System, method and apparatus for automatically filling a coin cassette

Information

  • Patent Grant
  • 8523641
  • Patent Number
    8,523,641
  • Date Filed
    Thursday, September 15, 2005
    19 years ago
  • Date Issued
    Tuesday, September 3, 2013
    11 years ago
Abstract
An automated coin tray refilling system includes a plurality of coin reservoirs and a plurality of coin dispensers for regulating the dispensing of coins from an associated one of the plurality of coin reservoirs. A collector point distribution member is adapted to receive coins from each of the plurality of coin dispensers at one portion thereof and to output the coins at another portion thereof. An interface module having an input end is disposed substantially adjacent the collector point distribution member output and includes an output end for dispensing coins. A coin interface tray is adapted to receive at least one coin tray and at least one processor is provided. The interface module and/or coin interface tray includes a drive system configured to move interface module and/or coin interface tray relative to one another.
Description
FIELD OF THE INVENTION

This disclosure generally relates to coin tray or coin cassette refill devices.


BACKGROUND OF THE INVENTION

Coin dispenser trays are widely used as cashier/check out areas and in the self-service check out equipment typically found in places like supermarkets (e.g., Jewel/Osco) and Home Depot. A variety of coin dispensing trays or coin cassettes are provided by a number of manufacturers, each manufacturer possibly offering several tray models having different sizes, arrangements, volumes, denominations, and combinations of coin receptacles for receiving coins in various coin positions.


One common coin dispenser is the Asahi Seiko USA, Inc. (www.asusainc.com) HM-4 coin hopper, in which a plurality of hoppers (i.e., 1¢, 5¢, 25¢, $1.00) drop the coins into a single exit chute for delivery to a common coin cup. The HM-4 accepts an AMP drawer plug connection to simplify wiring and the hoppers each slide off of the main base plate to permit servicing of coin jams. As the hoppers are depleted, the cashiers or other designated personnel, fill the individual hoppers with coins.


Another popular conventional coin dispenser is the TELQUIP Transact 2+, which employs removable coin canister or cassette. The program software tracks the change being issued and optimizes the use of the coin supply by attempting to even out the distribution of the coins to enable a longer period of time between refills. The Transact 2+ provides a plug and play pre-wire installation with standard RS232 serial port and other register interfaces. TELQUIP advertises that the Transact 2+ enables vendors to save from 5 to 7 seconds on every transaction. However, despite these benefits, the refill operation of the TELQUIP TransactCLS must be done manually. To facilitate loading of the Transact 2+ coin canister, TELQUIP provides the TransactCLS (Canister Loading Solution), shown in FIG. 1. To use this manual device, one must first remove the clear plastic canister cover by depressing two tabs 70 at the bottom and sliding up until the canister handle hangs toward the back of the canister. Then, the canister stand 10 is placed on a flat surface and the canister 20 assembled to the stand by sliding it down onto two rails 60. The canister loading device 30 is then attached to the canister by lowering the device onto the canister, engaging the top rear of the canister, then pivoting the bottom of the loading device inwardly to engage the front of the canister. The canister loading device 30 is then slid down until it engages the taps at the base of the canister stand.


If the funnel retainer 40 is not already assembled onto the loading device, it is slid onto the two rails at the top of the loading device. The funnel 50 is then attached to the funnel retainer 40 by dropping the funnel onto the retainer with the slots aligned. The funnel 50 is then rotated ¼ turn clockwise, positioned with the opening 52 in the front and the “nose” 54 in the back. To manually position the funnel over the appropriate denomination, the funnel must be lifted slightly and slid until positioned over the appropriate column at which time the funnel is dropped in place so that the shoulder 56 of the funnel is flush with the retainer 40. At this point, the person performing the filling operation must begin loading coins for that denomination by slowly pouring coins into the funnel either by hand, cup, or directly from the coin bag. They must continue filling until that column is filled to the desired height indicated by the calibration strips on the canister. This work is tedious, time consuming, and must be repeated for each denomination.


Despite the advances realized by the aforementioned technology, there remains room for additional improvements to the technology to improve the speed with which coin hoppers and coin canisters may be refilled and returned to service.


SUMMARY

According to one aspect, an automated coin tray refilling system includes a processor, a plurality of coin reservoirs, and a plurality of coin dispensers for regulating the dispensing of coins from an associated one of the plurality of coin reservoirs. A collector point distribution member is adapted to receive coins from each of the plurality of coin dispensers at one portion thereof and to output the coins at another portion thereof. An interface module having an input end is disposed substantially adjacent the collector point distribution member output and includes an output end for dispensing coins. A coin interface tray is adapted to receive at least one coin tray. The interface module and/or coin interface tray includes a drive system configured to move interface module and/or coin interface tray relative to one another.


In another aspect, an automated coin tray refilling system comprises an interface module having an input end adapted to receive coins from a coin source and a variably configurable output end, the variably configurable output end including at least one movable member to adjust a configuration of the output end, for dispensing coins and a coin interface tray adapted to receive at least one coin tray of a predetermined plurality of coin trays. The interface module movable member is adjustable to facilitate coin placement within any one of the predetermined plurality of coin trays.


In still another aspect, an automated coin tray refilling system comprises/an interface module having an input end adapted to receive coins from a coin source and an output end for dispensing coins and a coin interface tray adapted to receive at least one coin tray. At least one processor is provided and the interface module and/or coin interface tray includes a drive system operatively associated with the processor and configured to move a respective one of the interface module and coin interface tray relative to the other one of the interface module and coin interface tray.


In yet another aspect, an automated coin tray refilling system comprises a plurality of coin reservoirs, each coin reservoir adapted to receive a coin of a predetermined denomination and a plurality of coin dispensers, each coin dispenser regulating the dispensing of coins from an associated one of the plurality of coin reservoirs. A collector point distribution member is adapted to receive coins from each of the plurality of coin dispensers at one portion thereof and to output the coins at another portion thereof and an interface module is provided with an input end disposed substantially adjacent an outlet end of the collector point distribution member and having an output end for dispensing coins. A coin tray is disposed adjacent the output end of the interface module, the coin tray having a plurality of coin channels, each coin channel configured to receive a coin of a predetermined denomination. A coin reading sensor is provided adjacent the coin tray to sense the degree to which each of the coin tray coin channels are filled and outputting a signal related thereto. A processor controller configured to receive a signal output from the coin reading sensor and to output a signal to a respective one of the plurality of coin dispensers to cause that coin dispenser to dispense coins from an associated one of the plurality of coin reservoirs.


Additional advantages of the present concepts will become readily apparent to those skilled in this art from the following detailed description, wherein only preferred aspects of the present concepts are shown and described, simply by way of illustration. As will be realized, the present invention is capable of other and different embodiments, and its details are capable of modifications in various obvious respects, all without departing from the disclosed concepts. Accordingly, the drawings and description are to be regarded as merely illustrative in nature, and are not to be regarded as limiting or restrictive on the broad aspects of the disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention will be described in conjunction with the following drawings in which like reference numerals designate like elements and wherein:



FIG. 1 depicts a TELQUIP TransactCLS.



FIGS. 2(
a)-(d) shows front, top, cross-sectional, and side views, respectively, of one system for automated refill of a coin tray in accord with the present disclosure.



FIG. 3 shows a block diagram illustrates one aspect of a system for automated refill of a coin tray in accord with the present disclosure.





The appended drawings are not to scale are merely intended to convey a general sense of interrelation between components and systems.


DETAILED DESCRIPTION

The systems and subsystems defined below explore one approach to the development of an Automated Coin Tray Refill Device in accord with the present concepts. They are not intended to define the variety of possible solutions, but are merely exemplary of one preferred implementation of the disclosed concepts. The systems presented herein are intended to convey, to those skilled in the art, an appropriate level of detail to illustrate some of the possible functions involved and how they relate to the machine as a whole sufficient to enable them to make and/or use the concepts disclosed herein without undue experimentation.



FIGS. 2(
a)-2(d) shows an example of an automated coin tray refill device or coin dispenser 100 in accord with the present concepts directed to an automated method of filling coin trays, cassettes, hoppers, bags, and canisters. Although the example of FIGS. 2(a)-2(d) depicts a coin dispenser 100 configured for use with the TELQUIP 2+ coin tray, the concepts herein are not limited to any one coin tray, cassette, canister, or bag.


The coin dispenser 100 generally comprises supports for individual coin dispensers 120a-120d and reservoirs 110a-110d and defines a housing to enclose components such as a power supply 230 and computer or processor 210. In one aspect, the power supply 230 and computer 210 could be external to the coin dispenser 100 and could be connected thereto using conventional electrical I/O connectors. A coin collector system is fed by the coin dispensers 120a-120d and outputs the coins input therein to a interface module 160 for output into a coin tray inserted into the coin dispenser 100, whether directly or through a coin interface tray or module 170. The interface module 160 and/or the coin interface tray 170 may be configured to translate, move, or rotate relative to one another to facilitate interface therebetween.


Power supply 230 is configured to interface with an available AC power supply and is configured to provide rated DC power to system components which may include, but are not limited to, interface module 160 actuators, sensors or drive systems, coin tray 150 actuators, sensors or drive systems, coin interface tray 170 actuators, sensors or drive systems, coin reader 180 actuators, sensors or drive systems, coin dispenser 120(a)-120(d) actuation devices or sensors, coin collector point distribution system 130 actuators, sensors or drive systems, display 190, computer or processor 210, and any attached memory devices (e.g., solid state memory, disk drive, CD-ROM drive, DVD-Drive, etc.) Computer 210 also includes a main memory, such as a random access memory (RAM) or other dynamic storage device, coupled to bus for storing information and instructions to be executed by a processor. The main memory also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by the processor. Computer 210 further includes a read only memory (ROM) or other static storage device coupled to the bus for storing static information and instructions for the processor. A storage device, such as a magnetic disk or optical disk, is preferably provided and coupled to bus for storing information and instructions.


Execution of sequences of instructions contained in main memory causes the processor or processors, if more than one is provided, to perform the actions described herein. In alternative embodiments, hard-wired circuitry or firmware may be used in place of or in combination with software instructions and it is to be understood that no specific combination of hardware circuitry, firmware, and software are required. Instructions may be provided in any number of forms such as source code, assembly code, object code, machine language, compressed or encrypted versions of the foregoing, and any and all equivalents thereof. “Computer-readable medium” refers to any medium that participates in providing instructions to the processor for execution and the term computer usable medium may be referred to as “bearing” the instructions, which encompass all ways in which instructions are associated with a computer usable medium. Computer-readable mediums include, but are not limited to, non-volatile media, volatile media, and transmission media. Non-volatile media include, for example, optical or magnetic disks. Volatile media include dynamic memory, such as main memory. Transmission media include coaxial cables, copper wire and fiber optics, including the wires that comprise bus 102. Transmission media can also take the form of acoustic or light waves, such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media include, for example, a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave as described hereinafter, or any other medium from which a computer can read.


