Engines may utilize recirculation of exhaust gas from the engine exhaust to the engine intake system, referred to as Exhaust Gas Recirculation (EGR), to reduce regulated emissions and/or improve fuel economy. For example, the EGR may displace fresh air to reduce peak combustion temperature, thereby reducing NOx emissions.
When the EGR temperature is too high, e.g., due to high exhaust temperature generated during high load conditions, the EGR may displace the intake air such that there is limited oxygen available for combustion. Likewise, the engine air-fuel ratio may be limited to be less than a threshold value, beyond which combustion may degrade or increased particulate matter emissions may be generated. The limited combustion air, along with the air-fuel ratio limits, can effectively restrict the maximum available fuel injection amount. The restricted fuel injection amount thus leads to reduced available engine output torque and/or power. As such, various approaches may be used in which the EGR is cooled via an EGR cooler that rejects heat to engine coolant to avoid reducing available engine output.
In a locomotive context, however, various issues may arise with the above approaches. For example, a locomotive engine duty cycle may result in excessive heat rejection to the engine coolant, thereby requiring significantly increased engine cooling system size and performance criteria. Further, the locomotive engine duty cycle may also result in significant amounts of deposit buildup, e.g., soot buildup and/or coaking, in the EGR cooler.
Accordingly, to address at least some of the above issues, a removable cooling system for an engine, the engine in a vehicle car body, may be used. The system may comprise a removable package including a first exhaust gas recirculation cooler, a second exhaust gas recirculation cooler, and a third exhaust gas recirculation cooler, the first, second, and third coolers coupled together in series, where the removable package is located at a top of the vehicle car body and where the removable package is removably coupled to the vehicle as a unit. In this way, the coolers may be more quickly and easily replaced and/or cleaned as a unit to accommodate soot buildup and/or coaking.
In another approach, at least some of the above issues may be addressed by a kit for an engine of a vehicle car body, comprising: a first air-cooled exhaust gas recirculation cooler, a second air-cooled exhaust gas recirculation cooler adapted to be coupled downstream of the first exhaust gas recirculation cooler, and a third exhaust gas recirculation cooler adapted to be coupled downstream of the second exhaust gas recirculation cooler and further adapted to be fluidly coupled to a liquid coolant engine cooling system. In this way, both air and coolant cooling may be used to increase cooling of EGR, and thereby improve engine operation.
In yet another approach, a method of managing maintenance of a replaceable exhaust gas recirculation cooling system for a vehicle may be used. The method may comprise decoupling a first replaceable exhaust gas recirculation cooling system from the vehicle, the first replaceable exhaust gas recirculation cooling system including a first, second, and third exhaust gas recirculation cooler coupled together to form a unitary structure; lifting the first replaceable exhaust gas recirculation cooling system vertically out of the vehicle car body with a crane; replacing the first replaceable exhaust gas recirculation cooling system with a fresh replaceable exhaust gas recirculation cooling system; and coupling the fresh replaceable exhaust gas recirculation cooling system to the locomotive. In this way, a crane may be used to provide more efficient removal and replacement of the EGR cooling system.
This summary is provided to introduce a selection of concepts in a simplified form that are further described herein. This summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to implementations that solve any or all disadvantages noted in any part of this disclosure. Also, the inventors herein have recognized any identified issues and corresponding solutions.
The present invention will be better understood from reading the following description of non-limiting embodiments, with reference to the attached drawings, wherein below:
Locomotive and other vehicle propulsion systems may include various components to improve performance and reduce regulated emissions.
While
The intake system 120 may include an intake air filter 130 coupled to a compressor of an intake system turbocharger 132 for delivering filtered induction air. The compressor may be adjusted based on operating conditions to adjust a level of induction air boost, using, e.g. a variable geometry turbocharger, and/or a bypass valve for bypassing air around the compressor (not shown). The compressor boosts the induction air, which is then routed to a water-based intercooler 134. Water-based intercooler 134 is configured to transfer energy between engine cooling water (e.g., engine coolant) and the induction air. For example, during low load conditions, the engine coolant may transfer heat to the boosted induction air, thereby raising the temperature of the induction air. However, under higher load conditions, the engine coolant may cool the boosted induction air. Further, water-based intercooler 134 may include engine coolant inlet temperature control to provide a desired coolant temperature level. The system may also include engine coolant temperature control to maintain temperature between temperature limits, using radiator fans 121 airflow changes.
