SYSTEM, METHOD, AND APPARATUS FOR REACTIVE FOIL BRAZING OF CUTTER COMPONENTS FOR FIXED CUTTER BIT

Abstract
A reactive foil is used to assemble the components of rock bit cutters and to affix cutting elements to rock bit bodies. A small pulse of localized energy ignites the foil in a fraction of second to deliver the necessary amount of heat energy to flow solder or braze and form a strong, true metallic joint. The reaction in the foil may be activated using optical, electrical, or thermal sources.
Description
BACKGROUND OF THE INVENTION

1. Technical Field


The present invention relates in general to fabricating earth boring bits and, in particular, to an improved system, method, and apparatus for brazing together the components of cutters for fixed cutter bits.


2. Description of the Related Art


Rotary drill bits are commonly used for drilling bore holes or wells in earth formations. One type of rotary drill bit is the fixed cutter bit or drag bit, which typically includes a plurality of cutting elements secured to a face region of a bit body. Generally, the cutting elements of a fixed cutter type drill bit have either a disk shape or a substantially cylindrical shape. A hard, super-abrasive material, such as mutually bonded particles of polycrystalline diamond, may be provided on a substantially circular end surface of each cutting element to provide a cutting surface. Such cutting elements are often referred to as “polycrystalline diamond compact” (PDC) cutters.


Typically, the cutting elements are fabricated separately from the bit body and secured within pockets formed in the outer surface of the bit body. A bonding material such as an adhesive or, more typically, a braze alloy may be used to secured the cutting elements to the bit body. The fixed cutter drill bit may be placed in a bore hole such that the cutting elements are adjacent the earth formation to be drilled. As the drill bit is rotated, the cutting elements scrape across and shear away the surface of the underlying formation.


The bit body includes wings or blades, which are separated by junk slots. Internal fluid passageways extend between the face of the bit body and a longitudinal bore, which extends through the steel shank and partially through the bit body. A plurality of PDC cutters are provided on the face of the bit body. The PDC cutters may be provided along the blades within pockets formed in the face of the bit body.


The PDC cutters may be bonded to the bit body after the bit body has been cast by, for example, brazing, mechanical affixation, or adhesive affixation. Alternatively, the PDC cutters may be provided within mold and bonded to the bit body during infiltration or furnacing of the bit body if thermally stable synthetic diamonds, or natural diamonds, are employed. However, the high temperature ranges used to fabricate the bits can change the properties of the metals and other materials used. Thus, an improved system for joining the cutting elements to fixed cutter bits that overcomes the limitations of conventional processes would be desirable.


SUMMARY OF THE INVENTION

Embodiments of a system, method, and apparatus for assembling rock bit compacts with a reactive exothermic foil are disclosed. A small pulse of localized energy ignites the foil in a fraction of second to deliver the necessary amount of heat energy to flow solder or braze (e.g., Ag—Cu) and form a strong, true metallurgical joint. The reaction in the foil may be activated using optical, electrical, or thermal sources.


An effective bond may be formed between the substrate or extension of a rock bit cutter and its cutting element (e.g., tungsten carbide tip) using these techniques. The invention eliminates the need for a standard furnace, torch, or laser weld. Bonds between similar or dissimilar materials (e.g., ceramics to metals) may be formed in almost any environment (e.g., in ambient conditions), and are resistant to corrosion and degradation. The bonds exert low stress on the constituent parts, expose them to minimal thermal demands, and can be produced in a flux free environment. In addition, the invention may be used to join cutting elements to the bit body.


The foregoing and other objects and advantages of the present invention will be apparent to those skilled in the art, in view of the following detailed description of the present invention, taken in conjunction with the appended claims and the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the features and advantages of the present invention, which will become apparent, are attained and can be understood in more detail, more particular description of the invention briefly summarized above may be had by reference to the embodiments thereof that are illustrated in the appended drawings which form a part of this specification. It is to be noted, however, that the drawings illustrate only some embodiments of the invention and therefore are not to be considered limiting of its scope as the invention may admit to other equally effective embodiments.



