This invention relates generally to applications executed on computer systems and, more specifically, relates to transparently adapting user interfaces (UIs) for those applications.
This section is intended to provide a background or context to the invention disclosed below. The description herein may include concepts that could be pursued, but are not necessarily ones that have been previously conceived, implemented or described. Therefore, unless otherwise explicitly indicated herein, what is described in this section is not prior art to the description in this application and is not admitted to be prior art by inclusion in this section.
Mobile applications and mobile application market places offer opportunity for developers to quickly release software in to a global market. After an application is deployed comes the challenge of managing the software through its application lifecycle. Managing and updating applications once deployed is a continual challenge for developers and product owners.
To alleviate this challenge, mobile application development has quickly adopted Web technologies as an attempt to directly address this post release management problem, for example, by hosting the client code on the server. This allows applications targeted for mobile devices to quickly update and deploy a new application layout as well as take advantage of “write once, run everywhere”.
Another class of mobile application called Hybrid takes this approach one step further. Hybrid applications typically architect the application using a native container alongside a Web view to provide the presentation. The hybrid application lets the application access a native Software Development Kit (SDK) as well for functionality such as a camera, a Global Positioning System (GPS), and file storage.
These two approaches to mobile development cover most use cases. However, they have the drawback of providing a low fidelity user experience.
Native applications, on the other hand, provide an appropriate user experience for the device. Typically, a mobile platform offers a native Application Programming Interface (API) for developing applications targeted to run on the platform. This API defines the look and feel of the platform as well as the operating services that applications are allowed to access. Other web based approaches just approximate this look and feel the best they can using a markup language, and typically the end result is not very good.
Thus, it would be beneficial to improve the look and feel of applications while easing management and updating of the applications.
This section has examples of possible implementations of the exemplary embodiments. This section is not intended to be limiting.
In an exemplary embodiment, a method includes receiving, by a library instrumented into an application executable by a computing device, a message indicating one or more modifications should be performed to one or more user interface components of the application able to be rendered on a display of the computing device. The method includes modifying the one or more user interface components according to the one or more modifications to create one or more modified user interface components. The method further includes causing the one or more modified user interface components to be rendered on the display of the computing device. Apparatus and program products corresponding to this method are also disclosed.
In another exemplary embodiment, a method includes accessing a description of a number of user interface components for an application executable on a computing device, wherein the number of user interface components are able to be rendered by the application on a display of the computing device. The method includes allowing a developer to modify information concerning the one or more of the number of user interface components. The method further includes forming, responsive to one or more modifications by the developer to the information, one or more messages to allow the one or more modifications and the corresponding one or more user interface components to be determined. The method also includes sending the one or more messages to one or more computing devices having the application. Apparatus and program products corresponding to this method are also disclosed.
The exemplary embodiments describe systems, methods, apparatus, and program products for transparently enabling software applications with adaptive user interfaces.
Adaptive user interfaces (UIs) and UI updates have a direct impact on the application delivery of native user interfaces and give the application owner an advantage in a low overhead updating mechanism to provide high fidelity UIs while also providing a level of security in controlling the data that is displayed on the device while running these applications.
Adaptive UIs allow for updates and modifications in a post-deployed system. This is needed for providing an up-to-date user experience, security, and application management after releasing mobile applications in to the “wild”.
This approach may allow for an application administration to push out application updates without the need for modifying or examining the source code of an application. Other exemplary benefits are described below.
Although primary emphasis is placed below on mobile applications, many different types of applications have user interfaces that could benefit from the exemplary embodiments herein. For instance, many automobiles have interactive displays in them, and such interactive displays are designed and defined using User Interfaces (UIs) from applications. Therefore, the instant exemplary embodiments have wide applicability and the
Reference is made now to
As shown in
Computer system/server 12 may also communicate with one or more external devices 14 such as a keyboard, a pointing device, a display 24, etc.; one or more devices that enable a user to interact with computer system/server 12; and/or any devices (e.g., network card, modem, etc.) that enable computer system/server 12 to communicate with one or more other computing devices. Such communication can occur via, e.g., I/O interfaces 22. Still yet, computer system/server 12 can communicate with one or more networks such as a local area network (LAN), a general wide area network (WAN), and/or a public network (e.g., the Internet) via network adapter 20. As depicted, network adapter 20 communicates with the other components of computer system/server 12 via bus 18. It should be understood that although not shown, other hardware and/or software components could be used in conjunction with computer system/server 12. Examples, include, but are not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, RAID systems, tape drives, and data archival storage systems, and the like.
