Briefly summarized, embodiments disclosed herein are directed to systems, methods, and devices for magnetic tracking of ultrasound probes and use of the magnetic tracking of ultrasound probes to generate 3D visualization of target vessels.
Blood vessel cannulation can be difficult in some patients. One problem that often arises with blood vessel cannulation is difficulty in visualizing the target vessel and other details important for cannulation including vessel movement, vessel size, depth, proximity to unintended structures or even impediments within the target vessel including valves, stenosis, thrombosis etc.
In some embodiments, a magnetic-based tracking system for tracking an ultrasound probe to create a three-dimensional (3D) visualization includes a reference device including a reference magnet; an ultrasound probe including a magnetometer configured to detect a magnetic field generated by the reference magnet, wherein the ultrasound probe is configured to couple a first ultrasound image with a first magnetic field strength, and wherein the first ultrasound image is received at a first time, and the first magnetic field strength is detected at the first time. The system further includes a console including a processor and non-transitory computer-readable medium having stored thereon a plurality of logic modules that, when executed by the processor, are configured to perform operations including receiving a plurality of couplings of ultrasound images and detected magnetic field strengths, recording the plurality of couplings of ultrasound images and detected magnetic field strengths, and generating the 3D visualization from the ultrasound images by aligning each of the ultrasound images in accordance with a corresponding detected magnetic field strength.
In some embodiments, the magnetic based tracking system includes where the reference device is a cuff like structure that wraps around a body segment to be imaged.
In some embodiments, the magnetic based tracking system includes where the reference device is a U-shaped structure and is configured to allow the body segment to be placed within the U-shaped structure for imaging.
Also disclosed is a magnetic based tracking system for tracking an ultrasound probe to create a three-dimensional (3D) visualization, including a reference device including a magnetometer that detects a magnetic field generated by a reference magnet and creates a timestamp for a magnetic field strength reading; an ultrasound probe including an ultrasound acoustic transducer or acoustic array that acquires ultrasound images and creates a timestamp for each specific ultrasound image, and a reference magnet that is configured to generate a magnetic field. The system also includes a console including a processor and non-transitory computer-readable medium having stored thereon a plurality of logic modules that, when executed by the processor, are configured to perform operations including receiving a plurality of ultrasound images and detected magnetic field strengths, coupling a plurality of ultrasound images and detected magnetic field strengths by their timestamps, recording the plurality of couplings of ultrasound images and detected magnetic field strengths, and generating the 3D visualization from the ultrasound images by aligning each of the ultrasound images in accordance with a corresponding detected magnetic field strength.
In some embodiments, the magnetic based tracking system includes where the reference device is a cuff like structure that wraps around a body segment to be imaged.
In some embodiments, the magnetic based tracking system includes where the reference device is a U-shaped structure and is configured to allow the body segment to be placed within the U-shaped structure for imaging.
Also disclosed is a method of creating a 3D image using a magnetic based tracking system for tracking an ultrasound probe including configuring the reference device around the body segment to be imaged; advancing ultrasound probe on skin surface of the body segment to be imaged; capturing time stamped ultrasound images while simultaneously detecting time stamped magnetic field strength of a reference magnet by magnetometer; determining distance between reference magnet and magnetometer; and stitching together ultrasound images using magnetic field strength data and time stamps to create a 3D image.
In some embodiments, the method includes where configuring the reference device includes the reference device being a cuff like structure and including a reference magnet.
In some embodiments, the method includes where advancing the ultrasound probe includes the ultrasound probe including a magnetometer.
In some embodiments, the method includes where configuring the reference device includes the reference device being a U-shaped structure and is configured to allow the bodily appendage to be placed within the U-shaped structure for imaging.
In some embodiments, the method includes where the stitching together the ultrasound images includes using only the magnetic field strength data.
In some embodiments, the method includes where configuring the reference device includes the reference device being a cuff-like structure and including the magnetometer.
In some embodiments, the method includes where advancing the ultrasound probe includes the ultrasound probe including the reference magnet.
These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and following description, which disclose particular embodiments of such concepts in greater detail.
Embodiments of the Disclosure are Illustrated by Way of Example and not by Way of Limitation in the Figures of the Accompanying Drawings, in which Like References Indicate Similar Elements and in which:
Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.
Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, “first,” “second,” and “third” features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as “left,” “right,” “top,” “bottom,” “front,” “back,” and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
With respect to “proximal,” a “proximal portion” or a “proximal end portion” of, for example, a probe disclosed herein includes a portion of the probe intended to be near a clinician when the probe is used on a patient. Likewise, a “proximal length” of, for example, the probe includes a length of the probe intended to be near the clinician when the probe is used on the patient. A “proximal end” of, for example, the probe includes an end of the probe intended to be near the clinician when the probe is used on the patient. The proximal portion, the proximal end portion, or the proximal length of the probe can include the proximal end of the probe; however, the proximal portion, the proximal end portion, or the proximal length of the probe need not include the proximal end of the probe. That is, unless context suggests otherwise, the proximal portion, the proximal end portion, or the proximal length of the probe is not a terminal portion or terminal length of the probe.
With respect to “distal,” a “distal portion” or a “distal end portion” of, for example, a probe disclosed herein includes a portion of the probe intended to be near or in a patient when the probe is used on the patient. Likewise, a “distal length” of, for example, the probe includes a length of the probe intended to be near or in the patient when the probe is used on the patient. A “distal end” of, for example, the probe includes an end of the probe intended to be near or in the patient when the probe is used on the patient. The distal portion, the distal end portion, or the distal length of the probe can include the distal end of the probe; however, the distal portion, the distal end portion, or the distal length of the probe need not include the distal end of the probe. That is, unless context suggests otherwise, the distal portion, the distal end portion, or the distal length of the probe is not a terminal portion or terminal length of the probe.
The term “logic” may be representative of hardware, firmware or software that is configured to perform one or more functions. As hardware, the term logic may refer to or include circuitry having data processing and/or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a hardware processor (e.g., microprocessor, one or more processor cores, a digital signal processor, a programmable gate array, a microcontroller, an application specific integrated circuit “ASIC”, etc.), a semiconductor memory, or combinatorial elements.
Additionally, or in the alternative, the term logic may refer to or include software such as one or more processes, one or more instances, Application Programming Interface(s) (API), subroutine(s), function(s), applet(s), servlet(s), routine(s), source code, object code, shared library/dynamic link library (dll), or even one or more instructions. This software may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of a non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); or persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the logic may be stored in persistent storage.
Referring to
In some embodiments, the processor 1122, including non-volatile memory such as EEPROM for instance, is included in the console 1120 for controlling system function during operation of the system 1110, thus acting as a control processor. The display 1130 in the present embodiment may be integrated into the console 1120 and is used to display information to the clinician while using the ultrasound probe 1140. In another embodiment, the display 1130 may be separate from the console 1120.
The ultrasound probe 1140 uses an ultrasound acoustic transducer or acoustic array to produce and receive echoes that can be converted into an image. For example, in some embodiments, the ultrasound probe may include an ultrasound generation device including an ultrasound acoustic stack or other various modalities of ultrasound generation (e.g., microelectromechanical systems (MEMS) based, etc.). Within the magnetic-based tracking system, in some embodiments, the ultrasound probe 1140 may additionally include a magnetometer for measuring a magnetic field strength. In some embodiments, the ultrasound probe 1140 may include a reference magnet.