Induction air is delivered from the water-based intercooler 134 to a second intercooler, namely, an air-air heat exchanger 136. In some embodiments, the air-air heat exchanger 136 may include fins (e.g., a finned heat exchanger) to increase the amount of heat that the device can dissipate. In this example configuration, suction fans 138 and 140 force airflow 142 across air-air heat exchanger 136 to cool compressed induction air, and further to the EGR system 122, as described in further detail below. While this example shows two suction fans 138 and 140, a single fan may be used, or further more than two fans may be used. When using a plurality of fans, the fans may be controlled in coordination at a common level, or each fan may be individually controlled by the control system 124. Soot buildup generated by the EGR may be intermittently removed by adjusting the fans 138 and 140 to decrease the airflow through the air-air heat exchanger 136 and thereby increase exhaust gas recirculation temperature.
Continuing with the intake system 120, induction air is delivered from the air-air heat exchanger 136 to venturi pump 144. Venturi pump 144 operates to draw EGR from system 122 into the intake system, before delivering the induction air and EGR to the intake manifold 116 of engine 110. Various venturi pump configurations may be used, including a bypass configuration in which a controllable venturi pump bypass valve 146 may enable adjustment of the amount of EGR drawn into the intake by the control system 124. In one example, two butterfly valves are used as bypass control valves, one for each bank. In one example, under lower engine load conditions the bypass valve is opened, thereby allowing EGR to bypass the venturi pump. However, under higher engine load conditions, EGR may be directed through the venturi pump. In this manner, bypassing the venturi pump during lower engine load conditions as well as directing the EGR through the venturi pump during higher engine load conditions is possible.
EGR system 122 includes an EGR valve 152 for controlling whether or not exhaust gas is recirculated from the exhaust manifold 118 of engine 110 to the intake manifold 116 of engine 110. EGR valve 152 may be an on/off valve controlled by control system 124, or it may control a variable amount of EGR, for example. EGR is directed from valve 152 to a first EGR cooler 154, where airflow 156 operates to cool the EGR. In one example, the first EGR cooler 154 includes an external car body cab duct with fins, e.g., a finned heat exchanger, where the airflow 156 is generated by car body motion. In this manner, the finned heat exchanger is positioned to receive airflow 156 generated by the car body motion. The first EGR cooler 154 may be referred to as a first air-cooled EGR cooler. The first EGR cooler may be a finned air-cooled cooler allowing heat to be transferred out of the exhaust gas through fins. In one example, an upstream portion of the first EGR cooler utilizes bared ducts due to the high exhaust temperatures of the exhaust gas (which may damage fins), while a downstream portion utilizes fins. Thus, fins may be added to only a portion of the duct where the exhaust gas temperature has decreased to an adequate temperature. Extended fin surface area may begin along the length of bared tubes as the temperature of the EGR is reduced along the cooler length. Further, both tube sets (with and without fins) may be sized, shaped, and positioned, to match the geometry of a second and/or third EGR cooler (see below).
The car body may thus generate ram air cooling. Further, first EGR cooler 154 may be positioned near a top of the locomotive car body 302, where airflow 156 may be drawn in from the sides of the locomotive car body and exhausted, past the first EGR cooler 154, out the top of the locomotive car body. The first EGR cooler 154 may include longitudinal finned ducts positioned in the locomotive car body.
A second EGR cooler 160 cools EGR exiting the first EGR cooler 154. In this manner, the second EGR cooler may be adapted to be coupled downstream of the first EGR cooler. At the second EGR cooler 160, airflow 142 generated by suction fans 138 and 140 flows to the second EGR cooler 160, thereby forcing air on the second EGR cooler 160, after interacting with air-air heat exchanger 136. The second EGR 160 cooler may be referred to as a second air-cooled EGR cooler. The second EGR cooler 160 may include finned pipes with end manifolds, e.g., a finned heat exchanger. In one example, by utilizing airflow 142 for cooling the induction air and EGR, the system may be packaged more efficiently in the locomotive car body 302, and overall cooling system performance may be increased without overly increasing heat rejection to the engine coolant. Further, under some conditions, the airflow temperature exiting air-air heat exchanger 136 is still low enough to provide substantial EGR cooling in the second EGR cooler 160. In this way, the second EGR cooler 160 operates with a high temperature difference between the exhaust and airflow 142. Further, as described in more detail with regard to
Continuing with the EGR system 122, a third EGR cooler 162 is shown downstream of the second EGR cooler 160. The third EGR cooler may include an engine coolant water-cooled shell and tube (e.g., water cooled on the shell side) cooler. The third EGR cooler 162 may be fluidly coupled to a liquid coolant engine cooling system. In this manner, heat from the exhaust gas may be transferred to liquid coolant. EGR exiting the third EGR cooler is then delivered to venturi pump 144. EGR exiting venturi pump 144 is mixed with induction air to form a combustion mixture delivered to the cylinder. In this way, EGR avoids traveling through the intercooler 134, air-air heat exchanger 136, turbo discharge duct 135, and intermediate duct 137, to prevent soot laden or sulfuric acid laden gasses from damaging these components. However, in an alternative example, filtered exhaust gas flows through such components. In this example, the first, second, and third EGR coolers are fluidly coupled together in series. Furthermore, in this example, the first, second and third, EGR coolers are substantially co-planar. In other examples, the first and second EGR cooler may be co-planar and the third EGR cooler may positioned below the first and the second EGR coolers. In still other examples, the coolers may be non-planar. Further, a removable EGR cooler package may include the first, second, and third EGR coolers, 154, 160, and 162 respectively, discussed in more detail herein.
