Embodiments of the invention relate to pulverized coal boilers and, more particularly, to a system, method and apparatus for controlling the flow distribution of coal between outlet pipes of a pulverizer.
Coal fired boilers utilize pulverizers to grind coal to a desired fineness so that it may be used as fuel for burners. In a typical pulverized coal boiler, coal particulate and primary air flow from the pulverizers to the burners through an array of coal pipes leading from the pulverizers to the burners. Typically, raw coal is fed through a central coal inlet at the top of the pulverizer and falls by gravity to the grinding area at the base of the mill. Once ground using one or more of a variety of known methods, the pulverized coal is transported upwards using air as the transport medium. The pulverized coal passes through classifier vanes within the pulverizer. These classifier vanes may vary in structure, but are intended to establish a swirling flow within the classifier and rejects cone to prevent coarse coal particles from flowing into the discharge turret of the pulverizer. The centrifugal force field set up in the rejects cone forces the coarse coal particles to drop back down onto the grinding surface to be reground until the desired fineness is met. Once the coal is ground finely enough, it is discharged from the pulverizer and distributed among multiple pulverized coal outlet pipes and into respective fuel conduits where it is carried to the burners.
With reference to
While the swirling flow of pulverized coal is efficient in preventing coarse coal particles from being carried upward to the coal pipes, such swirling flow has also been known to create an imbalance in coal flow distribution between the coal pipes 30. As illustrated by the particle tracking diagrams of
This unbalanced distribution of coal among the coal outlet pipes can adversely affect the performance of each burner and the boiler as a whole and can lead to decreased combustion efficiency, increased potential for tube fouling, furnace slagging, and non-uniform heat release within the combustion chamber. In addition, unbalanced distribution of coal can also result in the inability to control individual burner stoichiometry (i.e., the air-to-coal ratio), which can lead to elevated emissions of nitric oxides, carbon monoxide and the like.
In view of the above, there is a need for a system and method for ensuring a more uniform distribution of coal between the various outlet pipes of a pulverizer in order to improve overall system efficiency and performance.
In an embodiment, a turret for a pulverizer is provided. The turret includes a generally frusto-conical shaped body and a plurality of static vanes arranged interior to the body and extending inwardly from an interior sidewall of the body. The vanes are configured to guide a swirling flow of solid particles as they enter the body, and to divide the swirling flow into a plurality of controlled flows that are communicated to a plurality of coal outlet pipes.
In another embodiment, a method for controlling the output of coal in a plurality of coal outlet pipes in a coal pulverizer is provided. The method includes the steps of modifying, or retrofitting, a portion of a coal pulverizer with a turret, the turret comprising a generally frusto-conical shaped body and a plurality of static vanes arranged interior to the body and extending inwardly from an interior sidewall of the body.
In yet another embodiment, a coal pulverizer is provided. The coal pulverizer includes a grinding mechanism configured to transform raw coal into pulverized coal, a classifier configured to receive the pulverized coal from the grinding platform and to generate a swirling flow of coal, the classifier being further configured to reject coarse particles of the pulverized coal from the swirling flow, a turret arranged generally above the classifier, the turret having a generally frusto-conical body and a plurality of static vanes arranged interior to the body and extending inwardly from an interior sidewall of the body, and a plurality of coal outlet pipes in fluid communication with the interior of the turret. The vanes of the turret configured to guide a swirling flow of coal as it enters the turret, and to divide the swirling flow into a plurality of controlled flows that are communicated to a plurality of coal outlet pipes.
The present invention will be better understood from reading the following description of non-limiting embodiments, with reference to the attached drawings, wherein below:
Reference will be made below in detail to exemplary embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference characters used throughout the drawings refer to the same or like parts. While embodiments of the invention are directed to systems and methods for controlling the flow distribution of pulverized coal in a pulverizer and, in particular, for controlling the flow distribution of coal to burner coal pipes on front and rear fired boilers, embodiments of the invention may be also applicable to controlling the flow distribution of coal to burner coal pipes on any type of boiler, and to controlling the flow of solid particles, generally.
As used herein, “operatively coupled” refers to a connection, which may be direct or indirect. The connection is not necessarily being a mechanical attachment. As used herein, “fluidly coupled” or “fluid communication” refers to an arrangement of two or more features such that the features are connected in such a way as to permit the flow of fluid between the features and permits fluid transfer.
