The present invention relates to optical imaging and, more particularly, to systems, methods and arrangements that can use spectral encoding heterodyne interferometry techniques for imaging at least one portion of a sample.
Three-dimensional (“3D”) endoscopy can assist with a variety of minimally invasive procedures by providing clinicians with depth information. Achieving depth-resolved imaging having a large, three-dimensional field of view can be difficult when small diameter flexible imaging probes such as, e.g., borescopes, laparoscopes, and endoscopes are utilized. The use of confocal imaging through a fiber-bundle using a high numerical aperture lens may be one technique that can be used to address this problem. Such technique is described in, e.g., Y. S. Sabharwal et al., “Slit-scanning confocal microendoscope for high-resolution in vivo imaging,” Appl. Opt. 38, 7133 (1999). A 3D field of view for such devices, however, may be limited to less than a few millimeters due to a small clear aperture of the objective lens and a low f-number that may be required for high-resolution optical sectioning.
Other techniques such as, for example, stereo imaging and structured illumination have also been proposed for obtaining 3D endoscopic images. Such techniques are described in, e.g., M. Chan et al., “Miniaturized three-dimensional endoscopic imaging system based on active stereovision,” Appl. Opt. 42, 1888 (2003); and D. Karadaglic et al., “Confocal endoscope using structured illumination,” Photonics West 2003, Biomedical Optics, 4964-34, respectively. These techniques may, however, require more components to construct a probe than would be required for confocal imaging that is performed using a fiber bundle. This additional hardware can increase the size, cost, and complexity of such devices.
Spectrally-encoded endoscopy (“SEE”) techniques can utilize a broadband light source and a diffraction grating to spectrally encode reflectance across a transverse line within a sample. For example, a two-dimensional image can be formed by slowly scanning this spectrally-encoded line. This technique can be performed using a single optical fiber, thereby enabling imaging through a flexible probe having a small diameter. In particular, SEE images can have a larger number of resolvable points, and may be relatively free from pixilation artifacts as compared with images obtained using fiber-bundle endoscopes.
When combined with interferometry techniques and systems, SEE can provide three-dimensional images. A depth-resolved imaging can be achieved, e.g., by incorporating a SEE probe into a sample arm of a Michelson interferometer. Using such an arrangement, two-dimensional (“2D”) speckle patterns can be recorded using a charge-coupled device (“CCD”) camera at multiple longitudinal locations of a reference mirror. Subsequently, depth information can be extracted by comparing interference signals obtained at consecutive reference mirror positions. When using this technique, the reference mirror can be held stationary to within an optical wavelength while a single image (or line) is being acquired to avoid the loss of fringe visibility. Scanning a reference mirror that is positioned with such accuracy over multiple discrete depths can be very difficult at the high rates required for real-time volumetric imaging.
One of the objects of the present invention is to overcome certain deficiencies and shortcomings of the prior art systems (including those described herein above), and to provide exemplary SEE techniques, systems and arrangements that are capable of generating three-dimensional image data associated with a sample. Exemplary embodiments of the present invention can provide methods, systems and arrangements that are capable of generating high-speed volumetric imaging of a sample. Exemplary embodiments of these systems and arrangements can be provided within the confines of a fiber optic probe or an endoscopic probe.
In certain exemplary embodiments of the present invention, a system can be provided that includes a light source or another electro-magnetic radiation generating arrangement. The light source can be a broadband source capable of providing the electro-magnetic radiation. The exemplary embodiment of the system can include a beam splitter configured to separate radiation from the light source into a first radiation and a second radiation. The system can be configured to direct the first radiation toward a sample. The first radiation can pass through a lens-grating arrangement (that can include a diffraction grating and a lens) to focus, modify and/or direct the first radiation. The lens-grating system can be configured to direct a spectrally-encoded line associated with the first radiation towards the sample. A scanning mechanism can also be provided that is configured to effectuate the scanning of the line over at least a portion of the sample in a direction that is approximately perpendicular to the line. A third radiation can be generated based on interactions between at least a portion of the spectrally-encoded line and the sample. The lens-grating arrangement and/or the scanning mechanism may be provided, e.g., in a probe. The probe may include an endoscope and/or a catheter.
The exemplary embodiment of the system can further include a rapidly-scanning optical delay (“RSOD”) arrangement, where the second radiation can be configured to pass through the RSOD arrangement and possibly be affected thereby to generate a fourth radiation. A detection arrangement can also be provided that is configured to detect an interference between the third and fourth radiations. This detection arrangement can include, e.g., a charge-coupled device that is capable of generating raw data based on the interference.
