Central heating of buildings dates to ancient Roman times. Control of their systems consisted of adding fuel to the fire or extinguishing it. The use of forced air systems for central heating began roughly at the beginning of the 20th century. Once easily controllable energy sources such as heating oil, natural gas and electrical resistance were employed to heat the circulated oil, means for more accurately controlling the cycling of the heat source became both possible and necessary.
The first mechanical means for regulating room temperature by sensing temperature and automatically adjusting date from the late 19th century. These devices evolved into the simple bi-metallic devices that became popular in the 1950s, such as the iconic round Honeywell thermostats that are still available today.
These thermostats sense temperature changes by using a coiled spring that is composed of a sandwich of two different metals with different thermal coefficients of expansion, which thereby causes the coil to move with temperature changes. The center of the coil is generally fixed; the free end of the spring moves one way when it gets warmer and the other when it gets colder. The movement of the free end of the spring is used to open and close the circuit that turns on and off the HVAC system. In early versions of this type of thermostat, the electrical switch was often in the form of liquid mercury in a glass tube: when the electrically conductive mercury flowed to one end of the tube, it touched a wire and completed the circuit; when the spring tilted the tube, it flowed the other way so that the mercury no longer contacted the wire, thus breaking the circuit.
One salutary effect of the use of such switches was that the weight of the mercury in the tube added physical inertia to the temperature sensing mechanism, as it has been shown that rapid cycling of HVAC systems is both annoying to occupants and more stressful to the mechanical systems than less frequent cycling is. Thus as environmental concerns about mercury grew in recent years, manufacturers dispensed with the mercury switches and began using magnets to force the contacts to remain closed until changing temperatures had put sufficient tension into the bimetallic spring to overcome the magnetic closure. As this effect became better understood and was designed into thermostats, it became a standard design feature. The hysteresis band or dead zone is now commonly designed to hold the desired setpoint within a range of +/−1 degree Fahrenheit. So, for example, if the heating setpoint is 68 degrees F., the furnace will turn on when the inside temperature as sensed by the thermostat falls to 67 degrees F., and will turn off again when the inside temperature as sensed by the thermostat reaches 69 degrees F. Thus the inside temperature is allowed to oscillate within a range of two degrees F.
When residential refrigerant-based air conditioners became widely available in the 1950s, the same kinds of thermostats were used to control them as well. The need for a means to preventing rapid cycling is even more important for refrigerant-based systems is even more critical because there is a risk of significant physical damage to a compressor if it is turned on too soon after being turned off—if the refrigerant inside the compressor is still in liquid (and thus uncompressable) form when the compressor restarts, expensive mechanical failures are possible.
Electronic thermostats have been available for more than 20 years. Many of these are also programmable. In general, these thermostats no longer use mechanical systems to sense temperature, relying instead on electrical devices such as thermistors or thermal diodes. Switching of the HVAC system is accomplished with solenoids or relays triggered by logic circuits in microprocessors. With such systems, adjustability of the hysteresis band is relatively simple, at least in theory. However, most systems do not allow direct access to this parameter. And the hysteresis band only protects the system against rapid automatic cycling. The hysteresis band will not prevent a user from rapidly changing settings, which can cause the damage discussed above.
The way most electronic systems approach this problem is to enforce, via the electronic circuitry, a compressor delay—that is, whenever the compressor is switched off, the thermostat prevents it from restarting for a set interval, usual in the range of two to five minutes or so. (Some air conditioners may have an additional fail-safe delay in series with any circuitry in the thermostat as well.)
Many programmable thermostats include mechanical switches to allow the installer or user to adjust the compressor delay for the system. But because it is generally expected that the installer of the system will set this parameter once based upon the requirements of the specific air conditioner being controlled, these mechanical switches are generally not accessible to the user from outside the unit. Changing the compressor delay generally requires disassembling the thermostat.