The above configuration may be modified in various additional ways. For example, the order of cooling through the various coolers in the EGR system may be varied. Additional cooling may also be used. Further still, a Roots blower (not shown) may be used in combination with the venturi pump, where the Roots blower may be mounted between the third EGR cooler 162 and the venturi pump 144.
The exhaust system may further include a particulate filter coupled in the exhaust manifold 118 before the EGR is directed to the EGR system 122. Alternatively, the particulate filter may be located downstream of the EGR system 122. Also, additional emission control devices (not shown), such as NOx catalysts, etc., may also be positioned in the exhaust system.
By utilizing the air-air heat exchanger for cooling air in the intake system 122, and first and second EGR (air-based) coolers 154 and 160 for cooling the EGR, it is possible to reduce the heat rejection to the engine coolant, thereby reducing the size and performance requirements for the radiator fans, and the radiator itself. Additionally, common fans may be used to generate the cooling flow for both the induction air and EGR, thus reducing system components. And, even though airflow 142 is warmed before cooling EGR in the second EGR cooler 154, due to relatively high EGR temperatures under selected operating conditions, sufficient cooling is still achieved.
Further, by utilizing ram air cooling for an upstream cooler (e.g., a first cooler in the direction of EGR flow), even the potentially limited flow generated by car body motion can achieve sufficient heat rejection, due to high temperature differences between EGR and ambient air, at least under some conditions. Also, by locating the duct for the ram air and first EGR cooler 154 at or near the top of the locomotive, it experiences increased airflow 156 since car body motion is increased at this location, while also allowing access for cleaning/replacement.
The coordinated operation between the induction air cooling and EGR cooling also generates improved overall system operation. Specifically, as noted above, the airflow 142 exiting the air-air heat exchanger 136, although heated above ambient temperature, is still substantially cooler than the EGR temperature during selected operating conditions, even after the EGR is cooled by the first EGR cooler 154.
Referring now to
In 210, the routine adjusts the amount of EGR via EGR valve 152 based on operating conditions, such as engine load, engine speed, etc. In one example, the system either allows EGR flow, or blocks EGR, depending on operating conditions. In another example, a level of EGR flow may be adjusted depending on operating conditions. For example, while EGR exit temperatures from the third cooler may remain substantially constant due to coolant temperature control, flow control of the EGR may be obtained from both an on/off valve (e.g., EGR valve 152) and venturi pump bypass valve 146 control, thereby increasing or decreasing the primary airflow through the venturi pumps.
In 212, the routine adjusts various actuators to control induction air temperature and EGR intake manifold inlet temperature, such as by adjusting the radiator fans 121, one or more of fans 138/140, engine coolant flow to the third EGR cooler 162 and/or water-based intercooler 134. For example, the system may be adjusted to maintain EGR temperature exiting the EGR system (and entering the intake manifold) above its dew point, and further to maintain engine air inlet combustion mixture temperatures above its dew point. Such coordinated control may be used to reduce sulfuric acid condensation.
As one example, if EGR temperature is below a threshold (e.g., it may cool below its dew point), it is possible to adjust fans 138/140 to reduce cooling, thereby increasing both induction air temperature, EGR temperature, and combustion air mixture temperature.
As another example, fans 138/140 may be adjusted to maintain mixture air temperature, and such control may be synchronized with EGR temperature control. At engine loaded conditions, increased induction air cooling and increased EGR cooling, via increased fan operation of fans 138/140, may both generate improved performance since both may require increased heat rejection.
Referring now to
Specifically,
The first EGR cooler 154 is fluidly coupled to EGR valve 152 by flexible, detachable, metal hose connections 340 and is located at the top of the locomotive car body 302. In this manner, the first EGR cooler may be removably coupled by a first flexible hose to an exhaust gas recirculation supply of the engine. The flexible metal hose connection(s) 340 branches out, extending outward and upward at an angle tapering off as it reaches the first EGR cooler 154, to generally form an S-shape, although other shapes may also be used. Alternatively, a combination of solid piping and flexible metal couplings may be used. By providing the S-shaped hose with some flexibility, it may be possible to better buffer movement between the engine 110 and EGR system package 310.
