Conditions filed May 4, 2015 (Young et al.); 70 pages.
U.S. Appl. No. 29/529,441 for Indicia Reading Device filed Jun. 8, 2015 (Zhou et al.); 14 pages.
U.S. Appl. No. 14/747,490 for Dual-Projector Three-Dimensional Scanner filed Jun. 23, 2015 (Jovanovski et al.); 40 pages.
U.S. Appl. No. 14/740,320 for Tactile Switch for a Mobile Electronic Device filed Jun. 16, 2015 (Barndringa); 38 pages.
U.S. Appl. No. 14/695,923 for Secure Unattended Network Authentication filed Apr. 24, 2015 (Kubler et al.); 52 pages.
U.S. Appl. No. 29/513,410 for Electronic Device filed Dec. 30, 2014 (Nguyen et al.); 10 pages.
U.S. Appl. No. 29/513,411 for Electronic Device filed Dec. 30, 2014 (Nguyen et al.); 9 pages.
U.S. Appl. No. 14/715,916 for Evaluating Image Values filed May 19, 2015 (Ackley); 60 pages.
U.S. Appl. No. 14/740,373 for Calibrating a Volume Dimensioner filed Jun. 16, 2015 (Ackley et al.); 63 pages.
Related Publications (1)
Number Date Country
20150178523 A1 Jun 2015 US
Continuations (1)
Number Date Country
Parent 13930913 Jun 2013 US
Child 14642830 US