The present invention relates generally to a system for protecting galvanized irrigation pipes. More specifically, the present invention provides a system, method and apparatus for providing anodic corrosion protection for galvanized irrigation pipes.
Pipeline corrosion remains a significant issue for mechanized irrigation in general. One long-standing and well known way of combating corrosion is the concept of cathodic protection, wherein a galvanic anode or anodes are placed into contact with a stream of water to protect adjacent metals. These anodes supply free electrons to the cathode and protect the cathode (e.g. span pipe) from corroding. As taught in the prior art, so long as the anodes are sized and placed adequately to supply these free electrons to the cathode (steel pipe) faster than oxygen from the environment, corrosion will be minimized or prevented.
Modern irrigation systems depend primarily on galvanized steel pipes (e.g. spans) to transport water from wells to needed areas. Currently, the solutions for irrigation systems involves installing a magnesium strip inside the pipeline, running along its entire length and affixed at both ends. While generally effective, the installed magnesium strips are difficult to install and fairly expensive to manufacture. Additionally, the strip anode degrades quickly over time necessitating frequent replacement which is difficult, expensive and time consuming.
To minimize the limitations found in the prior art, and to minimize other limitations that will be apparent upon the reading of the specifications, the preferred embodiment of the present invention includes a system, method and apparatus for providing anodic corrosion protection for galvanized irrigation pipes.
According to a preferred embodiment, the present invention includes a sacrificial anodic plug for insertion within an irrigation span to provide anodic corrosion protection. According to a preferred embodiment, the anodic plug of the present invention includes a protective cap connected to a securing bushing, and an anodic coupler which extends into the interior of the irrigation span.
According to a further preferred embodiment, the securing bushing preferably includes non-conductive threads for mating with the threads of a sprinkler outlet and for electrically isolating the anodic coupler from the protective cap. According to further preferred embodiments, the anodic coupler is formed of magnesium and extends down away from the protective cap and terminates in an anodic base.
According to a further preferred embodiment, the protective cap may include a wear indicator which provides an indication of the amount of anodic material remaining in the central anodic coupler and anodic base.
These and other advantages and features of the present invention are described with specificity in the descriptions below to make the present invention understandable to one of ordinary skill in the art.
Elements in the figures have not necessarily been drawn to scale in order to enhance their clarity and improve understanding of these various elements and embodiments of the invention. Furthermore, elements that are known to be common and well understood to those in the industry are not depicted in order to provide a clear view of the various embodiments of the invention, thus the drawings are generalized in form in the interest of clarity and conciseness. It should be understood that the scope of the present invention is intended to be limited solely by the appended claims.
In the following discussion that addresses a number of embodiments and applications of the present invention, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized, and changes may be made without departing from the scope of the present invention.
Various inventive features are described below that can each be used independently of one another or in combination with other features. However, any single inventive feature may not address any of the problems discussed above or only address one of the problems discussed above. Furthermore, one or more of the problems discussed above may not be fully addressed by any of the features described below.
With reference now to
With reference now to
As shown in
Preferably, the bushing 26 may further include non-conductive threads to allow the plug anode 20 to be easily screwed into and removed from the sprinkler outlet 30. The bushing 26 may preferably electrically isolate the anodic coupler 24 from the protective cap 22. According to a further preferred embodiment, the cap 22 of the plug anode 20 may preferably further include a label, meter or other wear indicator to track and alert the machine operator regarding the remaining effective lifespan of the plug anode 20.
In operation, the plug anode 20 is preferably electrically connected to the irrigation span 12 via the anodic coupler 24 which may be in physical contact with the pipe 12. Alternatively, the plug anode 20 may be electrically connected to the irrigation span through the bushing 26 which may physically contact the sprinkler outlet 30, which in turn is in physical contact with the pipe 12. According to an alternative embodiment, the electrical connection may alternatively be made via a dedicated wire (not shown) or via conductive threads on the bushing 26.
As discussed above, the plug anode 20 of the present invention may preferably be inserted into unused sprinkler outlets 30 along the span or they may replace unneeded sprinklers. Alternatively, additional sprinkler outlets 30 may be drilled into a given irrigation span 12 so that needed plug anodes 20 may provide additional protection to the steel span. The number of protective anode plugs 20 needed for each span may be calculated based on the pipe diameter, flow and the length/diameter/material of the plug anode 20. Where fewer sprinkler outlets are available, the dimensions of the anodic coupler 24 and base 28 may be lengthened and expanded to provide the needed level of exposed surface area. Additionally, the anode plug 20 may include multiple anodic couplers 24 and bases 28 which may be compressed together for insertion into the sprinkler outlet 30 and mechanically expanded within the span 12 using springs or other similar mechanisms.
Referring now to
As shown in
With reference again to
The foregoing description of the preferred embodiment of the present invention has been presented for the purpose of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teachings. It will be readily appreciated that many deviations may be made from the specific embodiments disclosed in this specification without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is to be determined by the claims below rather than being limited to the specifically described embodiments above.
The present application claims priority to U.S. Provisional Application No. 62/982,806 filed Feb. 28, 2020.
Number | Name | Date | Kind |
---|---|---|---|
2666027 | Vallett | Jan 1954 | A |
2947680 | Preiser | Aug 1960 | A |
2996445 | Eisenberg | Aug 1961 | A |
3135677 | Fischer | Jun 1964 | A |
3867274 | Herman | Feb 1975 | A |
5176807 | Kumar | Jan 1993 | A |
9115430 | McMullen | Aug 2015 | B2 |
20090188787 | Closset | Jul 2009 | A1 |
20170121828 | Simpson | May 2017 | A1 |
Number | Date | Country |
---|---|---|
10011677 | Sep 2000 | DE |
Entry |
---|
Merriam-Webster, “Cap”. (Year: 2024). |
Number | Date | Country | |
---|---|---|---|
20210269925 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62982806 | Feb 2020 | US |