The first EGR cooler 154 is positioned near a top of the locomotive car body 302 and extends longitudinally along the length of the locomotive car body. The first EGR cooler may be divided into at least a first and a second parallel portion, 155a and 155b respectively, positioned near the top of the locomotive car body 302 on either side of the second EGR cooler 160. The first EGR cooler 154 is coupled to the second EGR cooler 160 by an inlet header 342 including turning vanes (not shown). The turning vanes allow the EGR to reverse direction and travel longitudinally along the locomotive car body 302 through the second EGR cooler 160. The second EGR cooler 160 may include two distinct channels, one for each bank. EGR flow continues longitudinally along the locomotive car body 302 to the third EGR cooler 162. As shown in
EGR flow exiting the third EGR cooler 162 is routed inward and downward to venturi pump duct assembly 330 through ducting 332. Additionally, a detachable ducting connection (not shown) may be used to couple the venturi pump 144 to the intake manifold 116. In this manner, the EGR system package may be removably coupled by a second flexible connection to an engine intake system. As shown in
Further, the venturi pump duct assembly 330 may be coupled to an outlet duct of air-air heat exchanger 136, where the outlet ducts are angled downward to facilitate the connection and packing configuration. Specifically, the return ducts may angle down from the exit of the air-air heat exchanger 136 to the EGR venturi pump exit to allow the third EGR cooler 162 to be over the top of the two return ducts. In one example, V-band quick connect metal couplings (not shown) may be used to attach the third EGR cooler to the locomotive car body. Additionally, lifting brackets may be coupled to the third EGR cooler allowing for easier removal from the car body.
The first EGR cooler 154 may include a longitudinal finned duct to facilitate car body motion cooling. As one example, under typical operating conditions, a temperature difference of approximately 1100° F. to ambient air would enable a heat rejection of approximately 8000 BTU/min (4000 per bank) for an outlet exhaust temperature of approximately 900° F.
The second EGR cooler 160 may include a finned pipe with end manifolds. At typical conditions, a temperature difference between the EGR and airflow 142 would be approximately 900° F., which would enable a heat rejection of approximately 11000 BTU/min for an outlet exhaust temperature of 600° F.
Finally, the third EGR cooler 162 may include a steel shell and tube heat exchanger, with water (coolant) on a shell side. Heat rejection through the third EGR cooler under typical conditions would be approximately 11000 BTU/min. In one embodiment, EGR gas flows through stainless steel bare tubes with stainless tube sheets and with investment cast header ends (and with built-in turning vanes, as casted). The length of the tube may be adjusted based on the desired amount of heat rejection. In one example, the length is approximately 2 meters. Also, while a single cooler may be used, the third EGR cooler 162 may also include a plurality of smaller diameter and/or shorter coolers than shown in the figures. A single pass water side flow may be directed across the tubes to regulate the outlet temperature of the third EGR cooler in a passive manner through the engine coolant temperature control provided by the radiator system. In one example, the third EGR cooler may include upset internal fins (not shown) allowing the heat transfer coefficient to be increased.
In one embodiment, suction fans 138/140 may be offset towards the exit of the second EGR cooler exit to promote the use of the higher EGR entering temperature to the heat exchanger. This also improves airflow across the higher pressure drop region of the second EGR cooler heat exchanger tubes (e.g., the finned tube section).
Various modifications may be made to the configuration illustrated. For example, the EGR valve 152 may also be mounted adjacent the venturi pump 144, and within the venturi pump duct assembly 330.
The EGR couplings allow the EGR system package to connect to the locomotive car body 302. Furthermore, the EGR couplings may detached from the locomotive car body 302 allowing the EGR system package to be easily removed for cleaning or repair. In this example, EGR couplings may be bolted or clamped to the locomotive car body 302. In other examples, the EGR couplings may be attached to the locomotive car body 302 in another suitable fashion. The EGR system package 310 may further include a hoist bracket 620 configured to be coupled to a crane hook (not shown). In other examples, the removable cooling system may include a plurality of hoist brackets (not shown).
Referring now to
Returning to
It should be understood that the embodiments herein are illustrative and not restrictive, since the scope of the invention is defined by the appended claims rather than by the description preceding them, and all changes that fall within metes and bounds of the claims, or equivalence of such metes and bounds thereof are therefore intended to be embraced by the claims.