FIG. 1 is an isometric view of one embodiment of an earth boring bit constructed in accordance with the invention;



FIG. 2 is a side view of one embodiment of a cutting element constructed in accordance with the invention;



FIG. 3 is an exploded isometric view of one embodiment of a cutting element and is constructed in accordance with the invention;



FIGS. 4A-C are schematic sectional views of various embodiments of joint and material configurations for drill bit cutter assembly techniques and are constructed in accordance with the invention; and



FIG. 5 is a high level flow diagram of one embodiment of a method in accordance with the invention.





DETAILED DESCRIPTION OF THE INVENTION

Embodiments of a system, method and apparatus for reactively brazing together the components of rock bit cutters are disclosed. The invention utilizes technology disclosed in U.S. Patent Application Nos. 2004/0149373, published on Aug. 5, 2004; 2004/0247931, published on Dec. 9, 2004; 2005/0003228, published on Jan. 6, 2005; and 2006/0219759, published on Oct. 5, 2006, all of which are incorporated herein by reference.


Referring to FIG. 1, one embodiment of a fixed cutter rotary drill bit 11 is shown. Bit 11 has a rotational axis 12 and a threaded end 13 for connection into a drill string. A cutting end 15 at a generally opposite end of the bit 11 is provided with a plurality of hard cutting elements 17 (e.g., polycrystalline diamond cutters, etc.) arranged about cutting end 15 to effect efficient removal or cutting of formation material as bit 11 is rotated in a borehole.


The cutting elements 17 typically are secured in a pocket provided on cutting end 15 such that they engage formation material. As illustrated, cutting element 17 may comprise a frustoconical cutting element 21 having a beveled edge. Cutting element 17 acts somewhat like a plow that generally directs a high percentage of the material of the formation up the flat face.


The arrangement of cutting elements 17 on bit 11 is configured in an overall cutting profile about bit axis 12. Starting at axis 12 and moving toward the outer diameter of bit 11, the profile includes a cone 27, a nose 25, a shoulder 31, and a gauge pad or surface 33. The gauge surface 33 essentially defines the flat, outer diameter portion of bit 11 that extends from cutting end 15 and is proximal to and contacts the sidewall of the borehole during drilling operation of bit 11. A plurality of channels or junk slots 35 extend from cutting end 15 through gauge surface 33 to provide a clearance area for the removal of cuttings and chips formed by cutting elements 17.


As suggested above, a plurality of cutting elements 17 are provided on gauge surface 33. Cutting elements 17 on gauge surface 33 provide the ability to actively cut formation material at the sidewall of the borehole to provide dynamic stability and improved gauge-holding ability in earth boring bits of the fixed cutter variety. The cutting elements 17 on gauge surface 33 may be ground flat at the outer diameter of bit 11 for some applications. Bit 11 is illustrated as a polycrystalline diamond cutter (PDC) bit, but cutting elements 17 are equally useful in other fixed cutter or drag bits that include a gauge surface for engagement with the sidewall of the borehole. Examples include impregnated and natural diamond bits.


As shown in FIGS. 2 and 3, each cutting element 17 has a cylindrical base 19 with an axis 20 and a PDC cutter 21 affixed thereto. The cutting element 17 also is provided with a substrate extension 23 that may be formed from the same material as base 19. The substrate extension 23 is secured to the base 19 opposite the PDC cutter 21.


A new set of materials and techniques may be used to braze and/or solder the components of the cutting element and replace the conventional brazing processes that are typically employed. The components having desired physical properties (e.g., toughness, wear resistance, etc.), and be secured together with a reactive exothermic brazing technology. This technique eliminates: (1) the need for conventional brazing; (2) inconsistencies in cutter placement during conventional brazing; (3) brazing defects such as porosity; and (4) heat-affected zones and undesired phase changes due to traditional brazing processes. In addition, this technique allows experimentation and development of cutters that utilize virtually unlimited material selection to obtain unsurpassed bit life.


The various cutter components may be formed to design requirements and reactively brazed together. This technique is much more precise (e.g., within tolerances of approximately 0.010 inches) than conventional torch brazing techniques (e.g., within tolerances of approximately 0.030 inches) and does not degrade the parent material to produce a higher performing rock bit.