The computing device 112 also comprises a memory 128-1, one or more processing units 116, one or more I/O interfaces 122, and one or more network adapters 120, interconnected via bus 118. A memory 128 may comprise non-volatile and/or volatile RAM, cache memory 132, and a storage system 134. Depending on implementation, a memory 128 may include removable or non-removable non-volatile memory. The memory 128 includes in this example an instrumented application 140 that includes an adaptive UI library 190 (which includes a description 194 of the UI of the application 140). The computing device 112 may include or be coupled to the display 124-1, which has a UI 125-1. Depending on implementation, the computing device 112 may or may not be coupled to external devices 114. A display 124 may be a touchscreen, flatscreen, monitor, television, projector, as examples. A UI 125 may be any UI for an application and/or an operating system for the particular computing device 112. The bus 118 may be any bus suitable for the platform, including those buses described above for bus 18. The memories 130, 132, and 134 may be those memories 30, 32, 34, respectively, described above. The one or more network adapters 120 may be wired or wireless network adapters. The I/O interface(s) 122 may be interfaces such as USB (universal serial bus), SATA (serial AT attachment), HDMI (high definition multimedia interface), and the like. The one or more processing units 16, 116 may be any suitable controller(s) for controlling operation of a respective computing device, such as general purpose processors, single- or multiple-core processors, application specific integrated circuits, systems-on-a-chip, programmable logic, and the like.
The UI 125-1 may contain elements from both the instrumented application 140 and, e.g., an operating system for the platform for which the instrumented application 140 has been developed. However, for simplicity, the UI 125-1 is assumed herein to be created by the instrumented application 140 (e.g., and the adaptive UI library 190). Thus, the UI 125-1 is assumed to be the application's UI, although technically the UI 125-1 could contain elements for the operating system.
A developer device 220 is also shown in
In this example, the computer system/server 12, the computing device 112 and the developer device 220 are interconnected via network 50 and links 51, 52, and 53. Network 50 is typically the Internet, but may be other networks such as a corporate network.
Elements of, and interactions between elements in, the system in
Once the instrumented application 140 begins executing on the computing device 112, the adaptive UI 190 captures, while the instrumented application 140 is running, a description 194 of the UI (e.g., the views) of the instrumented application 140, broken down into its various components and including layout information for those components. A component is any object that is derived from a system defined UI renderable component, which is defined by the system as the most basic UI object which all other UI objects are derived. The information in the description is captured from the various components using reflection or other means of object introspection. In object oriented programming languages, reflection allows inspection of classes, interfaces, fields and methods at runtime without knowing the names of the interfaces, fields, methods at compile time. Reflection also allows instantiation of new objects and invocation of methods. This description 194 is sent by the adaptive UI 190 to the control panel interface 40 using, e.g., standard Internet protocols.
The developer, using the developer device 220, accesses a representation 186 of a control panel and, in this example, a representation 185 of a version of an application's UI by using the Web browser 180 to access the control panel interface 40. A Web browser 180 is one typical way of presenting the data captured from the computing device 112 device to a developer. However, the data/protocol used to upstream the data from the computing device 112 to the control panel 41 is independent of the actual rendering of the control panel 41. That is, the Web browser 180 is merely one example of how a developer may access the control panel 41 and other options are possible. The computer system/server 12 sends the UI representation information 142 and the control panel representation information 143 to developer device 220. The Web browser 180 presents this information on the UI 125-2 as representation 185 of the application's UI and representation 186 of the control panel, respectively. The developer, using the Web browser 180, can modify information on the representation 186 of the control panel and the Web browser 180 will send revised control panel representation information 143 to the computer system/server 12. The control panel interface 40 may send revised control panel representation information 143 and/or revised UI representation information 142 in response to the revised control panel representation information 143 sent by the developer device 220. The computer system/server 12 then uses the revised representation 186 of the control panel to send update message(s) 141 to the computing device 112. Exemplary protocol for the update messages is shown in
The control panel interface 40 is, in one example, computer-readable code that, in response to execution of the code by the processing unit(s) 16, causes the computer system/server 12 to perform operations described herein. The instrumented application 140 and the instrumented adaptive UI library 190 are, in one example, computer-readable code that, in response to execution of the code by the processing unit(s) 216, cause the computing device 112 to perform operations described herein.
