1. Technical Field
The present invention relates in general to diverter spools and, in particular, to an improved system, method, and apparatus for selectively opening and closing low pressure or uncontrolled outlets in two-stage diverter spools.
2. Description of the Related Art
Diverters are mounted to drilling rigs below the rig floor for use throughout the various stages of drilling. A support housing typically mounts below the rig floor and has a lateral flowline outlet for directing mud flow. The housing is a tubular member with an axial bore. A diverter body is secured to the upper end of a riser, is lowered through the rotary table, and lands in the housing. The diverter body has lateral flow openings that are axially aligned with the lateral flowline outlet. A pair of seals are usually located above and below the lateral flowline outlet.
The mud flow outlets are limited to low pressure or uncontrolled applications and are incapable of handling higher pressures associated with blow out preventers (BOPs). During standard operations, the mud flow is typically no more than a hydrostatic head pressure. When the BOP is located above the low pressure outlets, the diverter must be removed from the wellhead assembly prior to permitting high pressure flow through the assembly to the surface. Unfortunately, the down time and cost associated with the removal of the diverter can be significant. Thus, although prior art designs are workable, an improved design that overcomes the shortcomings of the prior art would be desirable.
One embodiment of a system, method, and apparatus for selectively opening and closing outlets in two-stage diverter spools is disclosed. The present invention forms a portion of a wellhead system having an upper diverter, a BOP, a lower diverter, and a wellhead housing assembly therebelow. The lower diverter has an axial bore and one or more outlets or “low pressure” outlets. A sleeve is located in and axially movable relative to the lower diverter. The sleeve has an open position wherein access to the low pressure outlets is unimpeded, and a closed position for impeding access to the low pressure outlets.
A handling tool is used to manipulate the position of the sleeve. The handling tool has pins for moving the sleeve between the open and closed positions. The handling tool also has a locator sleeve for locating an axial position of the handling tool relative to the sleeve. The locator sleeve has a lower position for locating the handling tool at the upper end of the sleeve to push the sleeve down to the closed position. The locator sleeve also has an upper position for locating the handling tool at the lower end of the sleeve to pull the sleeve upward to the open position.
In one embodiment, the outlets on the two-stage diverter spool allow for cuttings/mud flow to be diverted to the mud pits without passing them through the BOP stack. These outlets are used, for example, when drilling through formations that do not require BOP control. The two-stage diverter spool allows for the wellhead, riser, and BOP stack to be installed at one time to save rig time operations.
The foregoing and other objects and advantages of the present invention will be apparent to those skilled in the art, in view of the following detailed description of the present invention, taken in conjunction with the appended claims and the accompanying drawings.
So that the manner in which the features and advantages of the invention, as well as others which will become apparent are attained and can be understood in more detail, more particular description of the invention briefly summarized above may be had by reference to the embodiment thereof which is illustrated in the appended drawings, which drawings form a part of this specification. It is to be noted, however, that the drawings illustrate only an embodiment of the invention and therefore are not to be considered limiting of its scope as the invention may admit to other equally effective embodiments.
Referring to
Referring now to
In one embodiment, the lower diverter 23 comprises a drilling adapter 43 having an upper axial shoulder 45 for landing the sleeve 41 in the open position. The lower diverter 23 also may comprise a body 47 secured to the drilling adapter 43. The body 47 is secured to a lower end of the drilling adapter 43 and has an axial bore 25 that is concentric with the axial bore 25 of the drilling adapter 43. The body 47 also has a lower axial shoulder 49 for landing the sleeve 41 in the closed position. The low pressure outlets 27 extend through the body 47. In the version illustrated, the sleeve 41 axially straddles the drilling adapter 43 and the body 47 in the open position, and the sleeve 41 is axially located entirely within the body 47 in the closed position.