Academic research has shown that it is not just physical systems that have hysteresis effects. Perceived comfort at various temperatures is not independent of temperatures at earlier points in time. Humans have been shown to be relatively insensitive to slow, gradual changes in temperature, at least within narrow ranges of a few degrees F. Conversely, people do notice rapid changes within the same narrow range. It has been shown that an appropriately shaped pattern of ramped setpoints—varying the inside temperature by more than the normal +/−1 degree F. range in specific ways—can maintain comfort with a lower average temperature in the case of heating, and a higher average temperature in the case of cooling, than is possible with constant setpoints. Reducing average setpoints in winter and raising them in winter can significantly reduce energy consumption. Examples of such concepts are discussed in U.S. patent application Publication Ser. No. 12/498,142, which is hereby incorporated herein by reference in its entirety and is to be considered part of this specification.
One specific pattern that has been validated is (in the case of heating) to allow the temperature to drift 2 degrees below the user's chosen setpoint over an extended period of 1-2 hours, and to then revert as quickly as possible to the originally desired setpoint. Because the slow cooling is not easily perceived, but the rapid reheating is, the subjective impression is weighted toward comfort, despite the fact that the average setpoint over the period of the “waveform” is 1 degree lower than the desired setpoint. (The pattern is inverted in the case of air conditioning.)
One approach to achieving the benefits of such a setpoint strategy is to specifically schedule each of the planned setpoint changes required to create such a thermal waveform. This approach requires some combination of significant local intelligence resident in the thermostat, a local computer capable of controlling the thermostat, and/or a remote server managing frequent setpoint changes on remote devices.
Another potential drawback to using programming changes to create such thermal waveforms with conventional thermostats is that such devices generally include a visual display that gives a readout of the programmed setpoint as well as the current inside temperature as measured by the thermostat. Many people have formed associations between specific objective temperatures and subjective feelings of comfort—e.g., the belief that they will be comfortable if it is 72 degrees inside their home, but uncomfortable if it is 74. These beliefs may have little basis in fact, or be true under certain circumstances but not under others, because comfort depends on numerous factors beyond dry-bulb temperature. Such factors include humidity, air movement, activity levels, and the aforementioned hysteresis effects. One of the potential perverse effects that can be caused by providing temperature readouts to occupants is that a person who might otherwise feel comfortable may become convinced that he is not simply because the thermostat's display shows a temperature that the occupant associates with discomfort.
It would be desirable for an HVAC control system to offer a simple way to create asymmetrical thermal waveforms without the need for highly detailed programming. It would also be desirable for an HVAC control system to offer a means to create asymmetrical thermal waveforms without changing the setpoint displayed by conventional thermostats.
a) through 8(c) illustrate how changes in compressor delay settings affect HVAC cycling behavior by plotting time against temperature.
Because most HVAC systems are essentially binary systems in that they are either ON or OFF, even the best thermostat is not capable of maintaining a stable temperature without variation. The use of a hysteresis band in effect creates an oscillation around the setpoint. The period of that wave form (that is, the length of time it takes to complete a full cycle) is determined by several factors, including the difference between outside and inside temperatures, the thermal performance of the structure being conditioned, and the capacity of the HVAC system. But the hysteresis band ensures that under most circumstances the amplitude of the waveform is roughly fixed. In other words, a traditional thermostat creates a temperature waveform inside the home that has a pre-defined peak-peak variation or amplitude that it seeks to maintain (generally 2 degrees F. peak to peak). As outside temperatures diverge from inside temperatures, the frequency of cycling increases. Under mild conditions, a well-insulated home with an appropriately sized HVAC system, the period of the waveform may be as long as an hour or more. On very cold winter days or hot summer days in a poorly insulated home with an oversized HVAC system, the period may be as short as a few minutes. Only when the conditions overwhelm the HVAC system (generally, when it is so hot that the air conditioner cannot maintain inside temperatures within the hysteresis band) does inside temperature go outside the defined range of waveform amplitude, at which point the system runs in open-loop mode.