Various forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to processor for execution. For example, the instructions may initially be borne on a magnetic disk of a remote computer, which can transmit instructions to computer 210 over a telephone line using a modem or through a cable line or wireless signal. Computer 210 may also include a communication interface coupled to the bus to provide a two-way data communication coupling to a network link connected to a local network. For example, the communication interface may be an integrated services digital network (ISDN) card or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, the communication interface may be a local area network (LAN) connection to provide a data communication connection to a compatible LAN. Wireless links (e.g., RF or infrared) may also be implemented. In any such implementation, communication interface sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.


The network link typically provides data communication through one or more networks to other data devices. For example, the network link may provide a connection through local network to a host computer or to data equipment operated by an Internet Service Provider (ISP), which in turn provides data communication services through the worldwide packet data communication network, commonly referred to as the “Internet”. The local network and Internet both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link and through communication interface, which carry the digital data to and from computer 210, are exemplary forms of carrier waves transporting the information.


Reservoirs 110a-110d each provide storage for a particular coin denomination and interior baffles may optionally be provided to reduce the direct weight of coins on a dispenser by supporting a portion of the load using angled plates. It is intended that the reservoirs 110a-110d provide an unobstructed gravity feed to the dispenser (e.g., dispensers 120a-120d), although a mechanical or assisted feed may also be provided in accord with the present concepts. Such mechanical or assisted feed may include, for example, one or more transducers or vibrating members configured to impart a vibration within the dispenser, or a movable member. Dispensers 120a-120d are designed to dispense a specific coin count (e.g., 72 coins) of a specific coin denomination (e.g., 1¢, 5¢, 10¢, 25¢) for a specified currency (e.g., coins minted by the United States Mint) upon receipt of an appropriate control signal from an associated controller or logic board and power board interface. In one aspect, the reservoirs are filled with a respective currency from an appropriate source such as, but not limited to Full Federal Bags, Half-Full Federal Bags, 19″ through 12″ coin bags, or coin sorter output bins. In an optional configuration, the reservoirs 110a-110d (or additional or fewer reservoirs, as needed) may be connected to an output of a conventional currency processing machine such as, but not limited to, the JetSort® manufactured by Cummins-Allison of Mt. Prospect, Ill., for direct deposit of sorted mixed coins into an appropriate one of the reservoirs 110a-100d, or additional reservoirs as may be the case. It is to be understood that the reservoirs 110a-110d, dispensers 120a-120d, collector point distribution 130, interface module tray 140, and all other systems and components herein described are applicable to all currencies and denominations of the United States and of other nations, states, republics and entities.



FIG. 2(
d) shows a power supply 230 and conventional computer/processor 210, which power and regulate or control, respectively, the operation of dispensers 120a-120d. The dispensers 120a-120d are configured to dispense (e.g., sequentially), upon receipt of a control signal from computer 210, a predetermined number of coins of a respective denomination to a collection point distribution 130 by means of a gravity and/or mechanical feed such as, but not limited to, a computer controlled gate (not shown) or controlled feed mechanism. The number of coins may, for example, correspond to a difference between a measured stack height and a maximum stack height for a designated coin tray, cassette, hopper, or canister, the maximum stack height being stored in and retrieved from a conventional memory device.


In one aspect, a rotating disk could be disposed at a bottom of the dispensers 120a-120d to singulate and move coins at the bottom of the dispensers to a coin transport channel having one or more coin transport belts, such as described in U.S. Pat. Nos. 4,058,999 and 4,949,532, which are hereby incorporated in their entirety by reference. In another aspect, a device to output a predetermined number of coins of a respective denomination to a collection point distribution 130 could include, for example, a rotating drum having pockets for receiving individual coins dispersed thereover in a helical pattern to permit transport of a predetermined number of coins for a specified degree of rotation. Still other coin moving devices could include, but are in no means limited to, a worm gear disposed within a tube.


Although the reservoirs 110a-110d and dispensers 120a-120d are shown in a quad or 2×2 arrangement, the reservoirs and dispensers may also be arranged in any order and/or manner including, but not limited to, sequentially, laterally or vertically, staggered, stepped or in an arcuate path, in accord with the present concepts.


In one aspect, the dispensers 120a-120d may optionally be configured to hold one or more boluses or predetermined numbers of coins corresponding to a full complement of coins (or fraction thereof) for a designated coin tray, cassette, hopper, bag, and canister. For example, if a coin tray typically or exclusively used by an end-user holds a maximum of 100 quarters, the dispenser (e.g., 120a) could comprise one or more sections each adapted to hold 10, 20, 50, or 100 quarters in a pre-measured bolus. When a new (i.e., empty) dispenser tray 150 is inserted in-place adjacent the interface module, the dispenser could output the bolus(es) to cause a sequential filling of the coin channel(s) in the dispenser tray. The interface module 160 may optionally be configured to accept and route a parallel rather than a serial output from the dispensers 120a-d. In such aspect, a plurality of boluses of measured numbers of coins could be simultaneously directed through an interface module 160 have a plurality of coin paths or channels to a corresponding plurality of coin channels in a dispenser tray 150. Such pre-sorted during a system “down-time” permits faster filling. As to the fractional filling aspect, noted above, the computer 210 regulating the filling operation can, for example, instruct release of a predetermined combination of boluses (e.g., 3×20 quarters or 1×10 quarters and 1×50 quarters to get 60 quarters) once the requirements for a particular denomination are known (e.g., 67 quarters) and then instruct the appropriate dispenser (e.g., 120(d)) to output an additional small number of coins (e.g., 7 quarters) to complete the requirements.


The collection point distribution 130 collects any of a variety of coins from any of a series of coin dispensers (e.g., dispensers 120a-120d) and provides a point of distribution for filling a coin channel or coin channels in a dispenser tray 150 through an associated interface module 160. The collection point distribution 130, depicted as a chute or ramp in the illustrated example, may comprise any other conventional means of coin conveyance including, but not limited to rails, conveyor belts, moving platforms, rotating screws, guides, etcetera. The collection point distribution 130 may also be configured to vibrate to facilitate movement of coins thereover or therethrough. The interface module 160 may take any shape suitable to pass coins to a coin channel in a dispenser tray 150. The exemplary interface module 160 shown in FIGS. 2(a)-2(d) assumes a funnel-shape, but is not limited to such shape or closed surfaces. As used herein, the term funnel may include any body having one or more opposing, adjacent, and/or contiguous surfaces that converge toward one another over at least a portion of a length thereof so as to guide coins passing thereover to an opening common to the surfaces. The bottom opening of the interface module 160 may be circular, or may advantageously be oblong or flattened along one axis to force coins to pass vertically or substantially vertically therethrough.


In at least some embodiments, the bottom opening of the interface module 160 may comprise a vectored nozzle comprising opposing curved or flat plate portions that may be tilted toward or away from each other to regulate a distance between or may be pivoted substantially in unison to impart a desired exit angle to a coin passed therethrough. The geometry of the interface module 160 vectored nozzle is advantageously controlled by the computer 210 to correspond to a selected coin tray, cassette, hopper, bag, and canister, a desired throughput, a selected coin denomination, and selected other control inputs (e.g., programmed variations or limitations based on historical experience). The movement of the vectored nozzle may be achieved by any conventional actuator, solenoid, linear variable displacement transducer, or gear set, preferably self-locking, having a minimal size and cost. Output torque and speed are not significant factors, as the minimal amount of movement required could be effected prior to release of coins to the interface module 160.


The output of the interface module 160 may also be advantageously configured to impart a spin in a preferred direction to the coins output thereby, such as by passing the coin across an opening having one or more rotating rollers biased into contact with the coin periphery. The spin and increased angular momentum may help coins striking a stack edgewise to deflect toward a more horizontal position. The spin may also be achieved using a stationary member, which may be rigid, or may be flexible, such as a brush or bristles, to impart a bias to a preferred portion of a coin contacting such member. The stationary members could be provided in the interface module 160 itself and/or in or on the collector point distribution member.


In another aspect, a module cover (not shown) or adapter could be attached or removably attached to the coin tray 150 (e.g., coin tray, cassette, canister, tube, paper roll, etcetera) to facilitate placement of coins into the coin tray. In one aspect thereof, the module cover could cover the front of the coin tray and complete the cylinder geometry of the coin tray, if necessary, to facilitate the coin filling operation. The module cover could assume any configuration to guide coins from the interface module 160 to the top part of the coin tray 150 and into the individual denomination stacks. In another aspect, the module cover or adapter could be attached or removably attached to the interface module 160 to facilitate placement of coins into the coin tray, such as by extending the length and/or configuration of the funnel output. The module cover interfaces with one or more particular design of coin trays 150 and serves to facilitate movement of the coins to a predetermined location and/or serves to guide the coins in a manner which facilitates output of the coins in a substantially predetermined orientation.


In one aspect thereof, the physical configuration or geometry of the module cover could direct the coin to a specific orientation by supporting the coin at particular point(s) to enable external forces (resiliency of a resilient member, gravity, air pressure, friction, rotational forces imparted by rollers, forces of external objects such as brushes, etc.) to direct the coin into a particular orientation. This could include, for example, ramps, rails or wireforms. The application of external forces to achieve a desired orientation of coin may include, for example, opposing brushes defining a gap therebetween through which coins may pass. An additional brush could be provided along an axis perpendicular to the opposing brushes so as to constrain a coin passing therethrough to lay flat against a surface opposed to the additional brush (e.g., a slide or ramp). Such brushes, although noted in regard to the interface module 160 and the module cover (not shown), could be provided at any point in the system (e.g., dispenser output, collection point distribution 130, etc.) to control or influence the orientation of the coins.


In still another aspect, at least one of the module cover (not shown), coin tray or dispenser tray 150, and/or coin interface tray 170, may comprise one or more transducers, actuators, piezoelectric elements, or the like outputting an impulse and/or vibration so as to avoid stacking of coins within the dispenser tray 150 and/or to dislodge coins misaligned within the dispenser tray. Alternatively, one or more transducers, actuators, piezoelectric elements, or the like outputting an impulse and/or vibration may be provided adjacent the dispenser tray 150, module cover, and/or coin interface tray 170 to the same end. In yet another aspect, a pneumatic nozzle or pneumatic output device(s) may be coupled to a pneumatic supply and positioned (e.g., statically or movable along one or more axes) adjacent an opening or openings in the dispenser tray to blow a stream or pulse of high pressure air to dislodge or reorient misaligned coins.