A processing arrangement such as, e.g., a computer and/or a software arrangement executable by the processing arrangement, can be provided that is/are configured to generate the image data based on the detected interference between the third and fourth radiations. The processing arrangement and/or the software arrangement can be configured to apply, for example, a Fourier transform to the raw data to generate the image data. A display arrangement can also be provided to display the images of at least one portion of the sample based on the image data. These images can optionally be displayed in real time, e.g., while the first radiation is being directed towards the sample.
In further exemplary embodiments of the present invention, a method can be provided for generating three-dimensional image data of at least a portion of the sample. A particular radiation can be provided which may include a first radiation directed to the sample and a second radiation directed to a reference. For example, the first radiation can be directed through a lens and a diffraction grating to provide a spectrally-encoded line directed towards the sample. This line can be scanned over at least a portion of the sample in a direction approximately perpendicular to the line. A third radiation can be produced based on an interaction between the first radiation and the sample. A fourth radiation can be generated by directing the second radiation through a rapidly-scanning optical delay.
An interference can then be detected between the third radiation and the fourth radiation. This interference can be used to generate three-dimensional image data that characterizes at least one portion of the sample. The image data can be used to display images of the sample on a display.
These and other objects, features and advantages of the present invention will become apparent upon reading the following detailed description of embodiments of the invention, when taken in conjunction with the appended claims.
Further objects, features and advantages of the invention will become apparent from the following detailed description taken in conjunction with the accompanying figures showing illustrative embodiments of the invention, in which:
Throughout the figures, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components or portions of the illustrated embodiments. Moreover, while the subject invention will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments. It is intended that changes and modifications can be made to the described embodiments without departing from the true scope and spirit of the subject invention as defined by the appended claims.
A block diagram of a system configured to acquire image data for 3D images in accordance with exemplary embodiments of the present invention is shown in
This exemplary system can provide a spatial transverse resolution of, e.g., approximately 80 microns. The image may include 80 transverse resolvable points, with each transverse spot capable of being illuminated using a bandwidth of, e.g., 1.9 nm. The overall power provided to the sample may be about 4 mW. A double-pass rapidly-scanning optical delay (“RSOD”) 160 can be used to control a group delay of the reference arm light. The RSOD 160 may be scanned over a distance of about 1.5 mm at a rate of about 1000 scans per second. An interference signal can be recorded as a function of time by a detector 170, and then demodulated and displayed in real time using a computer 180.
Spatial resolutions and ranging depth measurements and visualization can be improved according to the exemplary embodiments of the present invention by using, for example, a broader bandwidth source and an extended-range optical delay line. Such arrangements are described, e.g., in K. K. M. B. D. Silva, A. V. Zvyagin, and D. D. Sampson, “Extended range, rapid scanning optical delay line for biomedical interferometric imaging,” Elec. Lett. 35, 1404 (1999).
An illustration of an exemplary technique according to the present invention for encoding both transverse and depth dimensions using broad-spectrum illumination is shown in
The width of each trace, Ti, can determine a depth resolution, and may be expressed as Ti=0.44Nxλi2/(vgΔλ), where Δλ represents a total bandwidth and Nx is a number of resolvable points along the spectrally-encoded line. A two-dimensional data set 230 (corresponding to locations in x- and z-axes) can be obtained by applying a short-time Fourier transform (“STFT”) to the interference data 220 using a Gaussian window centered at Δti and having a width of Ti. The frequency distribution corresponding to a given delay Δti can provide spatial information at a corresponding depth, Δzi.
Alternatively or additionally, a depth-integrated transverse image can be obtained by applying a frequency transform to part or all of a set of interference data simultaneously, or by summing individual depth-resolved images. The frequency transform may be, e.g., a Fourier transform, a short-time Fourier transform, or a Wigner transform. Volumetric data can be obtained by scanning the spectrally encoded line transversely across the sample 200.
The exemplary detection technique according to the present invention described herein can be analogous to a technique which may be used in conventional optical coherence tomography (“OCT”). Conventional OCT techniques are described, e.g., in D. Huang et al., Science 254, 1178 (1991). Exemplary OCT techniques can utilize a broadband light source to obtain a high resolution in an axial direction which may be, e.g., less than about 10 μm. To perform three-dimensional imaging using the conventional OCT techniques, a probe beam should be scanned in two dimensions, which can require a fast beam-scanning mechanism. In contrast, spectrally-encoded endoscopy techniques can utilize a spectral bandwidth to obtain both transverse and axial resolution simultaneously, which may thereby utilize only one slow-axis scan to acquire three-dimensional data sets. Using a given source bandwidth, the two-dimensional resolution can be achieved with a decreased axial resolution.