Under normal conditions, the compressor delay will not materially affect that cycling behavior. But the compressor delay, if sufficiently long relative to the “natural” period of the system, will alter both the amplitude and the frequency of the thermal waveform. For example, if the setpoint is 69 degrees F., and under a given set of conditions (current outside temperature, humidity, and solar radiation being absorbed by the house, outside temperature, humidity and solar radiation absorbed by the house in the recent past, current inside temperature, inside temperature in the recent past, etc.) the air conditioner cycles “on” for seven minutes in order to lower the inside temperature from 70 degrees F. to 68 degrees F., then switches “off” for five minutes during which the temperature returns to 70 degrees, a compressor delay of four minutes or less will have no effect on the cycling of the system. Assuming steady-state conditions, the period of the “waveform” will be twelve minutes, its amplitude will be two degrees F., and the air conditioner will be operating on a roughly 58% duty cycle.
If under the same conditions the compressor delay is increased to eight minutes, the waveform will change significantly. Because the “off” portion of the waveform is forced to last longer than the time it takes for the temperature to reach the top of the hysteresis band, inside temperature will rise beyond 70 degrees, thereby increasing the amplitude of the waveform as well as its period. The “on” portion of the waveform is likely to increase in duration as well, because the air conditioner is now called upon to drive down inside temperature by more than two degrees. However, the key is that the waveform is no longer symmetrical around the nominal 69 degree setpoint. The air conditioner still turns off when it reaches 68 degrees. But the extended compressor delay means that the upper boundary of the waveform is higher than 70 degrees. If the combination of weather conditions and extended compressor delay allow the inside temperature to reach 71 degrees before the thermostat allows the compressor to turn on again, then the effective hysteresis band is three degrees rather than two degrees, and the average inside temperature (assuming a symmetrical waveform) will be 69.5 degrees, rather than 69. In addition, because there is a direct relationship between the average inside temperature maintained and HVAC cycle times, the increase in average inside temperature (which may be thought of the effective setpoint, as opposed to the nominal setpoint) will reduce A/C cycling, and thus energy use. But because the lower boundary of the hysteresis band is still below the chosen setpoint, the subjective effect of the change is likely to be minimal.
In the air conditioning context, raising average temperatures in this way will have two valuable benefits. First, as noted above, it can reduce energy usage with minimal effect on comfort. The second key benefit flows from the dynamic nature of the waveform effects and the relatively ineleastic nature of electricity supply.
Air conditioning use is in many areas the largest component of electricity demand during the summer. On extremely hot days, demand may exceed supply, which can result in service disruptions in the form of blackouts and brownouts. Utilities seek to avoid such outcomes by bringing on line “peaker” power plants, which tend to be expensive to operate and to pollute more and emit larger quantities of greenhouse gases than do the generators used for base load. They also seek, when necessary, to purchase additional supply from other sources on what is effectively a spot market. More recently, utilities have also sought to buy down demand by paying costumers to use less electricity during periods of critical demand. This process is known as demand response, and many utilities pay customers significant sums for the right to ask (or require) the customer to reduce energy usage during such peak periods. In the case of residential air conditioning, such programs often require that air conditioners be turned off for several hours at a time, or for setpoints to be raised significantly during such peak events.
The invention described herein offers a simple method for dynamically offering a small but meaningful demand response without significantly affecting comfort. Furthermore, the benefit offered will automatically increase with need. During mild weather conditions, an extended compressor delay will have little or no effect, but will also be unnecessary. On a hot but not exceptional summer afternoon, extending the compressor delay will cause mild increase in average inside temperature and a small decrease in the duty cycle of each affected HVAC system. Such small individual changes, when averaged across a large number of homes, can deliver useful reductions in peak loads. On critical days, which are virtually without exception the hottest days, the same compressor delay that caused a small rise in temperature on the moderately hot day causes a larger rise and thus a greater demand response contribution on the very hot day. Thus the amount of demand response generated automatically increases during the conditions in which it is most needed.