In accord with the above, interface module 160 may be configured to provide a specific orientation of a coin during the placement of coin in the tray, cassette, hopper or canister.


In one aspect, the collection point distribution 130 is fixed and the interface module 160 translates relative thereto to dispose the output opening or spout of the interface module 160 in an appropriate position and/or orientation to output the selected denomination of coin into the proper dispenser tray 150 coin channel. This translation of the interface module 160 may be accomplished using any conventional drive mechanism including, but not limited to, a belt drive or a stepper motor. In this configuration, such as shown in FIGS. 2(a)-2(d), the base or top portion of the interface module 160 should be wide enough so that at either lateral extreme (i.e., left or right limit) of the interface module travel, the opening of the interface module is still positioned beneath the output of the collection point distribution 130 to receive coin therefrom. Thus, the dispensers 120a-120d collectively feed into a collector point distribution 130 where they are passed to interface module 160, which is configured to interface with at least one dispensing tray canister or cassette 150 for a given manufacturer, brand, and model number. It is preferred that the discharge opening of interface module 160 be configured to interface with more than one dispensing tray canister or cassette 150 for a given manufacturer, brand, and model number or, still more preferably, a range of dispensing tray canisters or cassettes for a number of given manufacturers, brands, and models.


In an alternate configuration, the collection point distribution 130 may itself translate laterally relative to the coin dispenser structure. This translation of the collection point distribution 130 may be accomplished using any conventional drive mechanism including, but not limited to, a belt drive or a stepper motor. The collection point distribution 130 may travel as a unit with the interface module 160 or may translate separately therefrom. In still another configuration, the base or rear of the collection point distribution 130 may rotate through a predetermined arc about a pivot point with the interface module 160 traveling an associated chord of the arc under the power of an appropriate conventional rotational drive system, such as a motor with an optional gear system or gear set. In this aspect, the depth of the interface module 160 should accommodate the varying extent of the collection point distribution 130 within the opening to the interface module 160. In additional configurations, the collection point distribution 130 may itself comprise a plurality of separate paths utilizing either conventional gravity or mechanical feed mechanisms to output coins to the interface module 160. In any of the above aspects, the tray 150, canister, or cassette may also be configured to translate, rotate, pivot, move, and/or vibrate relative to the collection point distribution 130 or interface module 160 to speed or facilitate the filling operation.


In yet another configuration, the collection point distribution 130 may comprise a plurality of separate paths utilizing either conventional gravity or mechanical feed mechanisms to output coins to an equal plurality of interface modules 160. In this latter aspect, each denomination of coin could have a separate reservoir, dispenser, collection point distribution and interface module 160, or each of these components may be integrated into one or more units having the same functions. The components could therefore be made stationary, which eliminates the need to include moving parts, motors, belts, separate actuators and the like and reduces system cost and maintenance. Each interface module 160 therein could be optionally manually movable along an x-axis, y-axis, and/or z-axis or any other defined axis or axes to accommodate trays, canisters, or cassettes of different configurations and sizes to enable the system to flexibly adapt to any such tray, canister, or cassette in the market or the majority thereof.


The coin interface tray 170 is a modular coin cassette which may be advantageously adapted to receive a specific tray brand and model number (e.g., a TELQUIP 2+ coin tray). In many instances, an end user will use a single type of coin dispenser and associated canister, cassette, or tray in multiple check-out locations and will need coin interface tray 170 for such specific canister, cassette, or tray. Thus, in one embodiment, the coin dispenser 100 can be pre-configured to correspond to a particular tray brand and model number, but could later be mechanically adjusted or adapted to receive another tray brand and/or model number, whether by manipulation of components in the automated coin dispenser 100 (e.g., repositioning movable rails or replacing interchangeable rails with new rails), alteration of the angle of the coin interface tray 170 relative to the housing, or by purchase of a replacement coin interface tray 170. Regarding the alteration of the angle of the coin interface tray 170 relative to the housing, the coin interface tray may be optionally arranged to assume any one angle in a predetermined range of angles, which may be positive, neutral, or negative with respect to the interface module 160 output. FIGS. 2(a)-2(d) show that the coin interface tray 170 is positioned with a slight positive angle relative to the interface module 160 output. In an embodiment wherein the coin interface tray 170 is configured to accept a coin tray of a predetermined make and model, coin channel information, such as the home position (coin denomination center position), maximum coin count per position, denomination sequence for successive coin channels, number of coin channels, etcetera, is known.


The automated coin dispenser 100 may be configured to not only rotate and/or pivot the coin interface tray 170 to adjust an angle thereof with respect to the vertical or other defined reference axis, but may also be configured to translate the coin interface tray laterally (e.g., along a x-axis), vertically (e.g., along a y-axis), and/or along any other defined axis or axes by means of a drive system 200, which may comprise a single drive system or a plurality of drive systems. This translation along one or more axes may be manual, wherein an operator inserting a coin tray 150 to be filled adjusts the lateral and/or vertical position of the coin interface tray 170 and coin tray 150, if necessary, to an appropriate position under the interface module 160. This translation along one or more axes may also be automated, wherein a drive system 200, such as one or more actuators or a belt drive adjusts, under instruction from the computer or processor 210, the lateral and/or vertical position (and/or along any other defined axis or axes) of the coin interface tray 170 and coin tray 150, if necessary, to a designated position under the interface module 160. As noted above, the computer or processor 210 may be “informed” of the particular coin tray 150 disposed for filling within the automated coin dispenser 100 by operator data entry using a conventional data entry device. In still another aspect, the automated coin dispenser 100 may comprise a vibrator (not shown) or actuator to vibrate or shake the coin interface tray 170 at one or more pre-selected frequencies and/or amplitudes or to cycle the coin interface tray through a range of selected frequencies and/or amplitudes to facilitate jogging of coins that are improperly disposed within the coin tray 150 into a preferred orientation.


In another aspect, the coin interface tray 170 may comprise “N” separate conductor surfaces, features (e.g., cavities/protrusions), or components defining switches. Each switch defines an information state, “on” or “off.” In various non-limiting aspects, the coin interface tray 170 switches may comprise surface-mounted pressure switches, exposed physical contacts, or exposed conductors configured to contact exposed conductors on a coin tray, cassette, or canister to be received by the coin interface tray. The switches may also comprise non-contact devices, such as a plurality of light sources (e.g., laser diodes) arranged to output a beam toward a portion of a coin tray, cassette, or canister received by the coin interface tray 170 and light sensors (e.g., CCDs) arranged to measure a reflected light or an incident light (e.g., light through holes in the coin tray 150), depending on the configuration, from a respective portion of the coin tray, cassette, or canister. In this latter example, the intensity of the reflected light could be correlated to an “on” or “off” state. Alternatively, the light sensors may be configured to sense an absence of light output from a continuous, intermittent, or ambient light source (e.g., which light source becomes partially or fully occluded or blocked by a coin in the coin tray) and output a signal corresponding thereto.


The switches, whatever the form, could be pre-selected in number and location to define, in combination, a sufficient number of discrete states to uniquely define a specific manufacturer and model of coin tray, cassette, canister, or the like, inserted adjacent thereto. In one aspect, the switch remains in a first state (e.g., an “off” state), such as by having opposing switch elements being electrically disconnected from one another and assumes a second state (e.g., an “on” state) when the opposing elements of the switch are forced into electrical contact, or are otherwise electrically connected, by insertion of a coin tray, cassette, or canister having a feature to interact with the selected switch configuration. The switches may be directly connected to inputs of a processor, computer, or logic circuit or may be routed through a conventional multiplexer, I/O device, or register. In combination, a plurality of switches defines 2N separate information states such that 4 switches (N=4) yields 16 discrete states and 8 switches (N=8) yields 256 discrete states. For a given population of coin trays or cassettes 150 desired to be associated with the automated coin tray refill system 100, the population will possess a variety of physical, electrical, magnetic, or optical characteristics, which permit configuration of the switches to uniquely identify each of the coin trays in the population. These characteristic data are stored in a conventional library or data base addressable by an address or pointer. The library or data base may be stored in a conventional memory device such as, but not limited to a ROM, solid-state memory device, hard-disk, floppy-disk, or CD-ROM drive.


Thus, for different pre-determined combinations of “N” switch states, the system 100 may access all necessary information regarding a coin tray or cassette 150 input into the coin interface tray 170 such as, but not limited to, coin tray or cassette home position, coin denomination center position, maximum coin count per position and/or denomination, coin tray or cassette denomination values, and coin tray center-coordinates relative to a predetermined reference point. In an example wherein the TELQUIP 2+ coin tray is inserted into the coin interface tray 170, pressure switches 1, 2, 4, 6, and 7 may be “on”, while pressure switches 3, 5 and 8 may be “off”. The computer or processor, upon accessing the library, matches these switch states with a pre-determined set of switch states uniquely assigned to the TELQUIP 2+ coin tray. Based on this unique association, the processor and computer code or instruction set will automatically set each system variable (e.g., home position, maximum coin count per position, coordinates of each coin tray, required positions of interface module 160, etc.) to accommodate the identified coin tray (e.g., TELQUIP 2+ coin tray). Thus, coin interface tray 170 may be a generic tray suitable to receive any one of a plurality of different coin trays 150, cassettes, canisters, or the like, from a variety of different manufacturers, whereupon the automated coin refill system is cooperatively associated with a memory device storing state information for such plurality of coin receptacles to enable the system to appropriately identify the type, style, manufacturer, and configuration of each coin receptacle.


In another aspect, the aforementioned switches are omitted and, instead, the user of the system is requested to input, such as through a touch screen display 190, the manufacturer and model number of a coin tray 150 to be filled. The information regarding such coin tray 150 (e.g., denominations, counts, spacing, etc.) is then accessed for use by the processor 210 and associated software and controls. In still another aspect, a single known coin tray 150 may be used and a coin interface tray 170, as such, is not required. The switches are merely one optional aspect of implemented a universal, automated coin filling system, but such a universal breadth is not a necessary part of the present concepts.


The automated coin tray refill system 100 may comprise a display 190, as shown in FIGS. 2(a)-2(d) and at least one data input device (e.g., display 190 may be a touch screen display) or, alternately, may comprise one or more conventional I/O ports to accept such devices. Display 190 is provided to provide visual feedback to an operator of the refill system 100. The computer 210 may be configured to display, upon execution of an appropriate code or instruction set, on display 190 information to notify the operator of a low count in any specific coin dispenser reservoir, indicate residual coin value per column, provide display for dispensing count and value per column, display day totals, tray totals and tray filling transactions, or alert the operator to an error in the system, such as a coin jam. The data input devices (e.g., touch-screen display 190) may also be adapted to require entry of an employee ID or code to track activity on the system 100, to limit access thereto, and to regulate functions accessible to various categories of users or operators.