The reference device 800 is a device that, in some embodiments, contains the reference magnet 700 of the magnetic-based tracking system 1110. In some embodiments, the reference device 800 may be a cuff-like structure that contains the reference magnet 700 and wraps around a body segment (e.g., bodily appendage, torso, mid-section, chest, etc.) to be imaged. In other embodiments, the reference device 800 may include a U-shaped structure that contains the reference magnet 700 and is configured to allow the bodily appendage to be placed within the U-shaped structure for imaging. In other embodiments, the reference device 800 may include a magnetometer.
The magnetic-based tracking system 1110 can be used, in some embodiments, in preparation for insertion of the needle and/or catheter into the vasculature. Specifically, the system 1110 employs the combination of the probe 1140 and the reference device 800 to track the positioning of the probe 1140 in relation to a reference magnet 700 of the reference device 800. By tracking the positioning of the probe 1140 in relation to the reference magnet 700, the system 1110 is able to relate each ultrasound image obtained by the probe 1140 to a positioning of the probe 1140 on the bodily appendage 1222. By relating an ultrasound image to a positioning on the appendage 1222, the system 1110 may then stitch together the set of ultrasound images to form a 3D visualization of the bodily appendage 1222. Such a 3D visualization gives real-time 3D ultrasound guidance and assists in reducing complications typically associated with such introduction, including inadvertent arterial puncture, hematoma, pneumothorax, etc.
In some embodiments, the ultrasound probe 1140 includes a head 1180 that houses an ultrasound acoustic transducer or acoustic array 1144 for producing ultrasonic pulses and for receiving echoes thereof after reflection by the patient's body when the head is placed against the patient's skin 1220, wherein each echo may be converted into an image. The ultrasound acoustic transducer or acoustic array 1144 may be in operable communication with the console 1120 for storing ultrasound images. In some embodiments, the ultrasound probe 1140 includes a sensor component, such as the magnetometer 1192, for detecting the position of the reference magnet 700 during ultrasound imaging procedures, such as those described above. As will be described in further detail below, the magnetometer 1192 may be embedded within the head 1180 of the ultrasound probe 1140. The magnetometer 1192 is configured to detect a magnetic field associated with the reference magnet 700 and enable the system 1110 to track the reference magnet 700 as it relates to the magnetometer 1192. In the present embodiment, the magnetometer 1192 is disposed in a planar configuration in the head 1180 of the ultrasound probe 1140, though it is appreciated that the magnetometer 1192 can be disposed in other configurations within the ultrasound probe 1140. The magnetometer 1192 may exist in a paired longitudinal configuration with the ultrasound acoustic transducer or acoustic array 1144. In other embodiments, the magnetometer 1192 may exist in a paired latitudinal configuration, paired circular configuration or a combination thereof with the ultrasound acoustic transducer or acoustic array 1144.
In some embodiments, the magnetometer 1192 may include a series of magnetometers arranged in a configuration to track the reference magnet 700. In one embodiment, the magnetometer 1192 includes three orthogonal sensor coils for enabling detection of a magnetic field in three spatial dimensions (not shown). An example of a 3D magnetic sensor is one manufactured by Honeywell Sensing and Control of Morristown, NJ. Further, the magnetometer 1192 in one embodiment are configured as Hall-effect sensors, though other types of magnetic sensors could be employed.
The magnetometer 1192 may be in communication with the console 1120 for storing information about the position of the magnetometer 1192 in relation to the reference magnet 700, which will be described in more detail herein.
In some embodiments, as illustrated in
In some embodiments, the reference device 800 may be configured to fit body segments such as a torso, multiple legs, or multiple arms. In some embodiments, the reference device 800 may be reusable and may be made of durable material such as nylon, other polyesters or harden plastics. In some embodiments as illustrated in
As will be described in more detail below, the inclusion of the reference magnet 700 and the magnetometer 1192 in the system 1110 provides numerous advantages over current ultrasound systems, specifically with respect to generation of visualizations based on the obtained ultrasound data. Briefly, the reference magnet 700 generates a magnetic field that is detectable by the magnetometer 1192 in the ultrasound probe 1140. As the reference magnet 700 remains stationary relative to the patient's appendage during use of the ultrasound probe 1140, the reference magnet 700 acts as a reference point for the ultrasound probe 1140. Thus, the ultrasound probe 1140 may be specifically configured to associate a detected magnetic field strength with a particular ultrasound image (received as an echo). Further, the ultrasound probe 1140 may be configured to continuously associate a strength of a detected magnetic field with an obtained ultrasound image. The associated pairings of {detected magnetic field strength, ultrasound image} may be provided to the console 1130 such that the logic of which may generate a 3D visualization 1132 by stitching the ultrasound images together based on the magnetic field strength associated with each. In other words, the logic of the console 1130 may properly align the ultrasound images based on the detected magnetic field strength associated with each. In particular, the detected magnetic field strength provides an indication of a location on the patient's appendage in relation to the stationary reference magnet 700, which is used to align the ultrasound images.
In one particular embodiment, the reference device 800 may fully surround the bodily appendage 1222, for example, a sleeve-like structure that completely encloses the bodily appendage 1222 to be imaged. In such an embodiment, the reference device 800 may be constructed of a cloth, neoprene or mesh material and may be affixed in position by sliding the reference device 800 over the appendage 1222 to be imaged. In some embodiments, the reference device 800 may be configured to surround and be secured to the bodily appendage 1222 to be imaged. For example, the reference device 800 may wrap completely around the upper arm, proximal the elbow and be secured to the upper arm by a first piece of temporary adhesive such as double-sided tape or Velcro (see
In some embodiments, as illustrated in
Referring to
As illustrated in
As mentioned above, the system 1110 in the present embodiment may be configured to detect the position and movement of the ultrasound probe 1140. In particular, the magnetometer 1192 in the probe 1140 is configured to detect a magnetic field generated by or otherwise associated with the reference magnet 700. In some embodiments, when the magnetometer 1192 includes multiple magnetometers, each of the magnetometers may be configured to spatially detect the magnetic field in three-dimensional space. Thus, during operation of the system 1110, the magnetic field strength data of the reference magnet 700 sensed by each of the magnetometers 1192 is forwarded to a processor, such as the processor 1122 of the console 1120 (
Referring to
As an initial step in the method 500, the reference device is configured around the bodily appendage to be imaged (block 502). As is understood, the reference device may fully or partially surround the bodily appendage to be imaged. In some embodiments, the reference device may be fixed to the bodily appendage and may be placed above or below the bodily appendage for enhanced imaging.
The ultrasound probe is advanced on the skin surface of a patient to image a target vessel (block 504). As is understood, the probe may be positioned on the skin surface enabling the projection of an ultrasound beam toward the target vessel for imaging purposes (see
As the ultrasound probe is advanced toward the target vessel, the ultrasound acoustic transducer or acoustic array within the head of the probe captures images of the target vessel (block 506). In some embodiments, the capturing step includes capturing the ultrasound images to a database located on the console.