If an exemplary shot-noise limited detection technique is utilized and a source having a uniformly flat spectrum is used, a signal-to-noise ratio (“SNR”) associated with a spatial point having a reflectivity R can be expressed as:
where Pr denotes a total reference arm power, Ps denotes a total sample power, τ represents a line scan period, B denotes a sampling bandwidth, which may be written as B=Nz/2τ, and Nz indicates a number of axial resolvable points. The expression for the SNR above can be inversely proportional to the square of the number of transverse resolvable points, since only a fraction of the reference arm power (i.e., Pr/Nx) interferes with light returning from a single transverse location.
Exemplary images of a fingertip acquired using an exemplary 3D spectrally-encoded technique in accordance with certain exemplary embodiments of the present invention are shown in
For example, a two-dimensional (depth-integrated) image 300 of
In biological tissues, a single-scattered signal emerging from a particular depth within a tissue sample can have a significantly lower intensity than a signal scattered from near the tissue surface. Based on this characteristic of scattered signals, it is likely that the largest frequency component of each STFT may correspond to a surface height or depth within the tissue.
Three-dimensional image data can be obtained from the samples having a depth range larger than, e.g., the 1.5 mm depth provided directly by the RSOD 160 shown in
In exemplary embodiments of the present invention, certain components of the system may be provided in a small size in the form of a probe that can be introduced into a body. For example, the lens-grating arrangement and/or the scanning mechanism may be provided in a capsule or other enclosure or housing that can be included with or introduced into a body using a catheter and/or an endoscope. A waveguide can be used to direct at least part of the radiation generated by the light source to the lens-grating arrangement, the reference, and/or the sample. The waveguide can include, for example, a single-mode optical fiber, a multi-mode optical fiber, and/or a multiple-clad optical fiber.
As an example of this extended range acquisition, the surface of a dime placed about 2.4 mm in front of a quarter dollar coin was imaged as shown in
Images of the two coins shown in
The two volumetric data sets used to form the first and second images 400, 410 can be combined to obtain a depth-integrated two-dimensional third image 420 of
An exemplary flow diagram of a method 500 according to exemplary embodiments of the present invention is shown in
A spectrally disperse line of radiation can be generated that is associated with the first radiation (step 520). This line can be generated, e.g., by directing the first radiation through a lens-grating arrangement which can include, for example, a diffraction grating and a lens that can be configured to focus and/or direct the first radiation. The spectrally disperse line can be generated all at once or, alternatively, different portions of the line can be generated sequentially when using a light source having at least one wavelength that varies with time.
The spectrally disperse line can be directed toward a portion of a sample to be imaged (step 530). The line may also be scanned in a direction that can be approximately perpendicular to the line (step 540) using an arrangement such as, e.g., a galvanometric optical scanner or the like, which can provide coverage of a region of the sample to be imaged.
The second radiation can be directed to an optical delay arrangement (step 550) or other arrangement such as, e.g., a RSOD, which is capable of affecting the second radiation in a controlled time-dependent manner. A signal associated with the first and second radiations may then be detected (step 560). This signal can be, e.g., an interference which can be obtained by combining the second radiation (after it has been directed to the optical delay arrangement) and electro-magnetic radiation generated by an interaction between the first radiation and a portion of the sample being imaged (step 570). Three-dimensional image data can then be generated that is associated with the signal using a processing arrangement or computer. The data can be generated, e.g., by applying a Fourier transform to the signal and/or demodulating the signal. One or more images can then be displayed using the image data (step 580). Optionally, the image can be displayed in real time.
The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. Indeed, the arrangements, systems and methods according to the exemplary embodiments of the present invention can be used with any OCT system, OFDI system, SD-OCT system or other imaging systems, and for example with those described in International Patent Application PCT/US2004/029148, filed Sep. 8, 2004, U.S. patent application Ser. No. 11/266,779, filed Nov. 2, 2005, and U.S. patent application Ser. No. 10/501,276, filed Jul. 9, 2004, the disclosures of which are incorporated by reference herein in their entireties. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, to the extent that the prior art knowledge has not been explicitly incorporated by reference herein above, it is explicitly being incorporated herein in its entirety. All publications referenced herein above are incorporated herein by reference in their entireties.
This application is based upon and claims the benefit of priority from U.S. patent application Ser. No. 60/686,518, filed May 31, 2005, the entire disclosure of which is incorporated herein by reference.