In lieu of the aforementioned means by which the automated coin tray refill system 100 may automatically determine an exact make and model of a coin tray 150 inserted therein, a user of the automated coin tray refill system may, in one aspect, be prompted by an instruction on display 190 from the computer or processor 210 to enter the identifying, information for a particular coin tray 150, such as the manufacturer name, model number, configuration, etc., through an appropriate input device such as, but not limited to, a keyboard, touch screen display, mouse, microphone, bar code scanner, or soft key. This arrangement utilizes existing, system components, such as the processor 210 and display 190, to simplify the system architecture and reduce cost.


A conventional coin reader 180 is provided to provide to count the coins present in a specified stack or column of a coin tray. In one aspect, a single coin reader 180 is movably provided to translate or rotate between columns or trays of the coin tray 150 to determine a height of a coin stack therein. This translation of the coin reader 180 may be accomplished using any conventional drive mechanism including, but not limited to, a belt drive or a stepper motor. Alternatively, a plurality of movable coin readers 180 may be provided with an associated plurality of drive systems. In another aspect, a plurality of stationary coin readers 180 of an appropriate configuration may be provided. The coin reader(s) 180 is (are) configured to sense a coin height (or conversely a remaining height to be filled), with or independently of a processor, using conventional sensing arrangements including but not limited to, digital tape measures, fixed measurement tools, encoders (e.g., linear, rotatary, optical, etc.), mechanical switches, reflective sensors adapted to measure a reflected light from a LED or other light source or to measure a reflected acoustic or sound signal, or electrical resistance, capacitance, or hall effect position sensors (e.g., Honeywell SS400 series Hall effect digital position sensors), or even scales to measure a collected mass of coins. Any conventional coin reader or position sensor may be used in accord with the present concepts. The sensor or sensors may be positively or negatively configured to sense the presence of a sensed characteristic or, correspondingly, the absence of a sensed characteristic (i.e., sensing the presence of coins, or the absence or coins; sensing the activation of a switch or the non-activation of a switch), as desired. In combination with the computer or processor 210, the signals output by the coin reader(s) 180 are used to determine, for example, a residual coin count, a running coin count, and a final count.


In lieu of a coin reader 180 able to continuously monitor the exact number of coins present in (or coins absent from) a stack, one or more sensors or switches may be disposed at a position or more than one position to regulate the filling of the corresponding stack. For example, a sensor could be disposed at a 25% full point, a 50% full point, a 75% full point, a 95% full point and a 100% full point, or any other selected point or points, and the processor 210 in combination with associated software and controllers regulating the dispensing of coins from dispensers 120a-120d, could adjust the rate of flow so as not to overfill the tray or retain excess coinage in the interface module or other system components. In the event the combination of the control system components and sensors are not fast enough to prevent discharge of too many coins from the dispensers 120a-120d, a conventional bypass could be provided in the interface module 160 or collector point distribution member 130 to route excess coins into a holding area or escrow. As another option, the automated coin refilling system 100 may simply be configured to discharge a discrete predetermined amounts of coins, such as by offering a limited selection of options on display 190. For example, a user of the system may be offered the selection between $1, $2, $5, $10, $20, $30, $40, $50, etc. or any other value or increment, of any selected coin (e.g., penny, nickel, dime, quarter, etc.). These variables may clearly include any conventional denomination and container amount (e.g., a standard 40-quarter roll would take a $10 fill). Alternately, the user of the system may be offered the selected to dispense a selected quantity of coins of a selected denomination.


When a coin tray 150 is inserted into the coin interface tray 170 and is recognized by the automated coin tray refill system, or when such identifying information is entered by a user using an appropriate data input device, the computer or processor 210 may utilize the signals output by the coin reader 180 for each tray or stack of the coin tray to determine an initial state of the coin tray (e.g., full, empty, partially filled, etc.). For example, the coin reader 180 may output signals for each of the TELQUIP 2+ coin trays to the computer 210 which, upon accessing of the library information regarding the TELQUIP 2+ coin tray, can determine that the signals output by the coin reader 180 correspond to a 10 tray that is 20% full, an empty 5¢ tray, a 10% full 10¢ tray, and an empty 25¢ tray. The computer 210 can then to provide count and denomination instructions to the dispenser system.


In one aspect, the computer or processor 210 comprises a code chip and a library chip, which may be separate chips, partitioned portions of a single chip, or different logical units. The code chip comprises or is operatively associated with an instruction set or coding which, upon execution, interprets data output from the coin interface tray 170, compares that interpreted data to data stored in a library address, and separately stores or outputs the data of a library address found to correspond to the interpreted data. The code chip also interfaces with the display 190 and, upon execution of an appropriate code or instruction set based upon a corresponding signal from the code chip, issues a low coin alert for a specified denomination reservoir 110(a)-110(d).


The code chip further interfaces with the dispensers 120(a)-120(d) and coin reader 180 and, upon execution of an appropriate code or instruction set based upon a corresponding signal from the code chip, reads an existing coin count and value per column in the coin tray 150 tray or reads the dispensed value and coin count per column. The code chip is also configured to compile information including, for example, denomination totals and errors for individual filling sessions or for cumulative periods, such as day totals.


In various aspects, the code chip reads output signals from the respective drive systems and/or actuators which might employ position encoders (e.g., linear encoders, rotary encoders, incremental encoders, magnetic encoders, optical encoders, etc.) or other mechanisms or devices to provide an indication of incremental movement or step of the associated drive system or actuator, such as drive systems controlling the dispensers 120(a)-120(d), interface module 160, coin reader 180, and/or coin interface tray 170. The output signals from the respective drive signals and/or actuators provide information which may be correlated to the position of the drive system, such as the distance of a selected drive system component reference point from a home position. The code chip is also able to analyze thermal signals, such as might be output by a motor thermal overload circuit, and provide output signals with an appropriate pre-programmed response, such as to shut down an overheating motor and to display an error or warning message on display 190.


The code chip is also configured, by means of appropriate instructions sets and/or coding, to analyze electrical contact signals from the switches or other like components and access a library or data base to compare the plurality of switch states to known switch states for specified coin trays 150. The code chip is also configured, by means of appropriate instructions sets and/or coding, to analyze output signals from coin reader 180 to provide a current coin count or to calculate a residual coin depth/position (defining existing coin count or remaining coin count) and to correspondingly output a signal to the coin dispensers 120(a)-120(d) to output a number of coins needed to fill the coin tray 150 denomination, as well as to calculate sums, day totals, perform other similar types of calculations and write them to files for later access.



FIG. 3 shows a block diagram of a coin dispenser 100 in accord with the present concepts illustrating the relationship between some of the expected systems in the implementation herein described. FIG. 3 illustrates one approach to the automated method of filling coin trays, cassettes, hoppers, bags, and canisters in accord with the presently disclosed concepts and this depicted conceptual framework outlines some features characteristic of one aspect of automated coin tray refill device 100.



FIG. 3 shows, in block diagram form, a plurality of reservoirs 110a-110d, each reservoir feeding into a respective plurality of dispensers 120a-120d. The output from dispensers 120a-120d feeds into the collector point distribution 130 and then to the interface module tray 170 through an appropriate distribution device (e.g., a funnel, chute, or belt). A coin tray 150 of a specific brand and model number is disposed in the interface module tray 170 and switches or other identifying features (or operator input) are used to provide signals to the computer 210 to inform the automated coin tray refill device 100 of the particular characteristics of the coin tray. This characteristic information data is stored in a data base or library accessible to the computer 210. Once the coin tray 150 configuration is known, the computer 210 may then control, for example, a coin tray drive or coin interface module tray 170 drive and/or the coin reader 180 drive to position the coin tray 150 and/or coin reader 180 for initial inventorying or reading of the tray position. Such drive systems would advantageously comprise encoders adapted to provide position feedback signals to the computer 210. The computer 210 controls the output from the dispensers 120(a)-120(d) and monitors, for example, the coin fill position, coin count, and value fill conditions using the coin reader 180.


It is to be noted that the processor 210 and associated software and instructions may be configured to vary any of the above noted variables (e.g., position and/or rotational orientation of the coin tray; configuration of funnel output; rate of dispensing of coins from dispensers 120a-120d; movement, rotation, vibration, and/or operating speed of collector point distribution member 130, as applicable, etc.) dynamically during any portion of the refilling process. For example, the coin interface tray 170 angle with respect to the interface module 160 may vary between a pre-selected range of angles and/or the output configuration of the interface module output may be adjusted during filling of a giving denomination to take into account the particular characteristics and behaviors of each type of coin throughout the filling process.


While the present concepts have been described with reference to one or more particular embodiments, those skilled in the art will recognize that many changes may be made thereto without departing from the spirit and scope of the concepts presented herein. For example, although the disclosure discusses the example wherein the coin tray 150 channels are sequentially filled, the coin dispenser 100 could be configured to fill a plurality of channels simultaneously, such as in the aspect of the disclosure wherein a plurality of interface modules 160 and/or a plurality of collector point distribution members 130 are provided. Moreover, a plurality of coin trays 150 could also be processed and filled simultaneously with appropriate multiplication of coin tray receiving areas and interface modules. In one aspect thereof, a single coin source (e.g., a coin reservoir or a coin sorting machine) may dispense coins to a plurality of affixed coin trays (e.g., quarters to one tray having multiple quarter coin channels, dimes to another tray having multiple dime coin channels, a mixture of quarters, nickels, dimes to yet another coin tray, etc.).


In still other potential modifications, the output of the interface module 160 could be configured, via a conventional mechanical connection device (e.g., a threaded portion), to receive any one of a plurality of different adapters configured to correspond to a specified coin tray. Such adapters could be particularly useful to fill individual coin tubes or paper roll tubes. In still another example, the coin interface tray 170 and the coin tray 150 could be integrated into a single unit.


In accord with another aspect, a method for automatic filling of a coin receptacle comprises the steps of providing an automated coin tray refilling system having at least one coin reservoir and providing at least one coin dispenser for regulating the dispensing of coins. The method also includes providing a collector point distribution member adapted to receive coins from coin dispenser(s) at one portion thereof and to output the coins at another portion thereof. The method further includes the step of providing an interface module having an input end disposed to receive coins output from the collector point distribution member and having an output end for dispensing coins, as well as a coin interface tray adapted to receive a coin tray, paper coin roll, and/or coin tube. The method further includes the step of providing a processor(s), wherein the interface module and/or coin interface tray comprise a drive system configured to move a respective one of the interface module and coin interface tray. The method also includes the steps of disposing a coin tray in the coin receiving area and activating the automated coin dispenser.