Presently preferred network 102 comprises a collection of interconnected public and/or private networks that are linked to together by a set of standard protocols to form a distributed network. While network 102 is intended to refer to what is now commonly referred to as the Internet, it is also intended to encompass variations which may be made in the future, including changes additions to existing standard protocols.
One popular part of the Internet is the World Wide Web. The World Wide Web contains a large number of computers 104 and servers 106, which store HyperText Markup Language (HTML) documents capable of displaying graphical and textual information. HTML is a standard coding convention and set of codes for attaching presentation and linking attributes to informational content within documents.
The servers 106 that provide offerings on the World Wide Web are typically called websites. A website is often defined by an Internet address that has an associated electronic page. Generally, an electronic page is a document that organizes the presentation of text graphical images, audio and video.
In addition to the Internet, the network 102 can comprise a wide variety of interactive communication media. For example, network 102 can include local area networks, interactive television networks, telephone networks, wireless data systems, two-way cable systems, and the like.
Network 102 can also comprise servers 106 that provide services other than HTML documents. Such services may include the exchange of data with a wide variety of “edge” devices, some of which may not be capable of displaying web pages, but that can record, transmit and receive information.
In one embodiment, computers 104 and servers 106 are conventional computers that are equipped with communications hardware such as modem or a network interface card. The computers include processors such as those sold by Intel and AMD. Other processors may also be used, including general-purpose processors, multi-chip processors, embedded processors and the like.
Computers 104 can also be handheld and wireless devices such as personal digital assistants (PDAs), cellular telephones and other devices capable of accessing the network.
Computers 104 utilize a browser configured to interact with the World Wide Web. Such browsers may include Microsoft Explorer, Mozilla, Firefox, Opera or Safari. They may also include browsers used on handheld and wireless devices.
The storage medium may comprise any method of storing information. It may comprise random access memory (RAM), electronically erasable programmable read only memory (EEPROM), read only memory (ROM), hard disk, floppy disk, CD-ROM, optical memory, or other method of storing data.
Computers 104 and 106 may use an operating system such as Microsoft Windows, Apple Mac OS, Linux, Unix or the like.
Computers 106 may include a range of devices that provide information, sound, graphics and text, and may use a variety of operating systems and software optimized for distribution of content via networks.
In the currently preferred embodiment, the website 200 includes a number of components accessible to the user, as shown in
The data used to generate the content delivered in the form of the website and to automate control of thermostat 108 is stored on one or more servers 106 within one or more databases. As shown in
The website will allow users of connected thermostats 108 to create personal accounts. Each user's account will store information in database 900, which tracks various attributes relative to users. Such attributes may include the make and model of the specific HVAC equipment in the user's home; the age and square footage of the home, the solar orientation of the home, the location of the thermostat in the home, the user's preferred temperature settings, etc.
As shown in
In addition to using the system to allow better signaling and control of the HVAC system, which relies primarily on communication running from the server to the thermostat, the bi-directional communication will also allow the thermostat 108 to regularly measure and send to the server information about the temperature in the building. By comparing outside temperature, inside temperature, thermostat settings, cycling behavior of the HVAC system, and other variables, the system will be capable of numerous diagnostic and controlling functions beyond those of a standard thermostat.
For example,
b shows a graph of the same house on the same day, but assumes that the air conditioning is turned off from noon to 7 PM. As expected, the inside temperature 304a rises with increasing outside temperatures 302 for most of that period, reaching 88 degrees at 7 PM.
Because server 106 logs the temperature readings from inside each house (whether once per minute or over some other interval), as well as the timing and duration of air conditioning cycles, database 300 will contain a history of the thermal performance of each house. That performance data will allow server 106 to calculate an effective thermal mass for each such structure—that is, the speed with the temperature inside a given building will change in response to changes in outside temperature. Because the server will also log these inputs against other inputs including time of day, humidity, etc. the server will be able to predict, at any given time on any given day, the rate at which inside temperature should change for given inside and outside temperatures.