Simultaneously, the magnetometer of the probe detects a magnetic field strength generated by or associated with the reference magnet that is included in the reference device (block 508). In some embodiments, when the magnetometer includes multiple magnetometers, the detecting step includes using all the magnetometers to detect the magnetic field.
The logic determines a distance between the reference magnet and the magnetometer of the probe based at least in part on the magnetic field strength (block 510). As discussed above, the logic may be stored on a console, the probe or an alternative electronic device. In some embodiments, when the magnetometer includes multiple magnetometers, the logic may determine the distance using the distance from each magnetometer.
Once the magnetic field strength between the reference magnet and the magnetometer of the probe is determined, the data is configured into a database that associates the distance between the reference magnet and the magnetometer with the ultrasound image recorded at the exact distance (block 512). In some embodiments, when the magnetometer includes multiple magnetometers, the distance data from each magnetometer can be configured to be stored into the database.
Finally, in response to associating the magnetic field strength between the reference magnet and magnetometer with the ultrasound image recorded at that exact distance, the logic stitches together multiple ultrasound images using the magnetic field strength associated with each specific image to stitch the images together sequentially (block 514). The stitching together of the multiple ultrasound images provides a 3D image of the target.
Referring to
In some embodiments, the processor 1122, including non-volatile memory such as EEPROM for instance, is included in the console 1120 for controlling system function during operation of the system 1110, thus acting as a control processor. The display 1130 in the present embodiment may be integrated into the console 1120 and is used to display information to the clinician while using the ultrasound probe 1140. In another embodiment, the display 1130 may be separate from the console 1120.
In some embodiments, as illustrated in
In some embodiments, the magnetic-based tracking system 1112 includes the reference device 802 further including the magnetometer 1194 and the ultrasound probe 1146 including the reference magnet 702 wherein the reference magnet 702 can be attached to the ultrasound probe 1146 via a sleeve around a probe handle 1200 or otherwise attached. This embodiment allows the reference magnet 702 to be used with various ultrasound probes that do not include reference magnets configured inside the head 1182 of the ultrasound probe 1146.
The magnetic-based tracking system 1112 can be used, in some embodiments, in preparation for insertion of the needle and/or catheter into the vasculature. Specifically, the system 1112 employs the combination of the probe 1146, the reference device 802 including the magnetometer 1194 to track the positioning of the ultrasound probe 1146 in relation to a reference magnet 702 within the ultrasound probe 1146. By tracking the positioning of the probe 1146 in relation to the reference magnet 702, the system 1112 is able to relate each ultrasound image obtained by the probe 1146 to a positioning of the probe 1146 on the bodily appendage 1222. By relating an ultrasound image to a positioning on the appendage 1222, the system 1112 may then stitch together the set of ultrasound images to form a 3D visualization of the bodily appendage 1222. Such a 3D visualization gives real-time 3D ultrasound guidance and assists in reducing complications typically associated with such introduction, including inadvertent arterial puncture, hematoma, pneumothorax, etc.
In some embodiments, the ultrasound probe 1146 includes a head 1182 that houses an ultrasound acoustic transducer or acoustic array 1148 for producing ultrasonic pulses and for receiving echoes thereof after reflection by the patient's body when the head 1182 is placed against the patient's skin 1220, wherein each echo may be converted into an image. The ultrasound acoustic transducer or acoustic array 1148 may be in operable communication with the console 1120 for storing ultrasound images. In some embodiments, the ultrasound probe 1146 includes a reference magnet 702 for providing the position of the ultrasound probe 1146 during ultrasound imaging procedures, such as those described above. As will be described in further detail below, the reference magnet 702 may be embedded within the head 1182 of the ultrasound probe 1146. In the present embodiment, the reference magnet 702 is disposed in a planar configuration in the head 1182 of the ultrasound probe 1146, though it is appreciated that the reference magnet 702 can be disposed in other configurations within the ultrasound probe 1146. The reference magnet 702 may exist in a paired longitudinal configuration, paired latitude configuration, paired circular configuration or a combination thereof with the ultrasound acoustic transducer or acoustic array 1148.
In some embodiments, the magnetometer 1194 may include a series of magnetometers arranged in a configuration to track the reference magnet 702. In one embodiment, the magnetometer 1192 includes three orthogonal sensor coils for enabling detection of a magnetic field in three spatial dimensions (not shown). An example of a 3D magnetic sensor is one manufactured by Honeywell Sensing and Control of Morristown, NJ. Further, the magnetometer 1192 in one embodiment are configured as Hall-effect sensors, though other types of magnetic sensors could be employed.
The magnetometer 1194 may be in communication with the console 1120 for storing information about the position of the reference magnet 702 in relation to the magnetometer 1194, which will be described in more detail herein.
The magnetometer 1194 is configured to detect a magnetic field associated with the reference magnet 702 and enable the system 1112 to track the reference magnet 702 as it relates to the magnetometer 1194.
Referring to
In other words, as the ultrasound probe 1194 is moved along a patient's bodily appendage, the ultrasound probe 1146 transmits an ultrasonic pulse and receives an echo, which is translated into information and time stamped, utilized to render a two-dimensional (2D) image of the echo received at a particular location on the bodily appendage. As disclosed herein, as the ultrasound probe 1146 transmits the ultrasonic pulse and receives the echo, the magnetometer 1194 within the reference device 802 concurrently detects a magnetic field generated by the reference magnet 702 within the ultrasound probe 1146 and records its strength and time stamps the magnetic field strength, where concurrently means at least partially overlapping in time. Thus, the ultrasound probe 1146 captures information for creating a 2D ultrasound image at a particular location along the bodily appendage and the magnetometer 1194 records the strength of the magnetic field detected at that location. The ultrasound information including the time stamp and the magnetic field strength and time stamp are coupled and transmitted to the console 1110 for storage and processing. For instance, a plurality of ultrasound information, magnetic field strength and time stamp couplings may be used to create a 3D visualization of at least a portion of the bodily appendage by stitching 2D images created from the ultrasound information together based the magnetic field strength data and time stamping. Specifically, the magnetic field strength data and concurrent time stamp may be used to align the 2D ultrasound images based on a reference point (e.g., the location of the reference magnet 702) through analysis of the magnetic field strength data.
As illustrated in
Referring to
As an initial step in the method 600, the reference device is configured around the bodily appendage to be imaged (block 602). As is understood, the reference device may fully or partially surround the bodily appendage to be imaged. In some embodiments, the reference device may be fixed to the bodily appendage and may be placed above or below the bodily appendage for enhanced imaging.
The ultrasound probe is advanced on the skin surface of a patient to image a target vessel 1226 (block 604). As is understood, the probe may be positioned on the skin surface enabling the projection of an ultrasound beam toward the target vessel for imaging purposes (see
As the ultrasound probe is advanced toward the target vessel, the ultrasound acoustic transducer or acoustic array within the head of the probe captures images of the target vessel (block 606). In some embodiments, the capturing step includes capturing the ultrasound images to a database located on the console.