Each of these embodiments and obvious variations thereof is contemplated as falling within the spirit and scope of the disclosure, set forth in the following claims. For example, the individual coin channels in the dispenser trays 150 may be filled sequentially or non-sequentially and may be filled single or in plural (i.e., more than one coin channel (e.g., some, all) being filled substantially simultaneously). Further, various components described herein may be combined without departing from the concepts presented herein such as, but not limited to, the interface module 160 may be integrated with the collector point distribution 130 or the collector point distribution may be integrated with the dispensers 120a-d.


The appended claims reflect certain aspects and combinations of the present concepts, but are not exhaustive of all such aspects and combinations. Further, the present concepts include all possible logical combinations of the claims and of the various claim elements appended hereto, without limitation, within the associated claim sets regardless of the presently indicated dependency.

Claims
  • 1. An automated coin tray refilling system comprising: a plurality of coin reservoirs;a plurality of coin dispensers for regulating the dispensing of coins from an associated one of the plurality of coin reservoirs;a collector point distribution member adapted to receive coins from each of the plurality of coin dispensers at one portion thereof and to output the coins at another portion thereof;an interface module having an input end disposed substantially adjacent the collector point distribution member output and having an output end for dispensing coins;a coin interface tray adapted to receive at least one coin tray; andat least one processor;wherein at least one of the interface module and coin interface tray comprises a drive system configured to move a respective one of the interface module and coin interface tray relative to the other one of the interface module and coin interface tray.
  • 2. An automated coin tray refilling system according to claim 1, wherein each of the interface module and coin interface tray comprises a drive system.
  • 3. An automated coin tray refilling system according to claim 1, wherein the coin interface tray comprises a drive system configured to move the coin interface tray along a plurality of axes.
  • 4. An automated coin tray refilling system according to claim 1, wherein the coin interface tray drive system comprises a drive system configured to rotate the coin interface tray.
  • 5. An automated coin tray refilling system according to claim 1, wherein the interface module comprises a funnel.
  • 6. An automated coin tray refilling system comprising: an interface module having an input end adapted to receive coins from a coin source and an output end for dispensing coins; anda coin interface tray adapted to receive at least one coin tray;at least one processor;wherein at least one of the interface module and coin interface tray comprises a drive system operatively associated with the processor and configured to move a respective one of the interface module and coin interface tray relative to the other one of the interface module and coin interface tray.
  • 7. A method for automatic filling of a coin receptacle comprising the steps of: providing an automated coin dispenser comprising an interface module having an input end adapted to receive coins from a coin source and an output end for dispensing coins, a coin receiving area adapted to receive at least one coin receptacle, and at least one processor, wherein at least one of the interface module and receiving area comprises a drive system operatively associated with the processor and configured to move a respective one of the interface module and coin receiving area relative to the other one of the interface module and coin receiving area;disposing a coin receptacle in the coin receiving area;activating the automated coin dispenser.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of the U.S. Provisional Application 60/610,050 filed on Sep. 15, 2004 and entitled “System, Method And Apparatus For Automatically Filling A Coin Cassette” and this provisional application is hereby incorporated by reference in its entirety.