Turning to
The overall system as shown in
Adaptive UIs 190 provide UI experiences that can be changed after the application 210 has been released and installed on client machines (e.g., computing devices 112) as the instrumented application 140. The following are non-limiting examples related to the adaptive UI library 190. The adaptive UI library 190 is written using the native APIs provided by the development platform. For instance, the native API could be one for, e.g., iOS (a mobile operating system developed and distributed by Apple Inc.), for Android (an operating system designed by Google, Inc. primarily for touchscreen mobile devices such as smartphones and tablet computers), or for Windows (an operating system designed by Microsoft, Inc. for computer systems, tablets, and phones). The adaptive UI library 190 is transparent to the developer, and may be injected in the application 210 at a post-compile time. The adaptive UI library 190 can add, remove or reposition UI components within an application view. The adaptive UI library 190 can modify the look or color of a component. The adaptive UI library 190 can wipe sensitive data from the viewing area. The adaptive UI library 190 can modify the text rendering characteristics (such as font type and size) for the UI 125-1.
Thus, the adaptive UI library system allows for updates to the application's UI after the application has been released. Furthermore, UI policies can be compiled into the application (e.g., instrumented application 140), pushed to the computing device 112, or polled by the computing device 112 from an application server (e.g., computer system serer 12). The adaptive UI library 190 may define a language, protocol and policy for controlling the user interface on one of, a set of, or all of the applications that are deployed.
Now that an overview of a system and an exemplary embodiment has been provided, more detail about additional exemplary embodiments is provided.
Referring to
The set 320 of representations are connected by the arrow 315, which indicates to the developer how the original view (as illustrated by representation 185-1) of the application 210 is modified to a new view (as illustrated by representation 185-2). The computer system/server 12 sends the appropriate UI representation information 142 and control panel representation information 143 to create the indicated information on the UI 125-2. Similarly, the Web browser 180 and developer device 220 sends the changes made by the developer to the computer system/server 12.
Concerning a system design for dynamic UI updates,
In this example, the user has changed the color variable 416 from some other color to red. The control panel interface 40 generates an update UI message 425 and informs the network listener 405, which sends an update UI message 141 to the computing device 112. The message 141 is received by the adaptive UI library 190, specifically by the network listener 430. The adaptive UI library 190 in this example is shown in a class diagam. The network listener 430 forwards an update UI message 450 to the adaptive UI library object 435. The adaptive UI library 190 maintains (e.g., via a WidgetMap 440) a Map object 455 of Widget instances 470, and this library is created when the program starts running (e.g., during a discovery phase). The Widget instances 470 basically define the original UI 471, while the MyWidget instances 485 (e.g., in combination with the Widget interfaces 470) define the new UI 486. The adaptive UI library 190 understands how to interact with the map of widgets through the common Widget 480 interface (e.g., using the UpdateUI object 445). The adaptive UI library 190 looks up (e.g., via the Adaptive UI object 435) the target widget in the Map object 455. The figure shows the target Widget specific instance labeled MyWidget object 485. The update UI message 450 is forwarded to the MyWidget object 485 after retrieving the target from the Map object 455. The MyWidget object 485 then stores a command (in an example) corresponding to the update UI message 480 and sets itself to the operating system (OS) 475 as changed. When the operating system 475 calls back to the target. MyWidget object 485, the view is rendered accordingly. This is described in more detail below.
Turning to
Turning to
In this example, the protocol 590-1 includes an indication 540 of the application (“application”:“com.yourcompany.Tabster”) and an indication 547 of the device (“device”:“640960”). The view is indicated 550 by “views” 545 and by “viewid”:“ListView”, and an object within that view is indicated 560 by “objects” and the indication 555 “objectid”:“064300107”. It can be assumed that the view ID of ListView in
It can also be seen that the protocol 590-1 is organized in a tree structure that corresponds to a view tree of the application, as the protocol 590-1 indicates which view 610 (e.g., a “trunk” or “main branch” of the “tree”) is affected (via 545, 550) and indicates the objects 520-6 (e.g., the “leaves” or “smaller branches” as the case may be of the “tree”) that are affected (via 560, 555, 565, 570, and 575).