Simultaneously, the magnetometer of the reference device detects a magnetic field strength generated by or associated with the reference magnet that is included in or on the ultrasound probe (block 608). In some embodiments, when the magnetometer includes multiple magnetometers, the detecting step includes using all the magnetometers to detect the magnetic field.
The logic determines a distance between the reference magnet of the probe and the magnetometer of the reference device based at least in part on the magnetic field strength (block 610). As discussed above, the logic may be stored on a console, the probe or an alternative electronic device. In some embodiments, when the magnetometer includes multiple magnetometers, the logic may determine the distance using the distance from each magnetometer.
Once the magnetic field strength between the reference magnet of the probe and the magnetometer of the reference device is determined, the data is configured into a database that associates the distance between the reference magnet and the magnetometer with the ultrasound image recorded at the exact distance and the time stamp of the ultrasound image and the time stamp of the magnetic field strength (block 612). In some embodiments, when the magnetometer includes multiple magnetometers, the distance data from each magnetometer can be configured to be stored into the database.
Finally, in response to associating the magnetic field strength between the reference magnet and magnetometer with the ultrasound image recorded at that exact distance, the logic stitches together multiple ultrasound images using the magnetic field strength associated with each specific image and the time stamps to stitch the images together sequentially (block 614). The stitching together of the multiple ultrasound images provides a 3D image of the target.
In addition to the above described embodiments, the inventive concepts may also be utilized in further embodiments such as, but not limited to, those described below. For example, in one embodiment, the tracking structure of the magnetometer, the reference magnet and ultrasound probe are used to provide 3D views/guidance of anatomical structures intended for access with a needle (e.g. nerve blocks, drainage sites, biopsy sites, etc.).
In another embodiment, the combination the tracking structure and a needle tracking system is used to capture the trajectory of the needle in 3D. In furtherance of such an embodiment, the system 1110 may record of the path of the needle to the target structure (e.g. center of vessel, nerve bundle, drainage site, pneumothorax, etc.). In yet another embodiment, a magnetic or electromagnetic needle guidance system is used to visually track within the 3D scan.
In another embodiment, the 3D scan may be viewed by a clinician through a virtual, augmented or mixed-reality system. In furtherance of such an embodiment, the clinician can evaluate or track needles, wires or tools in real time.
In some embodiments, the tracking structure could be combined with vessel ID methods and Doppler capabilities to map veins and arteries observed during the scanning process.
In another embodiment, the tracking structure could be combined with a hands-free ultrasound probe to enable a live image at the desired insertion location and a 3D pre-scanned image. The hands-free probe with the combination of the tracking structure would allow the clinician to use both hands for procedural device manipulation of the needle and patient interaction of skin stabilization or limb extension simultaneously.
In some embodiments, the remote-controlled tourniquet may be a separate cuff from the reference device 800. In some embodiments, the remote-controlled heating element may be a separate cuff from the reference device 800.
In another embodiment, the tracking structure, in conjunction with the ultrasound, could be used to create a baseline image of the lungs and a post-procedure scan to identify changes in the lungs (e.g. sliding lung behavior associated with pneumothorax or improved blood flow). In furtherance of such an embodiment, this combination could be combined with additional methods to identify or highlight structures of interest such as nerve bundles in the 3D scans.
In another embodiment, the tracking structure could include radio-opaque markers pursuant to the correlation to or image combination with X-ray, fluoroscopy or a combination thereof.
While some particular embodiments have been disclosed herein, and while the particular embodiments have been disclosed in some detail, it is not the intention for the particular embodiments to limit the scope of the concepts provided herein. Additional adaptations and/or modifications can appear to those of ordinary skill in the art, and, in broader aspects, these adaptations and/or modifications are encompassed as well. Accordingly, departures may be made from the particular embodiments disclosed herein without departing from the scope of the concepts provided herein.
This application is a division of U.S. patent application Ser. No. 17/380,767, filed Jul. 20, 2021, now U.S. Pat. No. 11,877,810, which claims the benefit of priority to U.S. Provisional Application No. 63/054,622, filed Jul. 21, 2020, each of which is incorporated by reference in its entirety into this application.
Number | Name | Date | Kind |
---|---|---|---|
5148809 | Biegeleisen-Knight et al. | Sep 1992 | A |
5181513 | Touboul et al. | Jan 1993 | A |