US Referenced Citations (460)
Number Name Date Kind
2570920 Clough et al. Oct 1951 A
2669998 Buchholz Feb 1954 A
2750949 Kulo et al. Jun 1956 A
2835260 Buchholz May 1958 A
2865561 Rosapepe Dec 1958 A
3132654 Adams May 1964 A
3288153 Ballard et al. Nov 1966 A
3376970 Roseberg Apr 1968 A
3585782 Staley Jun 1971 A
3771583 Bottemiller Nov 1973 A
3778595 Hatanaka et al. Dec 1973 A
3916922 Prumm Nov 1975 A
3998237 Kressin Dec 1976 A
3998376 Myers et al. Dec 1976 A
4050218 Call Sep 1977 A
4058999 Gabriele Nov 1977 A
4059122 Kinoshita Nov 1977 A
4075460 Gorgens Feb 1978 A
4124111 Hayashi Nov 1978 A
4150740 Douno Apr 1979 A
4166945 Inoyama et al. Sep 1979 A
4172462 Uchida et al. Oct 1979 A
4179685 O'Maley Dec 1979 A
4179723 Spencer Dec 1979 A
4184366 Butler Jan 1980 A
4197986 Nagata Apr 1980 A
4208549 Polillo et al. Jun 1980 A
4228812 Marti Oct 1980 A
4232295 McConnell Nov 1980 A
4234003 Ristvedt et al. Nov 1980 A
4249552 Margolin et al. Feb 1981 A
4251867 Uchida et al. Feb 1981 A
4286703 Schuller et al. Sep 1981 A
RE30773 Glaser et al. Oct 1981 E
4310885 Azcua et al. Jan 1982 A
4317957 Sendrow Mar 1982 A
4341951 Benton Jul 1982 A
4355369 Garvin Oct 1982 A
4360034 Davila et al. Nov 1982 A
4369442 Werth et al. Jan 1983 A
4380316 Glinka et al. Apr 1983 A
4383540 De Meyer et al. May 1983 A
4385285 Horst et al. May 1983 A
4412292 Sedam et al. Oct 1983 A
4416299 Bergman Nov 1983 A
4417136 Rushby et al. Nov 1983 A
4423316 Sano et al. Dec 1983 A
4434359 Watanabe Feb 1984 A
4436103 Dick Mar 1984 A
4454414 Benton Jun 1984 A
4474197 Kinoshita et al. Oct 1984 A
4488116 Plesko Dec 1984 A
4531531 Johnson et al. Jul 1985 A
4543969 Rasmussen Oct 1985 A
4549561 Johnson et al. Oct 1985 A
4556140 Okada Dec 1985 A
4558711 Ikuta Yoshiaki et al. Dec 1985 A
4564036 Ristvedt Jan 1986 A
4570655 Raterman Feb 1986 A
4594664 Hashimoto Jun 1986 A
4602332 Hirose et al. Jul 1986 A
4607649 Taipale et al. Aug 1986 A
4620559 Childers et al. Nov 1986 A
4641239 Takesako Feb 1987 A
4674260 Rasmussen et al. Jun 1987 A
4681128 Ristvedt et al. Jul 1987 A
4705154 Masho et al. Nov 1987 A
4718218 Ristvedt Jan 1988 A
4731043 Ristvedt et al. Mar 1988 A
4733765 Watanabe Mar 1988 A
4749074 Ueki et al. Jun 1988 A
4753624 Adams et al. Jun 1988 A
4753625 Okada Jun 1988 A
4765464 Ristvedt Aug 1988 A
4766548 Cedrone et al. Aug 1988 A
4775353 Childers et al. Oct 1988 A
4775354 Rasmussen et al. Oct 1988 A
4778983 Ushikubo Oct 1988 A
4803347 Sugahara et al. Feb 1989 A
4804830 Miyagisima et al. Feb 1989 A
4812629 O'Neil et al. Mar 1989 A
4839505 Bradt et al. Jun 1989 A
4844369 Kanayachi Jul 1989 A
4848556 Shah et al. Jul 1989 A
4863414 Ristvedt et al. Sep 1989 A
4883158 Kobayashi et al. Nov 1989 A
4884212 Stutsman Nov 1989 A
4900909 Nagashima et al. Feb 1990 A
4908516 West Mar 1990 A
4921463 Primdahl et al. May 1990 A
4936435 Griner Jun 1990 A
4949532 Fujimagari et al. Aug 1990 A
4953086 Fukatsu Aug 1990 A
4954697 Kokubun et al. Sep 1990 A
4964495 Rasmussen Oct 1990 A
4966570 Ristvedt et al. Oct 1990 A
4970655 Winn et al. Nov 1990 A
4971187 Furuya et al. Nov 1990 A
4988849 Sasaki et al. Jan 1991 A
4992647 Konishi et al. Feb 1991 A
4995848 Goh Feb 1991 A
5009627 Rasmussen Apr 1991 A
5010238 Kadono et al. Apr 1991 A
5010485 Bigari Apr 1991 A
5011455 Rasmussen Apr 1991 A
5022889 Ristvedt et al. Jun 1991 A
5025139 Halliburton, Jr. Jun 1991 A
5026320 Rasmussen Jun 1991 A
5031098 Miller et al. Jul 1991 A
5033602 Saarinen et al. Jul 1991 A
5039848 Stoken Aug 1991 A
5055086 Raterman et al. Oct 1991 A
5055657 Miller et al. Oct 1991 A
5064999 Okamoto et al. Nov 1991 A
5080633 Ristvedt et al. Jan 1992 A
5091713 Horne et al. Feb 1992 A
5104353 Ristvedt et al. Apr 1992 A
5105601 Horiguchi et al. Apr 1992 A
5106338 Rasmussen et al. Apr 1992 A
5111927 Schulze, Jr. May 1992 A
5114381 Ueda et al. May 1992 A
5120945 Nishibe et al. Jun 1992 A
5123873 Rasmussen Jun 1992 A
5129205 Rasmussen Jul 1992 A
5135435 Rasmussen Aug 1992 A
5140517 Nagata et al. Aug 1992 A
5141443 Rasmussen et al. Aug 1992 A
5141472 Todd et al. Aug 1992 A
5145455 Todd Sep 1992 A
5146067 Sloan et al. Sep 1992 A
5154272 Nishiumi et al. Oct 1992 A
5163866 Rasmussen Nov 1992 A
5163867 Rasmussen Nov 1992 A
5163868 Adams et al. Nov 1992 A
5167313 Dobbins et al. Dec 1992 A
5175416 Mansvelt et al. Dec 1992 A
5176565 Ristvedt et al. Jan 1993 A
5179517 Sarbin et al. Jan 1993 A
5183142 Latchinian et al. Feb 1993 A
5184709 Nishiumi et al. Feb 1993 A
5194037 Jones et al. Mar 1993 A
5197919 Geib et al. Mar 1993 A
5205780 Rasmussen Apr 1993 A
5207784 Schwartzendruber May 1993 A
5209696 Rasmussen et al. May 1993 A
5236071 Lee Aug 1993 A
5243174 Veeneman et al. Sep 1993 A
5251738 Dabrowski Oct 1993 A
5252811 Henochowicz et al. Oct 1993 A
5253167 Yoshida et al. Oct 1993 A
5263566 Nara et al. Nov 1993 A
5265874 Dickinson et al. Nov 1993 A
5268561 Kimura et al. Dec 1993 A
5277651 Rasmussen et al. Jan 1994 A
5282127 Mii Jan 1994 A
5286226 Rasmussen Feb 1994 A
5286954 Sato et al. Feb 1994 A
5291003 Avnet et al. Mar 1994 A
5291560 Daugman Mar 1994 A
5293981 Abe et al. Mar 1994 A
5297030 Vassigh et al. Mar 1994 A
5297598 Rasmussen Mar 1994 A
5297986 Ristvedt et al. Mar 1994 A
5299977 Mazur et al. Apr 1994 A
5324922 Roberts Jun 1994 A
5326104 Pease et al. Jul 1994 A
5370575 Geib et al. Dec 1994 A
5372542 Geib et al. Dec 1994 A
5374814 Kako et al. Dec 1994 A
5379344 Larsson et al. Jan 1995 A
5379875 Shames et al. Jan 1995 A
5382191 Rasmussen Jan 1995 A
5390776 Thompson Feb 1995 A
5401211 Geib et al. Mar 1995 A
5404986 Hossfield et al. Apr 1995 A
5410590 Blood et al. Apr 1995 A
RE34934 Raterman et al. May 1995 E
5425669 Geib et al. Jun 1995 A
5429550 Mazur et al. Jul 1995 A
5440108 Tran et al. Aug 1995 A
5450938 Rademacher Sep 1995 A
5453047 Mazur et al. Sep 1995 A
5468182 Geib Nov 1995 A
5470079 LeStrange et al. Nov 1995 A
5474495 Geib et al. Dec 1995 A
5474497 Jones et al. Dec 1995 A
5480348 Mazur et al. Jan 1996 A
5489237 Geib et al. Feb 1996 A
5500514 Veeneman et al. Mar 1996 A
5501631 Mennie et al. Mar 1996 A
5507379 Mazur et al. Apr 1996 A
5514034 Jones et al. May 1996 A
5520577 Rasmussen May 1996 A
5538468 Ristvedt et al. Jul 1996 A
5542880 Geib et al. Aug 1996 A
5542881 Geib Aug 1996 A
5553320 Matsuura et al. Sep 1996 A
5559887 Davis et al. Sep 1996 A
5564546 Molbak et al. Oct 1996 A
5564974 Mazur et al. Oct 1996 A
5564978 Jones et al. Oct 1996 A
5570465 Tsakanikas Oct 1996 A
5573457 Watts et al. Nov 1996 A
5584758 Geib Dec 1996 A
5592377 Lipkin Jan 1997 A
5602933 Blackwell et al. Feb 1997 A
5620079 Molbak Apr 1997 A
5623547 Jones et al. Apr 1997 A
5625562 Veeneman et al. Apr 1997 A
5630494 Strauts May 1997 A
5641050 Smith et al. Jun 1997 A
5650605 Morioka et al. Jul 1997 A
5650761 Gomm et al. Jul 1997 A
5652421 Veeneman et al. Jul 1997 A
5665952 Ziarno Sep 1997 A
5679070 Ishida et al. Oct 1997 A
5684597 Hossfield et al. Nov 1997 A
5696366 Ziarno Dec 1997 A
5743373 Strauts Apr 1998 A
5746299 Molbak et al. May 1998 A
5774874 Veeneman et al. Jun 1998 A
5782686 Geib et al. Jul 1998 A
5799767 Molbak Sep 1998 A
5813510 Rademacher Sep 1998 A
5823315 Hoffman et al. Oct 1998 A
5830054 Petri Nov 1998 A
5838812 Pare, Jr. et al. Nov 1998 A
5842188 Ramsey et al. Nov 1998 A
5842916 Gerrity et al. Dec 1998 A
5850076 Morioka et al. Dec 1998 A
5854581 Mori et al. Dec 1998 A
5865673 Geib et al. Feb 1999 A
5880444 Shibata et al. Mar 1999 A
5892211 Davis et al. Apr 1999 A
5892827 Beach et al. Apr 1999 A
5909793 Beach et al. Jun 1999 A
5909794 Molbak et al. Jun 1999 A
5913399 Takemoto et al. Jun 1999 A
5918748 Clark et al. Jul 1999 A
5940623 Watts et al. Aug 1999 A
5944600 Zimmermann Aug 1999 A
5951476 Beach Sep 1999 A
5957262 Molbak et al. Sep 1999 A
5988348 Martin et al. Nov 1999 A
5995949 Morioka et al. Nov 1999 A
5997395 Geib et al. Dec 1999 A
6017270 Ristvedt et al. Jan 2000 A
6021883 Casanova et al. Feb 2000 A
6032859 Muehlberger et al. Mar 2000 A
6039644 Geib et al. Mar 2000 A
6039645 Mazur Mar 2000 A
6042470 Geib et al. Mar 2000 A
6047807 Molbak Apr 2000 A
6047808 Neubarth et al. Apr 2000 A
6056104 Neubarth et al. May 2000 A
6080056 Karlsson Jun 2000 A
6082519 Martin et al. Jul 2000 A
6086471 Zimmermann Jul 2000 A
6095313 Molbak et al. Aug 2000 A
6116402 Beach et al. Sep 2000 A
6131625 Casanova et al. Oct 2000 A
6139418 Geib et al. Oct 2000 A
6142285 Panzeri et al. Nov 2000 A
6145738 Stinson et al. Nov 2000 A
6154879 Pare, Jr. et al. Nov 2000 A
6168001 Davis Jan 2001 B1
6171182 Geib et al. Jan 2001 B1
6174230 Gerrity et al. Jan 2001 B1
6196371 Martin et al. Mar 2001 B1
6196913 Geib et al. Mar 2001 B1
6200213 Cole Mar 2001 B1
6230928 Hanna et al. May 2001 B1
6264545 Magee et al. Jul 2001 B1
6308887 Korman et al. Oct 2001 B1
6318536 Korman et al. Nov 2001 B1
6318537 Jones et al. Nov 2001 B1
6349972 Geiger et al. Feb 2002 B1
6412620 Imura Jul 2002 B1
6431342 Schwartz Aug 2002 B1
6438230 Moore Aug 2002 B1
6456928 Johnson Sep 2002 B1
6471030 Neubarth et al. Oct 2002 B1
6474548 Montross et al. Nov 2002 B1
6484863 Molbak Nov 2002 B1
6484884 Gerrity et al. Nov 2002 B1
6494776 Molbak Dec 2002 B1
6499277 Warner et al. Dec 2002 B1
6503138 Spoehr et al. Jan 2003 B2
6520308 Martin et al. Feb 2003 B1
6522772 Morrison et al. Feb 2003 B1