In one embodiment (FIG. 3), the base 19 and substrate extension 23 are joined with a reactive foil 41 and braze alloy that is located between the components. Physical pressure (e.g., on the order of 700 psi) is applied to the parts and a small, localized energy pulse or other ignition source flows the metallic foil 41 in milliseconds to produce a strong metallic joint that results in a very strong, completed braze that is cool to the touch in less than one second. This process only heats the immediate surface of the materials being joined and does not degrade any heat treatment or change any properties of the parts. The braze and/or solder material may comprise, for example, Ag—Cu, Ni—Al, Al—Si, Zn—Al, etc. The reaction in the foil may be activated with a small pulse of localized energy that can be applied using optical, electrical, or thermal sources, such as electrical pulse, spark, hot filament, laser beam, etc. Such techniques reduce processing time, eliminate brazing material and equipment, and provide a safer operation for personnel.


The reactive brazing process is quicker than conventional techniques and lends itself to high volume production since the cutters may be readily assembled with the reactive foil. Activation of the film is accomplished as described herein using a small pulse of localized energy that occurs in milliseconds. This technique only heats the surface of the elements without destroying the steel heat treatment of the adjacent material.


As described above, the feature and component may comprise many different elements of a bit. The flowable material may comprise an alloy material containing, for example, Ag, Cu, Al, Ni, Au, Zn, Sn, or Ti.


Referring now to FIG. 4A, the flowable material may comprise a first braze alloy foil 51a located adjacent to a first component 53a (e.g., base 19), a second braze alloy foil 55a located adjacent to a second component 57a (e.g., substrate extension 23), and the reactive material 59a (e.g., reactive foil) may be located between the first and second braze alloy foils 51a, 55a.


Alternatively (FIG. 4B), the first and second components 53b, 57b may be coated with a braze or solder alloy material 52b, 56b, respectively, before assembly with reactive material 59b.


In another alternate embodiment (FIG. 4C), separate braze alloy foils 51c, 55c, may be positioned adjacent the respective coatings 52c, 56c on components 53c, 57c prior to assembly with reactive material 59c. Alternatively, two or more layers of reactive material and braze alloy foils may be used in combination. The different coatings may comprise the same materials or different materials depending on the application. Similarly, the coatings and braze alloy foils may comprise the same or different materials. The method may further comprise preheating the component and the feature and applying a compressive load between the rock bit body and the component before assembly.


Referring now to FIG. 5, one embodiment of the invention includes a method of joining the cutting components of a rock bit. The method begins as indicated, and comprises providing a cutter having a base and a cutting end, and a substrate extension (step 501); positioning a reactive material on the substrate extension (step 503); placing the cutter on the substrate extension such that the reactive material is located between the base and the substrate extension (step 505); providing a flowable material between the base and the substrate extension (step 507); delivering a pulse of energy to the reactive material to ignite the reactive material and flow the flowable material to join the base to the substrate extension (step 509); before ending as indicated. Other embodiments of the methods may utilize steps and techniques as described herein.


For example, one alternate embodiment of the method joins a cutter to a fixed cutter bit by providing a rock bit body having a fixed blade with a pocket formed therein; positioning a reactive foil in the pocket; placing a cutter in the pocket such that the reactive foil is located between the fixed blade and the cutter; providing a reflowable alloy between the fixed blade and the cutter; and delivering a pulse of energy to the reactive foil to ignite the reactive foil and reflow the reflowable alloy to join the cutter to the fixed blade in less than one second.


While the invention has been shown or described in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention.