5325293 | Dorne | Jun 1994 | A |
5441052 | Miyajima | Aug 1995 | A |
5549554 | Miraki | Aug 1996 | A |
5573529 | Haak et al. | Nov 1996 | A |
5775322 | Silverstein et al. | Jul 1998 | A |
5879297 | Haynor et al. | Mar 1999 | A |
5908387 | LeFree et al. | Jun 1999 | A |
5967984 | Chu et al. | Oct 1999 | A |
5970119 | Hofmann | Oct 1999 | A |
6004270 | Urbano et al. | Dec 1999 | A |
6019724 | Gronningsaeter et al. | Feb 2000 | A |
6068599 | Saito et al. | May 2000 | A |
6074367 | Hubbell | Jun 2000 | A |
6129668 | Haynor et al. | Oct 2000 | A |
6132379 | Patacsil et al. | Oct 2000 | A |
6216028 | Haynor et al. | Apr 2001 | B1 |
6233476 | Strommer et al. | May 2001 | B1 |
6245018 | Lee | Jun 2001 | B1 |
6263230 | Haynor et al. | Jul 2001 | B1 |
6375615 | Flaherty et al. | Apr 2002 | B1 |
6436043 | Bonnefous | Aug 2002 | B2 |
6498942 | Esenaliev et al. | Dec 2002 | B1 |
6503205 | Manor et al. | Jan 2003 | B2 |
6508769 | Bonnefous | Jan 2003 | B2 |
6511458 | Milo et al. | Jan 2003 | B2 |
6524249 | Moehring et al. | Feb 2003 | B2 |
6543642 | Milliorn | Apr 2003 | B1 |
6554771 | Buil et al. | Apr 2003 | B1 |
6592520 | Peszynski et al. | Jul 2003 | B1 |
6592565 | Twardowski | Jul 2003 | B2 |
6601705 | Molina et al. | Aug 2003 | B2 |
6612992 | Hossack et al. | Sep 2003 | B1 |
6613002 | Clark et al. | Sep 2003 | B1 |
6623431 | Sakuma et al. | Sep 2003 | B1 |
6641538 | Nakaya et al. | Nov 2003 | B2 |
6647135 | Bonnefous | Nov 2003 | B2 |
6687386 | Ito et al. | Feb 2004 | B1 |
6749569 | Pellegretti | Jun 2004 | B1 |
6754608 | Svanerudh et al. | Jun 2004 | B2 |
6755789 | Stringer et al. | Jun 2004 | B2 |
6840379 | Franks-Farah et al. | Jan 2005 | B2 |
6857196 | Dalrymple | Feb 2005 | B2 |
6979294 | Selzer et al. | Dec 2005 | B1 |
7074187 | Selzer et al. | Jul 2006 | B2 |
7244234 | Ridley et al. | Jul 2007 | B2 |
7359554 | Klingensmith et al. | Apr 2008 | B2 |
7534209 | Abend et al. | May 2009 | B2 |
7599730 | Hunter et al. | Oct 2009 | B2 |
7637870 | Flaherty et al. | Dec 2009 | B2 |
7681579 | Schwartz | Mar 2010 | B2 |
7691061 | Hirota | Apr 2010 | B2 |
7699779 | Sasaki et al. | Apr 2010 | B2 |
7720520 | Willis | May 2010 | B2 |
7727153 | Fritz et al. | Jun 2010 | B2 |
7734326 | Pedain et al. | Jun 2010 | B2 |
7831449 | Ying et al. | Nov 2010 | B2 |
7905837 | Suzuki | Mar 2011 | B2 |
7925327 | Weese | Apr 2011 | B2 |
7927278 | Selzer et al. | Apr 2011 | B2 |
8014848 | Birkenbach et al. | Sep 2011 | B2 |
8050523 | Younge et al. | Nov 2011 | B2 |
8060181 | Rodriguez Ponce et al. | Nov 2011 | B2 |
8068581 | Boese et al. | Nov 2011 | B2 |
8075488 | Burton | Dec 2011 | B2 |
8090427 | Eck et al. | Jan 2012 | B2 |
8105239 | Specht | Jan 2012 | B2 |
8172754 | Watanabe et al. | May 2012 | B2 |
8175368 | Sathyanarayana | May 2012 | B2 |
8200313 | Rambod et al. | Jun 2012 | B1 |
8211023 | Swan et al. | Jul 2012 | B2 |
8228347 | Beasley et al. | Jul 2012 | B2 |
8298147 | Huennekens et al. | Oct 2012 | B2 |
8303505 | Webler et al. | Nov 2012 | B2 |
8323202 | Roschak et al. | Dec 2012 | B2 |
8328727 | Miele et al. | Dec 2012 | B2 |
8388541 | Messerly et al. | Mar 2013 | B2 |
8409103 | Grunwald et al. | Apr 2013 | B2 |
8449465 | Nair et al. | May 2013 | B2 |
8553954 | Saikia | Oct 2013 | B2 |
8556815 | Pelissier et al. | Oct 2013 | B2 |
8585600 | Liu et al. | Nov 2013 | B2 |
8622913 | Dentinger et al. | Jan 2014 | B2 |
8706457 | Hart et al. | Apr 2014 | B2 |
8727988 | Flaherty et al. | May 2014 | B2 |
8734357 | Taylor | May 2014 | B2 |
8744211 | Owen | Jun 2014 | B2 |
8754865 | Merritt et al. | Jun 2014 | B2 |
8764663 | Smok et al. | Jul 2014 | B2 |
8781194 | Malek et al. | Jul 2014 | B2 |
8781555 | Burnside et al. | Jul 2014 | B2 |
8790263 | Randall et al. | Jul 2014 | B2 |
8849382 | Cox et al. | Sep 2014 | B2 |
8939908 | Suzuki et al. | Jan 2015 | B2 |
8961420 | Zhang | Feb 2015 | B2 |
9022940 | Meier | May 2015 | B2 |
9138290 | Hadjicostis | Sep 2015 | B2 |
9155517 | Dunbar et al. | Oct 2015 | B2 |
9204858 | Pelissier et al. | Dec 2015 | B2 |
9220477 | Urabe et al. | Dec 2015 | B2 |
9257220 | Nicholls et al. | Feb 2016 | B2 |
9295447 | Shah | Mar 2016 | B2 |
9320493 | Visveshwara | Apr 2016 | B2 |
9357980 | Toji et al. | Jun 2016 | B2 |
9364171 | Harris et al. | Jun 2016 | B2 |
9427207 | Sheldon et al. | Aug 2016 | B2 |
9445780 | Hossack et al. | Sep 2016 | B2 |
9456766 | Cox et al. | Oct 2016 | B2 |
9456804 | Tamada | Oct 2016 | B2 |
9459087 | Dunbar et al. | Oct 2016 | B2 |
9468413 | Hall et al. | Oct 2016 | B2 |
9492097 | Wilkes et al. | Nov 2016 | B2 |
9521961 | Silverstein et al. | Dec 2016 | B2 |
9554716 | Burnside et al. | Jan 2017 | B2 |
9582876 | Specht | Feb 2017 | B2 |
9597008 | Henkel et al. | Mar 2017 | B2 |
9610061 | Ebbini et al. | Apr 2017 | B2 |
9636031 | Cox | May 2017 | B2 |
9649037 | Lowe et al. | May 2017 | B2 |
9649048 | Cox et al. | May 2017 | B2 |
9702969 | Hope Simpson et al. | Jul 2017 | B2 |
9715757 | Ng et al. | Jul 2017 | B2 |
9717415 | Cohen et al. | Aug 2017 | B2 |
9731066 | Liu et al. | Aug 2017 | B2 |
9814433 | Benishti et al. | Nov 2017 | B2 |
9814531 | Yagi et al. | Nov 2017 | B2 |
9861337 | Patwardhan et al. | Jan 2018 | B2 |
9895138 | Sasaki | Feb 2018 | B2 |
9913605 | Harris et al. | Mar 2018 | B2 |
9949720 | Southard et al. | Apr 2018 | B2 |
10043272 | Forzoni et al. | Aug 2018 | B2 |
10380919 | Savitsky et al. | Aug 2019 | B2 |
10380920 | Savitsky et al. | Aug 2019 | B2 |
10424225 | Nataneli et al. | Sep 2019 | B2 |
10434278 | Dunbar et al. | Oct 2019 | B2 |
10449330 | Newman et al. | Oct 2019 | B2 |