6547131 Foodman et al. Apr 2003 B1
6552781 Rompel et al. Apr 2003 B1
6554185 Montross et al. Apr 2003 B1
6579165 Kuhlin et al. Jun 2003 B2
6581042 Pare, Jr. et al. Jun 2003 B2
6602125 Martin Aug 2003 B2
6609604 Jones et al. Aug 2003 B1
6612921 Geib et al. Sep 2003 B2
6637576 Jones et al. Oct 2003 B1
6640956 Zwieg et al. Nov 2003 B1
6644696 Brown et al. Nov 2003 B2
6655585 Shinn Dec 2003 B2
6659259 Knox et al. Dec 2003 B2
6662166 Pare, Jr. et al. Dec 2003 B2
6663675 Blake et al. Dec 2003 B2
6666318 Gerrity et al. Dec 2003 B2
6755730 Blake et al. Jun 2004 B2
6758316 Molbak Jul 2004 B2
6761308 Hanna et al. Jul 2004 B1
6766892 Martin et al. Jul 2004 B2
6783452 Hino et al. Aug 2004 B2
6783785 Raghavan et al. Aug 2004 B1
6786398 Stinson et al. Sep 2004 B1
6854581 Molbak Feb 2005 B2
6854640 Peklo Feb 2005 B2
6863168 Gerrity et al. Mar 2005 B1
6892871 Strauts et al. May 2005 B2
6896118 Jones et al. May 2005 B2
6928546 Nanavati et al. Aug 2005 B1
6950810 Lapsley et al. Sep 2005 B2
6953150 Shepley et al. Oct 2005 B2
6957746 Martin et al. Oct 2005 B2
6966417 Peklo et al. Nov 2005 B2
6976570 Molbak Dec 2005 B2
6988606 Geib et al. Jan 2006 B2
6991530 Hino et al. Jan 2006 B2
7004831 Hino et al. Feb 2006 B2
7014029 Winters Mar 2006 B2
7014108 Sorenson et al. Mar 2006 B2
7017729 Gerrity et al. Mar 2006 B2
7018286 Blake et al. Mar 2006 B2
7028827 Molbak et al. Apr 2006 B1
7036651 Tam et al. May 2006 B2
7083036 Adams Aug 2006 B2
7113929 Beach et al. Sep 2006 B1
7131580 Molbak Nov 2006 B2
7149336 Jones et al. Dec 2006 B2
7152727 Waechter Dec 2006 B2
7158662 Chiles Jan 2007 B2
7188720 Geib et al. Mar 2007 B2
7213697 Martin et al. May 2007 B2
7243773 Bochonok et al. Jul 2007 B2
7269279 Chiles Sep 2007 B2
7303119 Molbak Dec 2007 B2
7331521 Sorenson et al. Feb 2008 B2
7337890 Bochonok et al. Mar 2008 B2
7427230 Blake et al. Sep 2008 B2
7438172 Long et al. Oct 2008 B2
7464802 Gerrity et al. Dec 2008 B2
7500568 Cousin Mar 2009 B2
7520374 Martin et al. Apr 2009 B2
7551764 Chiles et al. Jun 2009 B2
7552810 Mecklenburg Jun 2009 B2
7580859 Economy et al. Aug 2009 B2
7654450 Mateen et al. Feb 2010 B2
7658270 Bochonok et al. Feb 2010 B2
7743902 Wendell et al. Jun 2010 B2
7778456 Jones et al. Aug 2010 B2
7819308 Osterberg et al. Oct 2010 B2
7874478 Molbak Jan 2011 B2
7886980 Nishimura et al. Feb 2011 B2
7931304 Brown et al. Apr 2011 B2
7946406 Blake et al. May 2011 B2
7963382 Wendell et al. Jun 2011 B2
7980378 Jones et al. Jul 2011 B2
8023715 Jones et al. Sep 2011 B2
8042732 Blake et al. Oct 2011 B2
8229821 Mennie et al. Jul 2012 B2
20010034203 Geib et al. Oct 2001 A1
20010048025 Shinn Dec 2001 A1
20020065033 Geib et al. May 2002 A1
20020069104 Beach et al. Jun 2002 A1
20020074209 Karlsson Jun 2002 A1
20020095587 Doyle et al. Jul 2002 A1
20020107738 Beach et al. Aug 2002 A1
20020126885 Mennie et al. Sep 2002 A1
20020130011 Casanova et al. Sep 2002 A1
20020147588 Davis et al. Oct 2002 A1
20020151267 Kuhlin et al. Oct 2002 A1
20020174348 Ting Nov 2002 A1
20020179401 Knox et al. Dec 2002 A1
20030004878 Akutsu et al. Jan 2003 A1
20030013403 Blake et al. Jan 2003 A1
20030081824 Mennie et al. May 2003 A1
20030127299 Jones et al. Jul 2003 A1
20030168309 Geib et al. Sep 2003 A1
20030168310 Strauts et al. Sep 2003 A1
20030182217 Chiles Sep 2003 A1
20030190882 Blake et al. Oct 2003 A1
20030234153 Blake et al. Dec 2003 A1
20040055902 Peklo Mar 2004 A1
20040092222 Kowalczyk et al. May 2004 A1
20040153406 Alarcon-Luther et al. Aug 2004 A1
20040153421 Robinson Aug 2004 A1
20040154899 Peklo et al. Aug 2004 A1
20040173432 Jones Sep 2004 A1
20040188221 Carter Sep 2004 A1
20040200691 Geib et al. Oct 2004 A1
20040231956 Adams et al. Nov 2004 A1
20040256197 Blake et al. Dec 2004 A1
20050006197 Wendell et al. Jan 2005 A1
20050035140 Carter Feb 2005 A1
20050040007 Geib et al. Feb 2005 A1
20050040225 Csulits et al. Feb 2005 A1
20050045450 Geib et al. Mar 2005 A1
20050067305 Bochonok et al. Mar 2005 A1
20050077142 Tam et al. Apr 2005 A1
20050087425 Peklo Apr 2005 A1
20050108165 Jones et al. May 2005 A1
20050109836 Ben-Aissa May 2005 A1
20050124407 Rowe Jun 2005 A1
20050156318 Douglas Jul 2005 A1
20050176361 Quattrini et al. Aug 2005 A1
20050205654 Carter Sep 2005 A1
20050205655 Carter Sep 2005 A1
20050228717 Gusler et al. Oct 2005 A1
20050256792 Shimizu et al. Nov 2005 A1
20060037835 Doran et al. Feb 2006 A1
20060054455 Kuykendall et al. Mar 2006 A1
20060054457 Long et al. Mar 2006 A1
20060060363 Carter Mar 2006 A2
20060064379 Doran et al. Mar 2006 A1
20060069654 Beach et al. Mar 2006 A1
20060148394 Blake et al. Jul 2006 A1
20060149415 Richards Jul 2006 A1
20060151285 String Jul 2006 A1
20060154589 String Jul 2006 A1
20060175176 Blake Aug 2006 A1
20060182330 Chiles Aug 2006 A1
20060196754 Bochonok et al. Sep 2006 A1
20060205481 Dominelli Sep 2006 A1
20060207856 Dean et al. Sep 2006 A1
20060219519 Molbak et al. Oct 2006 A1
20070051582 Bochonok et al. Mar 2007 A1
20070071302 Jones et al. Mar 2007 A1
20070108015 Bochonok et al. May 2007 A1
20070119681 Blake et al. May 2007 A1
20070181676 Mateen et al. Aug 2007 A1
20070187494 Hanna Aug 2007 A1
20070221470 Mennie et al. Sep 2007 A1
20070269097 Chiles et al. Nov 2007 A1
20080033829 Mennie et al. Feb 2008 A1
20080044077 Mennie et al. Feb 2008 A1
20080220707 Jones et al. Sep 2008 A1
20090018959 Doran et al. Jan 2009 A1
20090236200 Hallowell et al. Sep 2009 A1
20090236201 Blake et al. Sep 2009 A1
20090239459 Watts et al. Sep 2009 A1
20090242626 Jones et al. Oct 2009 A1
20090320106 Jones et al. Dec 2009 A1
20100038419 Blake et al. Feb 2010 A1
20100198726 Doran et al. Aug 2010 A1
20100261421 Wendell et al. Oct 2010 A1
20100276485 Jones et al. Nov 2010 A1
20100327005 Martin et al. Dec 2010 A1
20110098845 Blake et al. Apr 2011 A1
20110099105 Mennie et al. Apr 2011 A1
20110270695 Jones et al. Nov 2011 A1
20120067950 Blake et al. Mar 2012 A1
20120156976 Blake et al. Jun 2012 A1
Foreign Referenced Citations (109)
Number Date Country
2235925 Nov 1995 CA
2189330 Dec 2000 CA
2143943 Mar 2003 CA
06 60 354 May 1938 DE
30 21 327 Dec 1981 DE
0 351 217 Jan 1990 EP
0 667 973 Jan 1997 EP
0 926 634 Jun 1999 EP
1 104 920 Jun 2001 EP
1 209 639 May 2002 EP
1 528 513 May 2005 EP
2042254 Feb 1971 FR
2035642 Jun 1980 GB
2175427 Nov 1986 GB
2198274 Jun 1988 GB
2458387 Sep 2009 GB
2468783 Sep 2010 GB
49-058899 Jun 1974 JP
52-014495 Feb 1977 JP
52-071300 Jun 1977 JP
56-040992 Apr 1981 JP
57-117080 Jul 1982 JP
59-079392 May 1984 JP
60-016271 Feb 1985 JP
62-134168 Aug 1987 JP
62-182995 Aug 1987 JP
62-221773 Sep 1987 JP
62-166562 Oct 1987 JP
64-035683 Feb 1989 JP
64-042789 Feb 1989 JP
64-067698 Mar 1989 JP
01-118995 May 1989 JP
01-307891 Dec 1989 JP
02-050793 Feb 1990 JP
02-252096 Oct 1990 JP
03-012776 Jan 1991 JP
03-063795 Mar 1991 JP
03-092994 Apr 1991 JP
03-156673 Jul 1991 JP
04-085695 Mar 1992 JP
04-175993 Jun 1992 JP
05-046839 Feb 1993 JP
05-217048 Aug 1993 JP
05-274527 Oct 1993 JP
06-035946 Feb 1994 JP
06-103285 Apr 1994 JP
09-251566 Sep 1997 JP
2002-117439 Apr 2002 JP
2003-242287 Aug 2003 JP
2004-213188 Jul 2004 JP
44 244 Sep 1988 SE
WO 8500909 Feb 1985 WO
WO 9106927 May 1991 WO
WO 9108952 Jun 1991 WO
WO 9112594 Aug 1991 WO
WO 9118371 Nov 1991 WO
WO 9208212 May 1992 WO
WO 9220043 Nov 1992 WO
WO 9220044 Nov 1992 WO
WO 9222044 Dec 1992 WO
WO 9300660 Jan 1993 WO
WO 9309621 May 1993 WO
WO 9406101 Mar 1994 WO
WO 9408319 Apr 1994 WO
WO 9423397 Oct 1994 WO
WO 9502226 Jan 1995 WO
WO 9504978 Feb 1995 WO
WO 9506920 Mar 1995 WO
WO 9509406 Apr 1995 WO
WO 9513596 May 1995 WO
WO 9519017 Jul 1995 WO
WO 9523387 Aug 1995 WO
WO 9530215 Nov 1995 WO
WO 9607163 Mar 1996 WO
WO 9607990 Mar 1996 WO
WO 9612253 Apr 1996 WO
WO 9627525 Sep 1996 WO
WO 9627859 Sep 1996 WO
WO 9722919 Jun 1997 WO
WO 9725692 Jul 1997 WO
WO 9824041 Jun 1998 WO
WO 9824067 Jun 1998 WO
WO 9848383 Oct 1998 WO
WO 9848384 Oct 1998 WO
WO 9848385 Oct 1998 WO
WO 9851082 Nov 1998 WO
WO 9859323 Dec 1998 WO
WO 9900776 Jan 1999 WO
WO 9906937 Feb 1999 WO
WO 9916027 Apr 1999 WO
WO 9933030 Jul 1999 WO
WO 9941695 Aug 1999 WO
WO 9948057 Sep 1999 WO
WO 9948058 Sep 1999 WO
WO 0048911 Aug 2000 WO
WO 0065546 Nov 2000 WO
WO 0163565 Aug 2001 WO
WO 02071343 Sep 2002 WO
WO 03052700 Jun 2003 WO
WO 03079300 Sep 2003 WO
WO 03085610 Oct 2003 WO
WO 03107280 Dec 2003 WO
WO 2004044853 May 2004 WO
WO 2004109464 Dec 2004 WO
WO 2005041134 May 2005 WO
WO 2005088563 Sep 2005 WO
WO 2006086531 Aug 2006 WO
WO 2007035420 Mar 2007 WO
WO 2007120825 Oct 2007 WO
Non-Patent Literature Citations (89)
Entry
Product Information for Canister Loading Solution Transact CLS Coin Dispenser by Telequip® (2004) 2 pages.
Press Release—Telequip Develops a Coin Loading Solution—(Apr. 29, 2004 ) 2 pages.
Features Sheet for CoinStream™ Self-Service Mixed Coin Output Systems; Self Service Coin.com by Magner © 2005, 2 pages.
Telequip Coin Dispenser Canister Loading Device Instruction Manual (undated) 2 pages.
HM-4 Coin Hopper Product Information Sheet (undated) 1 page.
Amid Industries: AI-1500 ‘Pulsar’ High Performance Sorting and Bagging Machine, 13 pages (date unknown, but prior to Dec. 14, 2000).
AUI: Coinverter —“No More Lines . . . Self-Serve Cash-Out,” by Cassius Elston, 1995 World Games Congress/Exposition Converter, 1 page (dated prior to 1995).