Referring to
An extension to the above concerns policies. A developer may decide that a modification (or modifications) to a UI should be based on a policy or based on multiple policies. Illustratively, the developer may choose to implement a modification temporarily (e.g., for a specific time period) or permanently. As another example, the developer may choose to enforce policies either automatically or manually. Such policies may include limiting a number of copies (e.g., via a selection button on the UI and limiting the number that can be selected by a user using the selection button), preventing copying by clearing a value on the UI, disallow forwarding (e.g., by removing a “forward button”), and the like. Manual enforcement is where the developer, using the Web browser 180, causes the policy, for instance, by setting a value of the number of allowed copies for a selection button to be a specific value. Automatic enforcement involves the developer creating, using the Web browser 180, a policy such as “policy”:“LimittoValue10” for the selection button. Manual enforcement typically causes the policy to be implemented immediately, typically without regard to other constraints. Meanwhile, the automatic policies may involve other constraints, have such as having time limits, e.g., to cause the modification to the UI for a length of time, cause the modification only during working hours (or only during after-work hours) and the like. The policies may cause a modification to be effected based on location of the computing device 112, user action taken on the UI, time of day, sensor data, and the like.
As described above, the adaptive UI library 190 may be instrumented into the application 210 to create the instrumented application 140. The adaptive UI library 190 can be injected into applications with minimal or no source code modifications. The adaptive UI library 190 therefore may be transparent to developers. Two implementations are now described, iOS and Android, although other implementations such as Windows are possible. Injecting the Adaptive UI library into the client is performed differently on iOS and Android. On iOS, injection may be achieved via the Xcode linker during the application's compilation and linking stages.
On Android, the injection may be performed via Java bytecode rewriting, without any need for source code access, or relinking and recompiling the application.
Referring to
In block 805, the computer system/server 12 receives, from the computing device 112, description of UI components, including layout information for those components. In block 810, the computer system/server 12, responsive to one or more requests from a developer (e.g, using the developer device 220), presents one or more representations 186 of a control panel based on the description of UI components, including layout information for those components. The representation 186 may be via one or more HTML (HyperText Markup Language) documents or via any other technique useful for allowing a developer to view the description.
In block 815, the computer system/server 12 adds possible criteria for policies and corresponding applicable policies to the one or more representation 186 of the control panel. The policies 820 may include policies such as “implement modification” 820-1, which might be used to indicate that a modification should be implemented based on the corresponding criteria 850. The policy 820-2 may be used to prevent a user from performing or allow the user to perform an action. For instance, the policy may be to automatically prevent a user from making (or allow a user to make) over a certain number of copies, to prevent a user from making (or allow a user to make) any copies, to prevent (or allow) forwarding of a message, and the like.
Exemplary criteria 850 include the following non-limiting criteria: the policy 820 may be temporary 850-1 (e.g., for a time period indicated by time limit 850-3): the policy 820 may be permanent 850-2; the policy may have certain time limits 850-3 (such as a day, a week, a month, etc.); the policy 820 may have a time of day limitation 850-4 (e.g., only during working hours or only during after-working hours); the policy 820 may be limited to one or more locations 850-5 (e.g., only at work or only at home); the policy 820 may be a threshold to a user action 850-6 (e.g., only three copies may be made); or the policy 820 may be based on sensor data 850-7 (e.g., only allow a function if connected to a secure network as determined by a Wi-Fi sensor).
In block 830, the computer system/server 12 modifies the representation 186 of control panel (e.g., via HTML document) accordingly as developer makes modification(s). In block 840, the computer system/server 12, responsive to the developer indicating modification(s) are finalized, creates a corresponding update UI message 141. As described above, the update UI message 141 may have a tree structure corresponding to a view tree of an application. Thus, in block 845, the computer system/server 12 may form the update UI message 141 using a protocol 590 having a tree structure corresponding to a view tree of a view (e.g., 510) of the application. In block 850, the computer system/server 12, responsive to input from the developer, sends the message 141 to one, some, or all computing devices 112 having the adaptive UI library 190.