10524691 | Newman et al. | Jan 2020 | B2 |
10674935 | Henkel et al. | Jun 2020 | B2 |
10751509 | Misener | Aug 2020 | B2 |
10758155 | Henkel et al. | Sep 2020 | B2 |
10765343 | Henkel et al. | Sep 2020 | B2 |
10896628 | Savitsky et al. | Jan 2021 | B2 |
11062624 | Savitsky et al. | Jul 2021 | B2 |
11120709 | Savitsky et al. | Sep 2021 | B2 |
11311269 | Dunbar et al. | Apr 2022 | B2 |
11315439 | Savitsky et al. | Apr 2022 | B2 |
11600201 | Savitsky et al. | Mar 2023 | B1 |
20020038088 | Imran et al. | Mar 2002 | A1 |
20020148277 | Umeda | Oct 2002 | A1 |
20030047126 | Tomaschko | Mar 2003 | A1 |
20030060714 | Henderson et al. | Mar 2003 | A1 |
20030073900 | Senarith et al. | Apr 2003 | A1 |
20030093001 | Martikainen | May 2003 | A1 |
20030106825 | Molina et al. | Jun 2003 | A1 |
20030120154 | Sauer et al. | Jun 2003 | A1 |
20040055925 | Franks-Farah et al. | Mar 2004 | A1 |
20050000975 | Carco et al. | Jan 2005 | A1 |
20050049504 | Lo et al. | Mar 2005 | A1 |
20050165299 | Kressy et al. | Jul 2005 | A1 |
20050251030 | Azar et al. | Nov 2005 | A1 |
20050267365 | Sokulin et al. | Dec 2005 | A1 |
20060013523 | Childlers et al. | Jan 2006 | A1 |
20060015039 | Cassidy et al. | Jan 2006 | A1 |
20060020204 | Serra et al. | Jan 2006 | A1 |
20060079781 | Germond-Rouet et al. | Apr 2006 | A1 |
20060184029 | Haim et al. | Aug 2006 | A1 |
20060210130 | Germond-Rouet et al. | Sep 2006 | A1 |
20070043341 | Anderson et al. | Feb 2007 | A1 |
20070049822 | Bunce et al. | Mar 2007 | A1 |
20070073155 | Park et al. | Mar 2007 | A1 |
20070199848 | Ellswood et al. | Aug 2007 | A1 |
20070239120 | Brock et al. | Oct 2007 | A1 |
20070249911 | Simon | Oct 2007 | A1 |
20080021322 | Stone et al. | Jan 2008 | A1 |
20080033293 | Beasley et al. | Feb 2008 | A1 |
20080033759 | Finlay | Feb 2008 | A1 |
20080051657 | Rold | Feb 2008 | A1 |
20080146915 | McMorrow | Jun 2008 | A1 |
20080177186 | Slater et al. | Jul 2008 | A1 |
20080221425 | Olson et al. | Sep 2008 | A1 |
20080294037 | Richter | Nov 2008 | A1 |
20080300491 | Bonde et al. | Dec 2008 | A1 |
20090012399 | Sunagawa et al. | Jan 2009 | A1 |
20090143672 | Harms et al. | Jun 2009 | A1 |
20090143684 | Cermak et al. | Jun 2009 | A1 |
20090156926 | Messerly et al. | Jun 2009 | A1 |
20090306509 | Pedersen et al. | Dec 2009 | A1 |
20100020926 | Boese et al. | Jan 2010 | A1 |
20100106015 | Norris | Apr 2010 | A1 |
20100179428 | Pedersen et al. | Jul 2010 | A1 |
20100211026 | Sheetz et al. | Aug 2010 | A2 |
20100277305 | Garner et al. | Nov 2010 | A1 |
20100286515 | Gravenstein et al. | Nov 2010 | A1 |
20100312121 | Guan | Dec 2010 | A1 |
20110002518 | Ziv-Ari et al. | Jan 2011 | A1 |
20110071404 | Schmitt et al. | Mar 2011 | A1 |
20110295108 | Cox et al. | Dec 2011 | A1 |
20110313293 | Lindekugel et al. | Dec 2011 | A1 |
20120179038 | Meurer et al. | Jul 2012 | A1 |
20120197132 | O'Connor | Aug 2012 | A1 |
20120209121 | Boudier | Aug 2012 | A1 |
20120220865 | Brown et al. | Aug 2012 | A1 |
20120238875 | Savitsky et al. | Sep 2012 | A1 |
20120277576 | Lui | Nov 2012 | A1 |
20130041250 | Pelissier et al. | Feb 2013 | A1 |
20130102889 | Southard et al. | Apr 2013 | A1 |
20130131499 | Chan et al. | May 2013 | A1 |
20130131502 | Blaivas et al. | May 2013 | A1 |
20130150724 | Blaivas et al. | Jun 2013 | A1 |
20130188832 | Ma et al. | Jul 2013 | A1 |
20130218024 | Boctor et al. | Aug 2013 | A1 |
20130324840 | Zhongping et al. | Dec 2013 | A1 |
20140005530 | Liu et al. | Jan 2014 | A1 |
20140031690 | Toji et al. | Jan 2014 | A1 |
20140036091 | Zalev et al. | Feb 2014 | A1 |
20140073976 | Fonte et al. | Mar 2014 | A1 |
20140100440 | Cheline et al. | Apr 2014 | A1 |
20140155737 | Manzke et al. | Jun 2014 | A1 |
20140180098 | Flaherty et al. | Jun 2014 | A1 |
20140188133 | Misener | Jul 2014 | A1 |
20140188440 | Donhowe et al. | Jul 2014 | A1 |
20140257104 | Dunbar | Sep 2014 | A1 |
20140276059 | Sheehan | Sep 2014 | A1 |
20140276081 | Tegels | Sep 2014 | A1 |
20140276085 | Miller | Sep 2014 | A1 |
20140276690 | Grace | Sep 2014 | A1 |
20140343431 | Vajinepalli et al. | Nov 2014 | A1 |
20150005738 | Blacker | Jan 2015 | A1 |
20150011887 | Ahn et al. | Jan 2015 | A1 |
20150065916 | Maguire et al. | Mar 2015 | A1 |
20150073279 | Cai et al. | Mar 2015 | A1 |
20150112200 | Oberg et al. | Apr 2015 | A1 |
20150209113 | Burkholz et al. | Jul 2015 | A1 |
20150209526 | Matsubara et al. | Jul 2015 | A1 |
20150294497 | Ng et al. | Oct 2015 | A1 |
20150297097 | Matsubara et al. | Oct 2015 | A1 |
20150327841 | Banjanin et al. | Nov 2015 | A1 |
20150359991 | Dunbar et al. | Dec 2015 | A1 |
20160029995 | Navratil et al. | Feb 2016 | A1 |
20160029998 | Brister et al. | Feb 2016 | A1 |
20160058420 | Cinthio | Mar 2016 | A1 |
20160100970 | Brister et al. | Apr 2016 | A1 |
20160101263 | Blumenkranz et al. | Apr 2016 | A1 |
20160113699 | Sverdlik et al. | Apr 2016 | A1 |
20160120607 | Sorotzkin et al. | May 2016 | A1 |
20160143622 | Xie et al. | May 2016 | A1 |
20160166232 | Merritt | Jun 2016 | A1 |
20160202053 | Walker et al. | Jul 2016 | A1 |
20160213398 | Liu | Jul 2016 | A1 |
20160278743 | Kawashima | Sep 2016 | A1 |
20160278869 | Grunwald | Sep 2016 | A1 |
20160296208 | Sethuraman et al. | Oct 2016 | A1 |
20160374644 | Mauldin, Jr. et al. | Dec 2016 | A1 |
20170079548 | Silverstein et al. | Mar 2017 | A1 |
20170086785 | Bjaerum | Mar 2017 | A1 |
20170100092 | Kruse | Apr 2017 | A1 |
20170164923 | Matsumoto | Jun 2017 | A1 |
20170172424 | Eggers et al. | Jun 2017 | A1 |
20170188839 | Tashiro | Jul 2017 | A1 |