Embodiments of the invention relate to a system and method for controlling the flow distribution of solid particles, namely coal, in a pulverizer or mill for a coal fired boiler. As illustrated in
In an embodiment, the classifier 22 is a static classifier. In other embodiments, the classifier 22 may be a dynamic classifier. In an embodiment, the vanes 20 of the classifier 22 may be selectively adjustable in order to control the relative fineness or coarseness of coal particles according to system operating parameters. For example, one or more of the vanes 20 may be pivotable about a vertical axis.
Turning now to
In an embodiment, the vanes 112 are static vanes, meaning that they are in fixed position within the turret 110 and unable to rotate about any axis. In an embodiment, the number of vanes 112 corresponds to the number of outlets 36 and coal pipes 30 fluidly coupled to the turret 110. For example, as illustrated in
In operation, raw coal is fed into the coal inlet pipe and by force of gravity falls through the centrally located coal chute 12 until it reaches the grinding platform 14 where the grinding mechanism 16 grinds the coal into fine pieces. Air flows into an air inlet port 18 below the grinding platform 14, feeding primary air into the pulverizer 100. This creates a stream of low-velocity air that carries the particles of pulverized coal upward from the grinding platform 14 where they enter the classifier vanes 20 of the classifier 22. These vanes 20 establish a swirling flow within the reject cone 24. The centrifugal force set up in the reject cone 24 prevents coarse pieces of coal from entering the discharge turret 110. In particular, coarse pieces of coal fall by force of gravity back into the grinding platform 14, to be reground by the grinding mechanism 16 until they reach a desired degree of fineness. The pulverized coal that is not too coarse, however, is carried by the swirling flow of air upwards through the deflector ring 28 of the classifier 22 and into the turret 110. In particular, the pulverized coal that is not rejected passes upwards into the turret 110 and is guided by the vanes 112 into the coal outlet pipes 30 associated with each section. The pulverized coal may then be fed to one or more burners where it is combusted.
As best shown in
Referring now to
Comparing the vanes 212 of turret 210 shown in
As with vanes 112 of turret 110, the vanes 212 of turret 210 function to uniformly divide or partition the swirling flow of coal into a plurality of equal flows (e.g., coal flows 222) that are guided by the twisted shape of the vanes 212 into the respective coal outlet pipes 30, as shown in
In an embodiment, the use of static, tapered and twisted flow guiding vanes within the turret may improve pipe-to-pipe coal flow balance to approximately +/−10% or better, and in some cases to approximately +/−5% or better, as compared to a pipe-to-pipe imbalance of over 30% in some cases with existing systems. As indicated above, by uniformly distributing the flow of coal among each of outlets 36 in the turret utilizing static, curved vanes within the turret 110, furnace fouling and slagging may be minimized, emissions decreased and combustion efficiency increased, which leads to improved boiler efficiency and better overall performance as compared to existing systems.
In an embodiment, the pulverizer 100 may be manufactured with the turret 110, 210 having the vanes 112, 212 installed therein. In other embodiments, the turret 110 or 210 having vanes 112 or 212 may be manufactured as a separate component that may be retrofit into existing pulverizers. In yet other embodiments, existing pulverizers, and turrets thereof, may be retrofit with static vanes for improving the flow distribution of coal to the outlet pipes connected thereto. In this respect, the invention can be integrated into new power plant installations, as well as retrofit into the pulverizers of existing power generation systems. As a result, improved boiler efficiencies and decreased emissions may be realized, regardless of whether a new plant is being brought online, or an existing plant updated or upgraded.
In an embodiment, a turret for a pulverizer is provided. The turret includes a generally frusto-conical shaped body and a plurality of static vanes arranged interior to the body and extending inwardly from an interior sidewall of the body. The vanes are configured to guide a swirling flow of solid particles as they enter the body, and to divide the swirling flow into a plurality of controlled flows that are communicated to a plurality of coal outlet pipes. In an embodiment, the number of vanes is equal to the number of coal outlet pipes in the pulverizer. In an embodiment, each of the vanes includes a body having a leading edge and a trailing edge. The leading edge is located adjacent to a bottom of the turret and the trailing edge is located adjacent to a top of the turret and a respective one of the coal outlet pipes. In an embodiment, the body of each of the vanes has a generally twisted shape. In an embodiment, the twisted shape of the body of the vanes at the leading edge is configured to generally match the flow of solid particles at the bottom of the turret. In an embodiment, the leading edge is narrower than the trailing edge. In an embodiment, a pitch angle of each of the vanes is approximately 65 degrees from horizontal. In an embodiment, the solid particles are pulverized coal particles.