The ability to predict the rate of change in inside temperature in a given house under varying conditions may be applied by in effect holding the desired future inside temperature as a constraint and using the ability to predict the rate of change to determine when the HVAC system must be turned on in order to reach the desired temperature at the desired time.
a) through 8(c) illustrate how changes in compressor delay settings affect HVAC cycling behavior by plotting time against temperature. In
b) shows how with the same environmental conditions as in
c) shows how the same compressor delay can result in different thermal cycling with different weather conditions. The greater the amount by which outside temperature exceeds inside temperature in the air conditioning context, the more rapidly the inside temperature will increase during an off cycle, and the slower the air conditioner will be able to cool during the on cycle. Thus as compared to
It should be noted that the shape of the actual waveform will most likely not be sinusoidal, but for ease of illustration it is sometimes be presented as such in the figures.
While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
This application claims priority to Provisional Application No. 61/215,816, filed May 11, 2009, the entirety of which is incorporated herein by reference and is to be considered part of this specification.
Number | Name | Date | Kind |
---|---|---|---|
4136732 | Demaray et al. | Jan 1979 | A |
4341345 | Hammer et al. | Jul 1982 | A |
4403644 | Hebert | Sep 1983 | A |
4475685 | Grimado et al. | Oct 1984 | A |
4655279 | Harmon | Apr 1987 | A |
4674027 | Beckey | Jun 1987 | A |
5244146 | Jefferson et al. | Sep 1993 | A |
5270952 | Adams et al. | Dec 1993 | A |
5314004 | Strand et al. | May 1994 | A |
5462225 | Massara et al. | Oct 1995 | A |
5544036 | Brown et al. | Aug 1996 | A |
5555927 | Shah | Sep 1996 | A |
5572438 | Ehlers et al. | Nov 1996 | A |
5682949 | Ratcliffe et al. | Nov 1997 | A |
5717609 | Packa et al. | Feb 1998 | A |
5729474 | Hildebrand et al. | Mar 1998 | A |
5818347 | Dolan et al. | Oct 1998 | A |
5977964 | Williams et al. | Nov 1999 | A |
6115713 | Pascucci et al. | Sep 2000 | A |
6145751 | Ahmed | Nov 2000 | A |
6178362 | Woolard et al. | Jan 2001 | B1 |
6241156 | Kline et al. | Jun 2001 | B1 |
6260765 | Natale et al. | Jul 2001 | B1 |
6351693 | Monie | Feb 2002 | B1 |
6400956 | Richton | Jun 2002 | B1 |
6400996 | Hoffberg et al. | Jun 2002 | B1 |
6437692 | Petite et al. | Aug 2002 | B1 |
6478233 | Shah | Nov 2002 | B1 |
6480803 | Pierret et al. | Nov 2002 | B1 |
6483906 | Lggulden et al. | Nov 2002 | B1 |
6536675 | Pesko et al. | Mar 2003 | B1 |
6542076 | Joao | Apr 2003 | B1 |
6549130 | Joao | Apr 2003 | B1 |
6574537 | Kipersztok et al. | Jun 2003 | B2 |
6580950 | Johnson | Jun 2003 | B1 |
6594825 | Goldschmidtlki et al. | Jul 2003 | B1 |
6595430 | Shah | Jul 2003 | B1 |
6598056 | Hull et al. | Jul 2003 | B1 |
6619555 | Rosen | Sep 2003 | B2 |