20170196535 | Arai et al. | Jul 2017 | A1 |
20170215842 | Ryu et al. | Aug 2017 | A1 |
20170259013 | Boyden et al. | Sep 2017 | A1 |
20170265840 | Bharat et al. | Sep 2017 | A1 |
20170303894 | Scully | Oct 2017 | A1 |
20170367678 | Sirtori et al. | Dec 2017 | A1 |
20180015256 | Southard et al. | Jan 2018 | A1 |
20180116723 | Hettrick et al. | May 2018 | A1 |
20180125450 | Blackbourne et al. | May 2018 | A1 |
20180161502 | Nanan et al. | Jun 2018 | A1 |
20180199914 | Ramachandran et al. | Jul 2018 | A1 |
20180214119 | Mehrmohammadi et al. | Aug 2018 | A1 |
20180225993 | Buras et al. | Aug 2018 | A1 |
20180228465 | Southard et al. | Aug 2018 | A1 |
20180235576 | Brannan | Aug 2018 | A1 |
20180250078 | Shochat et al. | Sep 2018 | A1 |
20180272108 | Padilla et al. | Sep 2018 | A1 |
20180279996 | Cox et al. | Oct 2018 | A1 |
20180286287 | Razzaque | Oct 2018 | A1 |
20180310955 | Lindekugel et al. | Nov 2018 | A1 |
20180317881 | Astigarraga et al. | Nov 2018 | A1 |
20180366035 | Dunbar et al. | Dec 2018 | A1 |
20190060014 | Hazelton et al. | Feb 2019 | A1 |
20190069923 | Wang | Mar 2019 | A1 |
20190076121 | Southard et al. | Mar 2019 | A1 |
20190088019 | Prevrhal et al. | Mar 2019 | A1 |
20190105017 | Hastings | Apr 2019 | A1 |
20190117190 | Djajadiningrat et al. | Apr 2019 | A1 |
20190223757 | Durfee | Jul 2019 | A1 |
20190239850 | Dalvin et al. | Aug 2019 | A1 |
20190282324 | Freeman et al. | Sep 2019 | A1 |
20190298457 | Bharat | Oct 2019 | A1 |
20190307516 | Schotzko et al. | Oct 2019 | A1 |
20190339525 | Yanof et al. | Nov 2019 | A1 |
20190355278 | Sainsbury et al. | Nov 2019 | A1 |
20190365348 | Toume et al. | Dec 2019 | A1 |
20200041261 | Bernstein et al. | Feb 2020 | A1 |
20200069285 | Annangi et al. | Mar 2020 | A1 |
20200113540 | Gijsbers et al. | Apr 2020 | A1 |
20200129136 | Harding et al. | Apr 2020 | A1 |
20200188028 | Feiner et al. | Jun 2020 | A1 |
20200230391 | Burkholz et al. | Jul 2020 | A1 |
20210007710 | Douglas | Jan 2021 | A1 |
20210045716 | Shiran et al. | Feb 2021 | A1 |
20210166583 | Buras et al. | Jun 2021 | A1 |
20210307838 | Xia et al. | Oct 2021 | A1 |
20210353255 | Schneider et al. | Nov 2021 | A1 |
20210402144 | Messerly | Dec 2021 | A1 |
20220022969 | Misener | Jan 2022 | A1 |
20220031965 | Durfee | Feb 2022 | A1 |
20220039685 | Misener et al. | Feb 2022 | A1 |
20220039777 | Durfee | Feb 2022 | A1 |
20220096797 | Prince | Mar 2022 | A1 |
20220104886 | Blanchard et al. | Apr 2022 | A1 |
20220117582 | McLaughlin et al. | Apr 2022 | A1 |
20220160434 | Messerly et al. | May 2022 | A1 |
20220168050 | Sowards et al. | Jun 2022 | A1 |
20220172354 | Misener et al. | Jun 2022 | A1 |
20220211442 | McLaughlin et al. | Jul 2022 | A1 |
20220381630 | Sowards et al. | Dec 2022 | A1 |
20230113291 | de Wild et al. | Apr 2023 | A1 |
20230240643 | Cermak et al. | Aug 2023 | A1 |
20230389893 | Misener et al. | Dec 2023 | A1 |
20240008929 | Misener et al. | Jan 2024 | A1 |
20240050061 | McLaughlin et al. | Feb 2024 | A1 |
20240062678 | Sowards et al. | Feb 2024 | A1 |
Number | Date | Country |
---|---|---|
2006201646 | Nov 2006 | AU |
114129137 | Sep 2022 | CN |
0933063 | Aug 1999 | EP |
1504713 | Feb 2005 | EP |
1591074 | May 2008 | EP |
3181083 | Jun 2017 | EP |
3530221 | Aug 2019 | EP |
2000271136 | Oct 2000 | JP |
2014150928 | Aug 2014 | JP |
2018175547 | Nov 2018 | JP |
20180070878 | Jun 2018 | KR |
20190013133 | Feb 2019 | KR |
2013059714 | Apr 2013 | WO |
2014115150 | Jul 2014 | WO |
2014174305 | Oct 2014 | WO |
2015017270 | Feb 2015 | WO |
2017096487 | Jun 2017 | WO |
2017214428 | Dec 2017 | WO |
2018026878 | Feb 2018 | WO |
2018134726 | Jul 2018 | WO |
2018206473 | Nov 2018 | WO |
2019232451 | Dec 2019 | WO |
2020002620 | Jan 2020 | WO |
2020016018 | Jan 2020 | WO |
2019232454 | Feb 2020 | WO |
2020044769 | Mar 2020 | WO |
2020102665 | May 2020 | WO |
2020186198 | Sep 2020 | WO |
2022031762 | Feb 2022 | WO |
2022072727 | Apr 2022 | WO |
2022081904 | Apr 2022 | WO |
2022203713 | Sep 2022 | WO |
2022263763 | Dec 2022 | WO |
2023235435 | Dec 2023 | WO |
2024010940 | Jan 2024 | WO |
2024039608 | Feb 2024 | WO |
2024039719 | Feb 2024 | WO |
Entry |
---|
PCT/US2023/030347 filed Aug. 16, 2023 International Search Report and Written Opinion dated Nov. 6, 2023. |
U.S. Appl. No. 17/393,283, filed Aug. 3, 2021 Advisory Action dated Jan. 19, 2024. |
U.S. Appl. No. 17/478,754, filed Sep. 17, 2021 Restriction Requirement dated Jan. 22, 2024. |
U.S. Appl. No. 17/501,909, filed Oct. 14, 2021 Advisory Action dated Jan. 24, 2024. |
U.S. Appl. No. 17/501,909, filed Oct. 14, 2021 Final Office Action dated Nov. 21, 2023. |
U.S. Appl. No. 17/832,389, filed Jun. 3, 2022 Final Office Action dated Jan. 25, 2024. |
U.S. Appl. No. 17/393,283, filed Aug. 3, 2021 Non-Final Office Action dated Feb. 29, 2024. |
U.S. Appl. No. 17/397,486, filed Aug. 9, 2021 Non-Final Office Action dated Mar. 1, 2024. |
U.S. Appl. No. 17/491,308, filed Sep. 30, 2021 Non-Final Office Action dated Mar. 22, 2024. |
U.S. Appl. No. 17/501,909, filed Oct. 14, 2021 Non-Final Office Action dated Mar. 21, 2024. |
U.S. Appl. No. 17/832,389, filed Jun. 3, 2022 Advisory Action dated Apr. 4, 2024. |
U.S. Appl. No. 17/832,389, filed Jun. 3, 2022 Notice of Allowance dated May 15, 2024. |
U.S. Appl. No. 17/861,031, filed Jul. 8, 2022 Final Office Action dated Mar. 15, 2024. |
EZono, eZSimulator, https://www.ezono.com/en/ezsimulator/, last accessed Sep. 13, 2022. |