Brandt: 95 Series Coin Sorter Counter, 2 pages (1982).
Brandt: Model 817 Automated Coin and Currency Ordering System, 2 pages (1983).
Brandt: Model 920/925 Counter, 2 pages (date unknown, prior to Jul. 2011, possibly prior to Mar. 17, 1997).
Brandt: System 930 Electric Counter/Sorter, “Solving Problems, Pleasing Customer, Building Deposits,” 1 page (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997).
Brandt: Model 940-6 High Speed Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989).
Brandt: System 945 High-Speed Sorter, 2 pages (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997).
Brandt: Model 952 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989).
Brandt: Model 954 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989).
Brandt: Model 957 Coin Sorter/Counter, 2 pages (date unknown, prior to Oct. 31, 1989).
Brandt: Model 958 Coin Sorter/Counter, 5 pages (©1982).
Brandt: Model 960 High-Speed Coin Sorter & Counter, 2 pages (1984).
Brandt; Model 966 Microsort™ Coin Sorter and Counter, 4 pages, (1979).
Brandt: Model 970 Coin Sorter and Counter, 2 pages (1983).
Brandt: Model 1205 Coin Sorter Counter, 2 pages (1986).
Brandt: Model 1400 Coin Sorter Counter, 2 pages (date unknown, prior to Mar. 2, 2011, possibly prior to Mar. 17, 1997).
Brandt: Model 8904 Upfeed —“High Speed 4-Denomination Currency Dispenser,” 2 pages (1989).
Brandt: Mach 7 High-Speed Coin Sorter/Counter, 2 pages (1992).
Case ICC Limited: CDS Automated Receipt Giving Cash Deposit System, 3 pages (date unknown, prior to Nov. 15, 2000).
Cash, Martin: Newspaper Article “Bank Blends New Technology With Service,” Winnipeg Free Press, 1 page (Sep. 4, 1992).
Childers Corporation: Computerized Sorter/Counter, “To coin an old adage, time is money . . ,”3 pages (1981).
CTcoin: CDS602 Cash Deposit System, 1 page date unknown, prior to Jan. 15, 2001).
Cummins: Cash Information and Settlement Systems (Form 023-1408), 4 pages (date Dec. 1991).
Cummins: The Universal Solution to All Coin and Currency Processing Needs (Form 13C1218 3-83), 1 page (Mar. 1983).
Cummins: JetSort® High Speed Sorter/Counter Kits I & J —Operating Instructions (Form 022-7123-00) 12 page (1994).
Cummins: JetSort® Coin Sorter Counter/CA-130XL Coin Wrapper, Cummins Automated Money Systems (AMS) Case Study —Fifth-Third, “6,000 Coin Per Minute Counter/Sorter Keeps pace With Fifth-Third Bank's Money Processing Needs,” (Form 13C1180), 2 pages (Nov. 1981).
Cummins: JetSort®, “Venders Love JetSort,” (13C1255), 1 page (Mar. 1987).
Cummins: JetSort® “High Speed Coin Sorter & Counter for Payphone Applications,” “CTOCS Ready” (Form 023-1365), 2 pages (Mar. 1989).
Cummins: JetSort® mailer, “One moving part simplicity,” “Vendors —Are validators changing your coin and currency needs?” (Form 023-1297), 3 pages (Apr. 1987).
Cummins: JetSort® Series V High Speed Coin Sorter/Counter, (Form 023-1383), 2 pages (Sep. 1990).
Cummins: JetSort® “Time for a Change, Be a smashing success!,” (Form 023-1328), 1 page (Jun. 1988).
Cummins: JetSort® “Time for a Change —JetSort® vs. Brandt X,” (Form 023-1330), 1 page (Jun. 1988).
Cummins: JetSort® “Time for a Change—No Coins Sorted After 3:00 or on Saturday,” (Form 023-1327), 1 page (Aug. 1988).
Cummins: JetSort®, “What do all these Banks have in Common . . . ?”, JetSort, CA-130XL coin wrapper, CA-118 coin wrapper, CA-4000 JetCount, (13C1203), 3 pages (Aug. 1982).
Cummins: JetSort® 700-01/CA-118 Coin Wrapper, Cummins Automated Money Systems (AMS) Case Study —University State Bank, “Cummins Money Processing System Boosts Teller Service at University State Bank,” (Form 13C1192), 2 pages (Mar. 1982).
Cummins: JetSort® 700-01, Cummins Automated Money Systems (AMS) Case Study —First State Bank of Oregon, “JetSort® Gives Bank Coin Service Edge,” (Form 13C1196), 2 pages (Apr. 1982).
Cummins: JetSort® 700-01 Coin Sorter/Counter, Operating Instructions, 14 pages (1982).
Cummins: JetSort® 701, Cummins Automated Money Systems (AMS) Case Study —Convenco Vending, “High Speed Coin Sorter increases coin processing power at Convenco Vending,” (Form 13C1226), 2 pages (Jul. 1983).
Cummins: JetSort Models 701 and 750 , “State-of-the-art coin processing comes of age,” 2 pages (Feb. 1982).
Cummins: JetSort® Model CA-750 Coin Processor (Item No. 50-152), 1 page (Jul. 1984).
Cummins: JetSort® Model CA-750 Coin Sorter/Counter and CA-4050 JetCount currency counter, “Money Processing Made Easy,” (Form 13C1221) 2 pages (Jun. 1983).
Cummins: JetSort® Model 1701 with JetStops, Operating Instructions Manual (Form 022-1329-00), 16 pages (1984).
Cummins: JetSort® Model 1760 brochure, (Form 023-1262-00), 2 pages (Jul. 1985).
Cummins: JetSort® Models 1770 and 3000, Communication Package specification and operating instructions, 10 pages (uncertain, possibly Nov. 1985).
Cummins: JetSort® Model 1770, “JetSort® Speed and Accuracy, Now with Communications!”, (Form 023-1272) 1 page (Oct. 1986).
Cummins: JetSort® 2000 Series High Speed Coin Sorter/Counter (Form 023-1488), 2 pages (Oct. 2000).
Cummins: JetSort®3000 Series High Speed Coin Sorter (Form 023-1468 Rev 1), 2 pages (Feb. 1995).
Cummins: JetSort®3000 Series Options, “Talking JetSort 3000,” (Form 023-1338-00), 1 page (between Jan. 1989-Feb. 1989).
Cummins: JetSort®3000, “3,000 Coins per Minute!,” (Form 023-1312), 1 page (date unknown, est. 1987).
Cummins: JetSort®3200, Enhanced electronics for the JetSort® 3200 (Form 023-1350), 1 page (Apr. 1987).
De La Rue: CDS 500 Cash Deponier System, 6 pages (date unknown, p. 5 has date May 1994, p. 6 has date Dec. 1992) (German).
De La Rue: Cds 5700 and CDS 5800 Cash Deponier System (German) and translation, 7 pages (date unknown, prior to Aug. 13, 1996).
Diebold: Merchant MicroBranch, “Merchant MicroBranch Combines ATM After-Hour Depository Rolled-Coin Dispenser,” Bank Technology News, 1 page (Nov. 1997).
Fa. GBS—Geldbearbeitungssysteme: GBS9401SB Technical Specification, 24 pages (date unknown, prior to Nov. 10, 2010).
Frisco Bay: Commercial Kiosk, “Provide self-service solutions for your business customers,” 4 pages (date unknown, prior to Mar. 2, 2011, p. 4 has date 1996).
Glory: AMT Automated Merchant Teller, 4 pages (date unknown, prior to Jan. 15, 2001).
Glory: CRS-8000 Cash Redemption System, 2 pages (1996).
Hamilton: Hamilton's Express Banking Center, in Less Space Than a Branch Manager's Desk, 4 pages (date unknown, prior to Jan. 15, 2001).
ISH Electronic: ISH 12005/500 Coin Counter (with translation), 4 pages (date unknown, prior to Aug. 1996).
ISH Electronic: ISH 12005/501 Self-Service Unit (with translation), 4 pages (date unknown, prior to Aug. 1996).
Namsys, Inc.: Namsys Express, Making currency management . . . more profitable, 2 pages (date unknown, prior to Jan. 15, 2001).
NGZ Geldzahlmaschinengesellschaft: NGZ 2100 Automated Coin Depository, 4 pages (date unknown, prior to Sep. 1996).
Perconta: Contomat Coin Settlement Machine for Customer Self Service, 2 pages (date unknown, prior to Apr. 2003).
Prema GmbH: Prema 405 (RE) Self Service Coin Deposit Facility, 2 pages (date unknown, prior to Apr. 2003).
Reis Eurosystems: CRS 6501/CRS 6510 Cash Receipt Systems for Self-Service Area, 3 pages (date unknown, prior to Apr. 2003).
Reis Eurosystems: CRS 6520/ CRS 6525 Standard-Class Coin Deposit Systems, 1 page (date unknown, prior to Apr. 2003).
Reis Eurosystems: CS 3510 Disc-Sorter, 1 page (date unknown, prior to Apr. 2003).
Royal Bank: Hemeon, Jade, “Royal's Burlington drive-in bank provides customers 24-hour tellers,” the Toronto Star, 1 page (Aug. 21, 1991).
Royal Bank: Leitch, Carolyn, “High-Tech Bank Counts Coins,” The Globe and Mail, 2 pages (Sep. 19, 1991).
Royal Bank: Oxby, Murray, “Royal Bank Opens 'Super Branch,'” the Gazette Montreal, 2 pages (Sep. 14, 1991).
Royal Bank: SuperBranch, “Experience the Ultimate in Convenience Banking,” 2 pages (Feb. 1992).
Scan Coin: International Report, 49 pages (Apr. 1987).
Scan Coin: Money Processing Systems, 8 pages (date unknown, prior to Apr. 2003).
Scan Coin: World, 2 pages (Feb. 1988).
Scan Coin: CDS Cash Deposit System, 6 pages (date unknown, prior to Apr. 2003) [SC 0369].
Scan Coin: CDS Coin Deposit System —Technical Referens Manual, 47 pages (1989).
Scan Coin: CDS 600 User's Manual, 14 pages (date unknown, prior to Apr. 2003).
Scan Coin: CDS 600 & CDS 640 Cash Deposit System —Technical Manual, 45 pages (date unknown, prior to Apr. 2003).
Scan Coin: CDS MK 1 Coin Deposit System —Technical Manual, 32 pages (1991).
Scan Coin: SC 102 Value Counter Technical Manual, 28 pages (date unknown, prior to Apr. 2003).
Pay by Touch: Secure ID News, “Piggly Wiggly Extends Biometric Payments Throughout the Southeast U.S.,” 2 pages, (Dec. 14, 2005).
ESD, Inc: Smartrac Card System, “Coinless laundry makes quarters obsolete; Smartrac Card System really makes a change in laundry industry,” Business Wire, 2 pages (Feb. 23, 1996).
Meece, Mickey: Article “Development Bank of Singapore Gets Cobranding Edge with Smart Cards,” American Banker, New York, NY, vol. 159, Iss. 195, p. 37, 2 pages (Oct. 10, 1994).
Related Publications (1)
Number Date Country
20060054455 A1 Mar 2006 US
Provisional Applications (1)
Number Date Country
60610050 Sep 2004 US