6622097 | Hunter | Sep 2003 | B2 |
6622115 | Brown et al. | Sep 2003 | B1 |
6622925 | Carner et al. | Sep 2003 | B2 |
6622926 | Sartain et al. | Sep 2003 | B1 |
6628997 | Fox et al. | Sep 2003 | B1 |
6633823 | Bartone et al. | Oct 2003 | B2 |
6643567 | Kolk et al. | Nov 2003 | B2 |
6671586 | Davis et al. | Dec 2003 | B2 |
6695218 | Fleckenstein | Feb 2004 | B2 |
6726113 | Guo | Apr 2004 | B2 |
6731992 | Ziegler | May 2004 | B1 |
6734806 | Cratsley | May 2004 | B1 |
6772052 | Amundsen | Aug 2004 | B1 |
6785592 | Smith | Aug 2004 | B1 |
6785630 | Kolk | Aug 2004 | B2 |
6786421 | Rosen | Sep 2004 | B2 |
6789739 | Rosen | Sep 2004 | B2 |
6853959 | Ikeda et al. | Feb 2005 | B2 |
6868293 | Schurr | Mar 2005 | B1 |
6868319 | Kipersztok et al. | Mar 2005 | B2 |
6882712 | Iggulden et al. | Apr 2005 | B1 |
6889908 | Crippen et al. | May 2005 | B2 |
6891838 | Petite et al. | May 2005 | B1 |
6912429 | Bilger | Jun 2005 | B1 |
6991029 | Orfield et al. | Jan 2006 | B2 |
7009493 | Howard | Mar 2006 | B2 |
7031880 | Seem et al. | Apr 2006 | B1 |
7039532 | Hunter | May 2006 | B2 |
7061393 | Buckingham et al. | Jun 2006 | B2 |
7089088 | Terry et al. | Aug 2006 | B2 |
7130719 | Ehlers et al. | Oct 2006 | B2 |
7130832 | Bannai et al. | Oct 2006 | B2 |
H2176 | Meyer et al. | Dec 2006 | H |
7167079 | Smyth et al. | Jan 2007 | B2 |
7187986 | Johnson et al. | Mar 2007 | B2 |
7205892 | Luebke et al. | Apr 2007 | B2 |
7215746 | Iggulden et al. | May 2007 | B2 |
7216015 | Poth | May 2007 | B2 |
7231424 | Bodin et al. | Jun 2007 | B2 |
7232075 | Rosen | Jun 2007 | B1 |
7242988 | Hoffberg et al. | Jul 2007 | B1 |
7260823 | Schlack et al. | Aug 2007 | B2 |
7356384 | Gull et al. | Apr 2008 | B2 |
7483964 | Jackson et al. | Jan 2009 | B1 |
7644869 | Hoglund et al. | Jan 2010 | B2 |
7784704 | Harter | Aug 2010 | B2 |
7848900 | Steinberg et al. | Dec 2010 | B2 |
7894943 | Sloup et al. | Feb 2011 | B2 |
7908116 | Steinberg et al. | Mar 2011 | B2 |
7908117 | Steinberg et al. | Mar 2011 | B2 |
8010237 | Cheung et al. | Aug 2011 | B2 |
8019567 | Steinberg et al. | Sep 2011 | B2 |
8090477 | Steinberg | Jan 2012 | B1 |
8131497 | Steinberg et al. | Mar 2012 | B2 |
8131506 | Steinberg et al. | Mar 2012 | B2 |
8180492 | Steinberg | May 2012 | B2 |
8340826 | Steinberg | Dec 2012 | B2 |
8412488 | Steinberg et al. | Apr 2013 | B2 |
8423322 | Steinberg et al. | Apr 2013 | B2 |
8457797 | Imes et al. | Jun 2013 | B2 |
20030040934 | Skidmore et al. | Feb 2003 | A1 |
20040176880 | Obradovich et al. | Sep 2004 | A1 |
20050222889 | Lai et al. | Oct 2005 | A1 |
20050288822 | Rayburn | Dec 2005 | A1 |
20060045105 | Dobosz et al. | Mar 2006 | A1 |
20060214014 | Bash et al. | Sep 2006 | A1 |
20070043477 | Ehlers et al. | Feb 2007 | A1 |
20070045431 | Chapman et al. | Mar 2007 | A1 |
20070146126 | Wang | Jun 2007 | A1 |
20080083234 | Krebs et al. | Apr 2008 | A1 |
20080198549 | Rasmussen et al. | Aug 2008 | A1 |
20080281472 | Podgorny et al. | Nov 2008 | A1 |