Turning to
In block 905, the instrumented application 140 executes, for instance in response to a user selecting the application via a touchscreen (as display 124-1). For the first execution of the instrumented application 140, the adaptive UI 190 enters a discovery phase 901. The discovery phase includes, in block 910, the adaptive UI 190 performing object inspection for UI components. As described above, in object oriented programming languages, reflection allows inspection of classes, interfaces, fields and methods at runtime without knowing the names of the interfaces, fields, methods at compile time. Reflection also allows instantiation of new objects and invocation of methods. In block 915, the adaptive UI 190 builds a description 194 of UI components, including layout information for those components. It is determined in block 920 if the UI description is complete. Such a description 194 can therefore have a description of all views creatable by the instrumented application 140. If not (block 920=No), the flow continues in block 910. If so (block 920=Yes), the adaptive UI 190 sends (block 925) the description 194 to the computer system/server 12.
Blocks 930 onward form a post-discovery phase. In this phase, it is assumed that a complete description 194 of the original set of views of the instrumented application 140 has been made. In block 930, the adaptive UI 190 waits to receive an update UI message 141. In response to an update UI message 141 has been received (block 935), the adaptive UI 190 determines if the modification is based on a policy in block 940. It is noted that the messages may be polled by the instrumented application 140 (and from the computer system/server 12) so messages cannot be received without the application 140 being currently executed. If messages are pushed from the computer system/server 12 to the instrumented application 140, the client (e.g., computing device 112) would typical send back receipt of the message and if the server 12 does not receive this receipt in a given amount of time, the server 12 would try again to send the message. If the modification is based on a policy (block 940=Yes), the adaptive UI 190 determines (block 945) if the policy criterion/criteria is/are met to activate the modification. If not (block 945=No), the flow proceeds to wait at block 945.
If the policy criterion/criteria is/are met to activate the modification (block 945=Yes), the adaptive UI 190 activates (block 955) the modification to modify the current view on the UI 125-1. Block 960 performs a waiting operation to determine whether to reset the modification in accordance with whether or not the policy criterion/criteria to reset the modification has/have been met. If not (block 960=No), the flow waits at block 960; if so (block 960=Yes), the adaptive UI 190 resets the modification in block 965. The resetting the modification typically restores the view to an original state without the modification.
In block 970, it is determined if the policy is periodic (e.g., occurs every day, during weekdays or weekends, and the like). If so (block 970=Yes), the flow continues to block 945. If not (block 970=No), the flow continues at block 930.
If the modification is not based on policy (block 940=No), in block 975, the adaptive UI 190 modifies the view of the application (by modifying one or more user interface components) based on the information in the update UI message 141. Block 975 may be performed. e.g., by a change in appearance of user interface components provided by the view (e.g., such as changing text from one color to another) (block 980); by a change in features provided by the user interface component (such as changing a drop down box to select only one copy instead of one or more copies or by removing a feature or adding a feature) (block 985); causing a pop up message to be performed (e.g., on top of the current view) (block 990); remove one or more user interface components (block 981); and/or adding one or more user interface components. After block 974, the flow proceeds to block 930.
As will be appreciated by one skilled in the art, aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” Furthermore, aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable storage medium does not include propagating signals and may be, for example, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium would include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
Aspects of the present invention are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Number | Name | Date | Kind |
---|---|---|---|
5603034 | Swanson | Feb 1997 | A |
7877461 | Rimmer | Jan 2011 | B1 |
8359585 | Spinner | Jan 2013 | B1 |
8793649 | Williams | Jul 2014 | B2 |
20040163046 | Chu | Aug 2004 | A1 |
20060101420 | Shinnar | May 2006 | A1 |
20080127060 | Reamey | May 2008 | A1 |
20090241135 | Wong | Sep 2009 | A1 |
20110185354 | Tanner et al. | Jul 2011 | A1 |
20120137211 | Lewontin | May 2012 | A1 |
20120233044 | Burger et al. | Sep 2012 | A1 |
20120290914 | Lee | Nov 2012 | A1 |
Entry |
---|
William Hoarau and Sebastien Tixeuil, A language-driven tool for fault injection in distributed systems, Feb. 2005, retrieved online on Sep. 8, 2016, pp. 1-20. Retrieved from the Internet: <URL: https://www.lri.fr/˜bibli/Rapports-internes/2005/RR1399.pdf>. |
Plamen Paskalev, Rule based GUI modification and adaptation, ACM, 2009, retrieved online on Sep. 8, 2016, pp. 1-7. Retrieved from the Internet: <URL: http://delivery.acm.org/10.1145/1740000/1731841/a93-paskalev.pdf?>. |
Number | Date | Country | |
---|---|---|---|
20150067664 A1 | Mar 2015 | US |