In another embodiment, a method for controlling the output of coal in a plurality of coal outlet pipes in a coal pulverizer is provided. The method includes the steps of modifying, or retrofitting, a portion of a coal pulverizer with a turret, the turret comprising a generally frusto-conical shaped body and a plurality of static vanes arranged interior to the body and extending inwardly from an interior sidewall of the body. In an embodiment, each of the vanes includes a body having a leading edge and a trailing edge. The leading edge is located adjacent to a bottom of the turret and the trailing edge is located adjacent to a top of the turret and a respective one of the coal outlet pipes. The turret is positioned in an upper portion of the pulverizer above a classifier of the pulverizer and is in fluid communication with the classifier. In an embodiment, the body of each of the vanes has a generally twisted shape. In an embodiment, the leading edge is narrower than the trailing edge. In an embodiment, a pitch angle of each of the vanes is set to coincide with a coal particle flow within the turret, approximately 65 degrees from horizontal. In an embodiment, the method may also include the steps of, with the vanes, dividing a swirling flow of coal as it enters the body of the turret into a plurality of controlled flows, and transporting the flows to the plurality of coal outlet pipes.
In yet another embodiment, a coal pulverizer is provided. The coal pulverizer includes a grinding mechanism configured to transform raw coal into pulverized coal, a classifier configured to receive the pulverized coal from the grinding platform and to generate a swirling flow of coal, the classifier being further configured to reject coarse particles of the pulverized coal from the swirling flow, a turret arranged generally above the classifier, the turret having a generally frusto-conical body and a plurality of static vanes arranged interior to the body and extending inwardly from an interior sidewall of the body, and a plurality of coal outlet pipes in fluid communication with the interior of the turret. The vanes of the turret configured to guide a swirling flow of coal as it enters the turret, and to divide the swirling flow into a plurality of controlled flows that are communicated to a plurality of coal outlet pipes. In an embodiment, the classifier includes a reject cone that is configured to receive the coarse particles rejected by the classifier and to transport the rejected coal particles to a grinding platform of the pulverizer. In an embodiment, the number of vanes is equal to the number of coal outlet pipes in the pulverizer. In an embodiment, each of the vanes includes a body having a leading edge and a trailing, wherein the leading edge is located adjacent to a bottom of the turret and the trailing edge is located adjacent to a top of the turret and a respective one of the coal outlet pipes. In an embodiment, the body of each of the vanes has a generally twisted shape, the twisted shape of the body of the vanes at the leading edge being configured to generally match the flow of coal at the bottom of the turret. In an embodiment, the leading edge is narrower than the trailing edge, and a pitch angle of each of the vanes is approximately 65 degrees from horizontal.
It is to be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments (and/or aspects thereof) may be used in combination with each other. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from its scope. While the dimensions and types of materials described herein are intended to define the parameters of the invention, they are by no means limiting and are exemplary embodiments. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, in the following claims, terms such as “first,” “second,” “third,” “upper,” “lower,” “bottom,” “top,” etc. are used merely as labels, and are not intended to impose numerical or positional requirements on their objects. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. § 112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
This written description uses examples to disclose several embodiments of the invention, including the best mode, and also to enable one of ordinary skill in the art to practice the embodiments of invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to one of ordinary skill in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
As used herein, an element or step recited in the singular and proceeded with the word “a” or “an” should be understood as not excluding plural of said elements or steps, unless such exclusion is explicitly stated. Furthermore, references to “one embodiment” of the present invention are not intended to be interpreted as excluding the existence of additional embodiments that also incorporate the recited features. Moreover, unless explicitly stated to the contrary, embodiments “comprising,” “including,” or “having” an element or a plurality of elements having a particular property may include additional such elements not having that property.
Since certain changes may be made in the above-described system and method without departing from the spirit and scope of the invention herein involved, it is intended that all of the subject matter of the above description or shown in the accompanying drawings shall be interpreted merely as examples illustrating the inventive concept herein and shall not be construed as limiting the invention.
Number | Date | Country | |
---|---|---|---|
Parent | 15056122 | Feb 2016 | US |
Child | 16432160 | US |