20090052859 | Greenberger et al. | Feb 2009 | A1 |
20090099699 | Steinberg et al. | Apr 2009 | A1 |
20090125151 | Steinberg et al. | May 2009 | A1 |
20090240381 | Lane | Sep 2009 | A1 |
20090281667 | Masui et al. | Nov 2009 | A1 |
20100019052 | Yip | Jan 2010 | A1 |
20100070086 | Harrod et al. | Mar 2010 | A1 |
20100070089 | Harrod et al. | Mar 2010 | A1 |
20100070093 | Harrod et al. | Mar 2010 | A1 |
20100156608 | Bae et al. | Jun 2010 | A1 |
20100162285 | Cohen et al. | Jun 2010 | A1 |
20100211224 | Keeling et al. | Aug 2010 | A1 |
20100235004 | Thind | Sep 2010 | A1 |
20100282857 | Steinberg | Nov 2010 | A1 |
20100289643 | Trundle et al. | Nov 2010 | A1 |
20100308119 | Steinberg et al. | Dec 2010 | A1 |
20100318227 | Steinberg et al. | Dec 2010 | A1 |
20110031323 | Nold et al. | Feb 2011 | A1 |
20110046792 | Imes et al. | Feb 2011 | A1 |
20110046798 | Imes et al. | Feb 2011 | A1 |
20110046799 | Imes et al. | Feb 2011 | A1 |
20110046800 | Imes et al. | Feb 2011 | A1 |
20110046801 | Imes et al. | Feb 2011 | A1 |
20110051823 | Imes et al. | Mar 2011 | A1 |
20110054699 | Imes et al. | Mar 2011 | A1 |
20110054710 | Imes et al. | Mar 2011 | A1 |
20110173542 | Imes et al. | Jul 2011 | A1 |
20110202185 | Imes et al. | Aug 2011 | A1 |
20110214060 | Imes et al. | Sep 2011 | A1 |
20110224838 | Imes et al. | Sep 2011 | A1 |
20110246898 | Imes et al. | Oct 2011 | A1 |
20110290893 | Steinberg | Dec 2011 | A1 |
20110307101 | Imes et al. | Dec 2011 | A1 |
20110307103 | Cheung et al. | Dec 2011 | A1 |
20120023225 | Imes et al. | Jan 2012 | A1 |
20120046859 | Imes et al. | Feb 2012 | A1 |
20120064923 | Imes et al. | Mar 2012 | A1 |
20120065935 | Steinberg et al. | Mar 2012 | A1 |
20120072033 | Imes et al. | Mar 2012 | A1 |
20120086562 | Steinberg | Apr 2012 | A1 |
20120093141 | Imes et al. | Apr 2012 | A1 |
20120101637 | Imes et al. | Apr 2012 | A1 |
20120135759 | Imes et al. | May 2012 | A1 |
20120158350 | Steinberg et al. | Jun 2012 | A1 |
20120215725 | Imes et al. | Aug 2012 | A1 |
20120221151 | Steinberg | Aug 2012 | A1 |
20120221718 | Imes et al. | Aug 2012 | A1 |
20120252430 | Imes et al. | Oct 2012 | A1 |
20120324119 | Imes et al. | Dec 2012 | A1 |
20130053054 | Lovitt et al. | Feb 2013 | A1 |
20130054758 | Imes et al. | Feb 2013 | A1 |
20130054863 | Imes et al. | Feb 2013 | A1 |
20130060387 | Imes et al. | Mar 2013 | A1 |
20130144445 | Steinberg | Jun 2013 | A1 |
20130144453 | Subbloie | Jun 2013 | A1 |
20130167035 | Imes et al. | Jun 2013 | A1 |
20130231785 | Steinberg et al. | Sep 2013 | A1 |
20130238143 | Steinberg et al. | Sep 2013 | A1 |
20130310989 | Steinberg et al. | Nov 2013 | A1 |
Number | Date | Country |
---|---|---|
0415747 | Mar 1991 | EP |
05-189659 | Jul 1993 | JP |
2010-038377 | Feb 2010 | JP |
2010-286218 | Dec 2010 | JP |
10-1994-011902 | Jun 1994 | KR |
10-1999-0070368 | Sep 1999 | KR |
10-2000-0059532 | Oct 2000 | KR |
WO 2011149600 | Dec 2011 | WO |
WO 2012024534 | Feb 2012 | WO |
Entry |
---|