Ikhsan Mohammad et al: “Assistive technology for ultrasound-guided central venous catheter placement”, Journal of Medical Ultrasonics, Japan Society of Ultrasonics in Medicine, Tokyo, JP, vol. 45, No. 1, Apr. 19, 2017, pp. 41-57, XPO36387340, ISSN: 1346-4523, DOI: 10.1007/S10396-017-0789-2 [retrieved on Apr. 19, 2017]. |
Lu Zhenyu et al “Recent advances in 5 robot-assisted echography combining perception control and cognition.” Cognitive Computation and Systems the Institution of Engineering and Technology, Michael Faraday House, Six Hills Way, Stevenage Herts. SG1 2AY UK vol. 2 no. 3 Sep. 2, 2020 (Sep. 2, 2020). |
Pagoulatos, N. et al. “New spatial localizer based on fiber optics with applications in 3D ultrasound imaging” Proceeding of Spie, vol. 3976 (Apr. 18, 2000; Apr. 18, 2000). |
PCT/US2021/042369 filed Jul. 20, 2021 International Search Report and Written Opinion dated Oct. 25, 2021. |
PCT/US2021/044419 filed Aug. 3, 2021 International Search Report and Written Opinion dated Nov. 19, 2021. |
PCT/US2021/045218 filed Aug. 9, 2021 International Search Report and Written Opinion dated Nov. 23, 2021. |
PCT/US2021/050973 filed Sep. 17, 2021 International Search Report and Written Opinion dated Nov. 7, 2022. |
PCT/US2021/053018 filed Sep. 30, 2021 International Search Report and Written Opinion dated May 3, 2022. |
PCT/US2021/055076 filed Oct. 14, 2021 International Search Report and Written Opinion dated Mar. 25, 2022. |
PCT/US2023/024067 filed May 31, 2023 International Search Report and Written Opinion dated Sep. 15, 2023. |
PCT/US2023/027147 filed Jul. 7, 2023 International Search Report and Written Opinion dated Oct. 2, 2023. |
PCT/US2023/030160 filed Aug. 14, 2023 International Search Report and Written Opinion dated Oct. 23, 2023. |
Practical guide for safe central venous catheterization and management 2017 Journal of Anesthesia vol. 34 published online Nov. 30, 2019 pp. 167-186. |
Sebastian Vogt: “Real-Time Augmented Reality for Image-Guided Interventions”, Oct. 5, 2009, XPO55354720, Retrieved from the Internet: URL: https://opus4.kobv.de/opus4-fau/frontdoor/deliver/index/docld/1235/file/SebastianVogtDissertation.pdf. |
Sonosim, https://sonosim.com/ultrasound-simulation/? last accessed Sep. 13, 2022. |
State, A., et al. (Aug. 1996). Technologies for augmented reality systems: Realizing ultrasound-guided needle biopsies. In Proceedings of the 23rd annual conference on computer graphics and interactive techniques (pp. 439-446) (Year: 1996). |
Stolka, P.J., et al., (2014). Needle Guidance Using Handheld Stereo Vision and Projection for Ultrasound-Based Interventions. in: Galland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2014. MICCAI 2014. (Year: 2014). |
U.S. Appl. No. 17/380,767, filed Jul. 20, 2021 Non-Final Office Action dated Mar. 6, 2023. |
U.S. Appl. No. 17/380,767, filed Jul. 20, 2021 Notice of Allowance dated Aug. 31, 2023. |
U.S. Appl. No. 17/380,767 filed Jul. 20, 2021 Restriction Requirement dated Dec. 15, 2022. |
U.S. Appl. No. 17/393,283 filed Aug. 3, 2021 Final Office Action dated Oct. 16, 2023. |
U.S. Appl. No. 17/393,283 filed Aug. 3, 2021 Non-Final Office Action dated Mar. 31, 2023. |
U.S. Appl. No. 17/393,283, filed Aug. 3, 2021 Restriction Requirement dated Jan. 12, 2023. |
U.S. Appl. No. 17/397,486, filed Aug. 9, 2021 Advisory Action dated Oct. 5, 2023. |
U.S. Appl. No. 17/397,486, filed Aug. 9, 2021 Final Office Action dated Aug. 4, 2023. |
U.S. Appl. No. 17/397,486, filed Aug. 9, 2021 Non-Final Office Action dated Jan. 23, 2023. |
U.S. Appl. No. 17/397,486, filed Aug. 9, 2021 Restriction Requirement dated Aug. 12, 2022. |
U.S. Appl. No. 17/491,308, filed Sep. 30, 2021 Board Decision dated Oct. 25, 2023. |
U.S. Appl. No. 17/491,308, filed Sep. 30, 2021 Board Decison dated Oct. 25, 2023. |
U.S. Appl. No. 17/491,308, filed Sep. 30, 2021 Final Office Action dated Aug. 29, 2023. |
U.S. Appl. No. 17/491,308, filed Sep. 30, 2021 Non-Final Office Action dated Jun. 5, 2023. |
U.S. Appl. No. 17/491,308, filed Sep. 30, 2021 Restriction Requirement dated Feb. 27, 2023. |
U.S. Appl. No. 17/501,909, filed Oct. 14, 2021 Non-Final Office Action dated Jun. 6, 2023. |
U.S. Appl. No. 17/501,909, filed Oct. 14, 2021 Restriction Requirement dated Feb. 1, 2023. |
U.S. Appl. No. 17/832,389, filed Jun. 3, 2022 Non-Final Office Action dated Oct. 6, 2023. |
U.S. Appl. No. 17/832,389, filed Jun. 3, 2022 Restriction Requirement dated Jul. 13, 2023. |
U.S. Appl. No. 17/861,031, filed Jul. 8, 2022 Non-Final Office Action dated Sep. 14, 2023. |
William F Garrett et al: “Real-time incremental visualization of dynamic ultrasound volumes using parallel BSP trees”, Visualization '96. Proceedings, IEEE, NE, Oct. 27, 1996, pp. 235-ff, XPO58399771, ISBN: 978-0-89791-864-0 abstract, figures 1-7, pp. 236-240. |
U.S. Appl. No. 17/397,486, filed Aug. 9, 2021 Notice of Allowance dated Jul. 10, 2024. |
U.S. Appl. No. 17/478,754, filed Sep. 17, 2021 Non-Final Office Action dated Jul. 1, 2024. |
U.S. Appl. No. 17/491,308, filed Sep. 30, 2021 Notice of Allowance dated Jun. 27, 2024. |
U.S. Appl. No. 17/501,909, filed Oct. 14, 2021 Final Office Action dated Aug. 5, 2024. |
U.S. Appl. No. 17/861,031, filed Jul. 8, 2022 Advisory Action dated Jun. 7, 2024. |
U.S. Appl. No. 17/861,031, filed Jul. 8, 2022 Notice of Allowance dated Jul. 3, 2024. |
Number | Date | Country | |
---|---|---|---|
20240058074 A1 | Feb 2024 | US |
Number | Date | Country | |
---|---|---|---|
63054622 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17380767 | Jul 2021 | US |
Child | 18385101 | US |