Claims
  • 1. A method of joining components of a rock bit cutting element, comprising: (a) providing a cutter having a base and a cutting end, and a substrate extension;(b) positioning a reactive material on the substrate extension;(c) placing the cutter on the substrate extension such that the reactive material is located between the base and the substrate extension;(d) providing a flowable material between the base and the substrate extension; and(e) delivering a pulse of energy to the reactive material to ignite the reactive material and flow the flowable material to join the base to the substrate extension.
  • 2. A method according to claim 1, wherein step (e) requires less than one second.
  • 3. A method according to claim 1, wherein the flowable material comprises an alloy material selected from the group consisting of Ag, Cu, Al, Ni, Au, Zn, Sn, and Ti.
  • 4. A method according to claim 1, wherein the pulse of energy is applied with one of an optical, electrical, and thermal source.
  • 5. A method according to claim 1, wherein the pulse of energy is selected from the group consisting of an electrical pulse, a spark, a hot filament, and a laser beam.
  • 6. A method according to claim 1, wherein the flowable material comprises a first braze alloy foil located adjacent to the base, a second braze alloy foil located adjacent to the substrate extension, and the reactive material is located between the first and second braze alloy foils.
  • 7. A method according to claim 1, further comprising coating the base and the substrate extension with a braze or solder alloy material before step (b).
  • 8. A method according to claim 1, further comprising preheating the cutter and the substrate extension, and applying a compressive load between the cutter and the substrate extension before step (e).
  • 9. A method of joining components of a rock bit cutting element, comprising: (a) providing a cutter having a base and a cutting end, and a substrate extension;(b) positioning a reactive material on the substrate extension;(c) placing the cutter on the substrate extension such that the reactive material is located between the base and the substrate extension;(d) providing a first braze alloy foil adjacent to the base and a second braze alloy foil adjacent to the substrate extension, such that the reactive material is located between the first and second braze alloy foils; and(e) delivering a pulse of energy to the reactive material to ignite the reactive material and flow the first and second braze alloy foils to join the base to the substrate extension in less than one second.
  • 10. A method according to claim 9, wherein the first and second braze alloy foils comprise an alloy material selected from the group consisting of Ag, Cu, Al, Ni, Au, Zn, Sn, and Ti.
  • 11. A method according to claim 9, wherein the pulse of energy is applied with one of an optical, electrical, and thermal source, and wherein the pulse of energy is selected from the group consisting of an electrical pulse, a spark, a hot filament, and a laser beam.
  • 12. A method according to claim 9, further comprising coating the base and the substrate extension with a braze or solder alloy material before step (b).
  • 13. A method according to claim 9, further comprising preheating the cutter and the substrate extension, and applying a compressive load between the cutter and the substrate extension before step (e).
  • 14. A method of joining a cutting element to a fixed cutter bit, comprising: (a) providing a rock bit body having a fixed blade with a pocket formed therein;(b) positioning a reactive foil in the pocket;(c) placing a cutting element in the pocket such that the reactive foil is located between the fixed blade and the cutting element;(d) providing a reflowable alloy between the fixed blade and the cutting element; and(f) delivering a pulse of energy to the reactive foil to ignite the reactive foil and reflow the reflowable alloy to join the cutting element to the fixed blade in less than one second.
  • 15. A method according to claim 14, further comprising preheating the cutting element and the pocket.
  • 16. A method according to claim 14, wherein the reflowable alloy comprises an alloy material selected from the group consisting of Ag, Cu, Al, Ni, Au, Zn, Sn, and Ti.
  • 17. A method according to claim 14, wherein the pulse of energy is applied with one of an optical, electrical, and thermal source, and wherein the pulse of energy is selected from the group consisting of an electrical pulse, a spark, a hot filament, and a laser beam.
  • 18. A method according to claim 14, wherein the reflowable alloy comprises a first braze alloy foil located adjacent to the cutting element, a second braze alloy foil located adjacent to the pocket, and the reactive foil is located between the first and second braze alloy foils.
  • 19. A method according to claim 14, further comprising coating the cutting element and the pocket with a braze or solder alloy material before step (b), and wherein the reactive foil comprises a plurality of reactive foils.
  • 20. A method according to claim 14, further comprising: providing the cutting element with a base, a cutting end and a substrate extension;positioning a reactive material on the substrate extension;placing the cutting element on the substrate extension such that the reactive material is located between the base and the substrate extension;providing a first braze alloy foil adjacent to the base and a second braze alloy foil adjacent to the substrate extension, such that the reactive material is located between the first and second braze alloy foils; anddelivering a pulse of energy to the reactive material to ignite the reactive material and flow the first and second braze alloy foils to join the base to the substrate extension in less than one second, while simultaneously joining the cutting element to the fixed blade.
Parent Case Info

This non-provisional patent application claims priority to and the benefit of U.S. Provisional Patent App. No. 60/994,983, filed Sep. 24, 2007.

Provisional Applications (1)
Number Date Country
60994983 Sep 2007 US