Honeywell, W7600/W7620 Controller Reference Manual, HW0021207, Oct. 1992. |
U.S. Appl. No. 13/523,697, filed Jun. 14, 2012, Hublou, Scott Douglas et al. |
U.S. Appl. No. 13/725,447, filed Dec. 21, 2012, Steinberg, John Douglas. |
U.S. Appl. No. 13/852,577, filed Mar. 28, 2013, Steinberg, John Douglas et al. |
U.S. Appl. No. 13/858,710, filed Apr. 8, 2013, Steinberg, John Douglas et al. |
U.S. Appl. No. 13/861,189, filed Apr. 11, 2013, Steinberg, John Douglas et al. |
Bourhan, et al., “Cynamic model of an HVAC system for control analysis”, Elsevier 2004. |
Comverge SuperStat Flyer, prior to Jun. 28, 2007. |
Control4 Wireless Thermostat Brochure, 2006. |
Cooper Power Systems Web Page, 2000-2009. |
Emerson Climate Technologies, “Network Thermostat for E2 Building Controller Installation and Operation Manual”, 2007. |
Enernoc Web Page, 2004-2009. |
Enerwise Website, 1999-2009. |
Honeywell Programmable Thermostat Owner's Guide, www.honeywell.com/yourhome, 2004. |
Johnson Controls, “T600HCx-3 Single-Stage Thermostats”, 2006. |
Pier, Southern California Edison, Demand Responsive Control of Air Conditioning via Programmable Communicating Thermostats Draft Report, 2006. |
Proliphix Thermostat Brochure, prior to Jun. 2007. |
Raji, “Smart Networks for Control”, IEEE Spectrum, Jun. 1994. |
Written Opinion and Search Report for PCT/US2011/032537, dated Dec. 12, 2011. |
Arnes, et al., How Ambient Intelligence Will Improve Habitability and Energy Efficiency in Buildings, 2005, reserch paper,, Center for the Built Environment. Controls and Information Technology. |
Johnson Controls, Touch4 building automation system brochure, 2007. |
Kilicotte, et al., Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York, Proceedings of the 2006 ACEEE Summer Study of Energy Efficiency in Buildings, Pacific Grove. CA, Aug. 13-18, 2006. |
Lin, et al., “Multi-Sensor Single-Actuator Control of HVAC Systems”, 2002. |
Wang, et al., “Opportunities to Save Energy and Improve Comfort by Using Wireless Sensor networks in Buildings,” (2003), Center for Environmental Design Research. |
Wetter, et al., A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization., Building and Environment 39, 2004, pp. 989-999. |
Brush, et al., Preheat—Controlling Home Heating with Occupancy Prediction, 2013. |
Gupta, Adding GPS-Control to Traditional Thermostats: An Exploration of Potential Energy Savings and Design Challenges, MIT, 2009. |
Gupta, et al., A Persuasive GPS-Controlled Thermostat System, MIT, 2008. |
Krumm, et al., Learning Time-Based Presence Probabilities, Jun. 2011. |
Scott, et al., Home Heating Using GPS-Based Arrival Prediction, 2010. |
U.S. Appl. No. 13/852,577, filed Mar. 28, 2013, Steinberg et al. |
U.S. Appl. No. 13/858,710, filed Sep. 5, 2013, Steinberg et al. |
International Search Report and Written Opinion for PCT/US2013/035726, dated Aug. 6, 2013. |
Number | Date | Country | |
---|---|---|---|
20100282857 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
61215816 | May 2009 | US |