Referring now to
In addition, the handling tool 51 has a locator sleeve 61 mounted thereto, and the lower diverter 23 (e.g., drilling adapter 43) has locator screws 63 for engaging the locator sleeve 61 for locating an axial position of the handling tool 51 relative to the sleeve 41. The locator sleeve 61 is axially movable relative to the handling tool 51. The locator sleeve 61 has a lower position (
The present invention also comprises a method of controlling discharge of drilling mud in a wellhead system. In one embodiment, the method includes the steps of providing a wellhead system 11 with an upper diverter 13 having an axis 15 and high pressure outlets 17, a BOP 19, a lower diverter 23 mounted axially below the BOP 19, and a wellhead housing assembly 31 mounted axially below the lower diverter 23; equipping the lower diverter 23 with an axial bore 25 and low pressure outlets 27 extending from the axial bore 25, and discharging drilling mud from the low pressure outlets 27 to mud pits 29; positioning a sleeve 41 in the lower diverter 23 in an open position such that access to the low pressure outlets 27 is unimpeded; and moving the sleeve 41 to a closed position for impeding access to the low pressure outlets 27, such that the lower diverter 23 remains installed in the wellhead system 11 when the sleeve 41 is in both the open and closed positions.
The method also may comprise landing the sleeve 41 on an upper axial shoulder 45 in the lower diverter 23, and landing the sleeve 41 on a lower axial shoulder 49 in the lower diverter 23. The method may further comprise extending a handling tool 61 through the upper diverter 13 and the BOP 19 while moving the sleeve 41 between the open and closed positions; and/or engaging and disengaging the sleeve 41 with hydraulically-actuated, radially movable pins 53 on the handling tool 51 to move the sleeve 41 between the open and closed positions; and/or engaging and disengaging a lower end 57 of the sleeve 41 with radially movable sleeve retainer screws 55 on the lower diverter 23 in the open position, and engaging and securing an upper end 59 of the sleeve 41 with the retainer screws 55 in the closed position.
In addition, the method may further comprise providing a locator sleeve 61 on the handling tool 51, and locator screws 63 on the lower diverter 23 for engaging the locator sleeve 61, and locating an axial position of the handling tool 51 relative to the sleeve 41 with the locator sleeve 61 and locator screws 63; and/or axially moving the locator sleeve 61 relative to the handling tool 51, such that the locator sleeve 61 has a lower position for locating the handling tool 51 at an upper end 59 of the sleeve 41 to push the sleeve 41 down to the closed position, and an upper position for locating the handling tool 51 at a lower end 57 of the sleeve 41 to pull the sleeve 41 upward to the open position.
The present invention has several advantages, including the ability to axial shift the sleeve internal to the spool with a handling tool. The sleeve permits access to low pressure outlets in the spool when required. When higher pressures are required, the internal sleeve is shifted downward to close off access to the low pressure outlets without change out of equipment or changing the BOP stack riser system. The low pressure lines connected to the low pressure outlets can remain installed but are isolated from the higher pressure BOP stack pressures.
While the invention has been shown or described in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2157496 | Penick et al. | May 1939 | A |
2330267 | Burt et al. | Sep 1943 | A |
2370833 | Baker | Mar 1945 | A |
2379079 | Hayward | Jun 1945 | A |
2889886 | Gould | Jun 1959 | A |
RE25415 | Merritt et al. | Jul 1963 | E |
4513823 | Hynes et al. | Apr 1985 | A |
4648445 | Caskey | Mar 1987 | A |
4674569 | Revils et al. | Jun 1987 | A |
4848024 | Hanson | Jul 1989 | A |
4850432 | Porter et al. | Jul 1989 | A |
5117910 | Brandell et al. | Jun 1992 | A |
5211228 | Watkins | May 1993 | A |
5890535 | Petrash et al. | Apr 1999 | A |
6453995 | Gatherar et al. | Sep 2002 | B2 |
6712147 | Dallas | Mar 2004 | B2 |
7237611 | Vincent et al. | Jul 2007 | B2 |
20040154839 | McGarian et al. | Aug 2004 | A1 |
Number | Date | Country | |
---|---|---|---|
20070079990 A1 | Apr 2007 | US |