Development of the present invention was supported in part by the U.S. Government under National Science Foundation grant BES-0086709. Thus, the U.S. Government may have certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
2339754 | Brace | Jan 1944 | A |
3601480 | Randall | Aug 1971 | A |
3856000 | Chikama | Dec 1974 | A |
3941121 | Olinger | Mar 1976 | A |
3973219 | Tang et al. | Aug 1976 | A |
3983507 | Tang et al. | Sep 1976 | A |
4030827 | Delhaye et al. | Jun 1977 | A |
4141362 | Wurster | Feb 1979 | A |
4295738 | Meltz et al. | Oct 1981 | A |
4300816 | Snitzer et al. | Nov 1981 | A |
4303300 | Pressiat et al. | Dec 1981 | A |
4428643 | Kay | Jan 1984 | A |
4479499 | Alfano | Oct 1984 | A |
4533247 | Epworth | Aug 1985 | A |
4585349 | Gross et al. | Apr 1986 | A |
4601036 | Faxvog et al. | Jul 1986 | A |
4607622 | Fritch et al. | Aug 1986 | A |
4631498 | Cutler | Dec 1986 | A |
4639999 | Daniele | Feb 1987 | A |
4770492 | Levin et al. | Sep 1988 | A |
4868834 | Fox et al. | Sep 1989 | A |
4892406 | Waters | Jan 1990 | A |
4925302 | Cutler | May 1990 | A |
4928005 | Lefèvre et al. | May 1990 | A |
4940328 | Hartman | Jul 1990 | A |
4965441 | Picard | Oct 1990 | A |
4965599 | Roddy et al. | Oct 1990 | A |
4993834 | Carlhoff et al. | Feb 1991 | A |
5039193 | Snow et al. | Aug 1991 | A |
5040889 | Keane | Aug 1991 | A |
5045936 | Lobb et al. | Sep 1991 | A |
5046501 | Crilly | Sep 1991 | A |
5065331 | Vachon et al. | Nov 1991 | A |
5120953 | Harris | Jun 1992 | A |
5127730 | Brelje et al. | Jul 1992 | A |
5197470 | Helfer et al. | Mar 1993 | A |
5202745 | Sorin et al. | Apr 1993 | A |
5228001 | Birge et al. | Jul 1993 | A |
5248876 | Kerstens et al. | Sep 1993 | A |
5251009 | Bruno | Oct 1993 | A |
5262644 | Maguire | Nov 1993 | A |
5281811 | Lewis | Jan 1994 | A |
5291885 | Taniji et al. | Mar 1994 | A |
5293872 | Alfano et al. | Mar 1994 | A |
5293873 | Fang | Mar 1994 | A |
5304810 | Amos | Apr 1994 | A |
5305759 | Kaneko et al. | Apr 1994 | A |
5317389 | Hochberg et al. | May 1994 | A |
5321501 | Swanson et al. | Jun 1994 | A |
5353790 | Jacques et al. | Oct 1994 | A |
5383467 | Auer et al. | Jan 1995 | A |
5411016 | Kume et al. | May 1995 | A |
5419323 | Kittrell et al. | May 1995 | A |
5439000 | Gunderson et al. | Aug 1995 | A |
5441053 | Lodder et al. | Aug 1995 | A |
5450203 | Penkethman | Sep 1995 | A |
5454807 | Lennox et al. | Oct 1995 | A |
5459325 | Hueton et al. | Oct 1995 | A |
5459570 | Swanson et al. | Oct 1995 | A |
5465147 | Swanson | Nov 1995 | A |
5486701 | Norton et al. | Jan 1996 | A |
5491524 | Hellmuth et al. | Feb 1996 | A |
5491552 | Knuttel | Feb 1996 | A |
5522004 | Djupsjobacka et al. | May 1996 | A |
5526338 | Hasman et al. | Jun 1996 | A |
5562100 | Kittrell et al. | Oct 1996 | A |
5565986 | Knüttel | Oct 1996 | A |
5583342 | Ichie | Dec 1996 | A |
5590660 | MacAulay et al. | Jan 1997 | A |
5600486 | Gal et al. | Feb 1997 | A |
5601087 | Gunderson et al. | Feb 1997 | A |
5621830 | Lucey et al. | Apr 1997 | A |
5623336 | Raab et al. | Apr 1997 | A |
5697373 | Richards-Kortum et al. | Dec 1997 | A |
5698397 | Zarling et al. | Dec 1997 | A |
5710630 | Essenpreis et al. | Jan 1998 | A |
5716324 | Toida | Feb 1998 | A |
5719399 | Alfano et al. | Feb 1998 | A |
5735276 | Lemelson | Apr 1998 | A |
5740808 | Panescu et al. | Apr 1998 | A |
5748598 | Swanson et al. | May 1998 | A |
5784352 | Swanson et al. | Jul 1998 | A |
5785651 | Kuhn et al. | Jul 1998 | A |
5795295 | Hellmuth et al. | Aug 1998 | A |
5801826 | Williams | Sep 1998 | A |
5803082 | Stapleton et al. | Sep 1998 | A |
5807261 | Benaron et al. | Sep 1998 | A |
5817144 | Gregory | Oct 1998 | A |
5840023 | Oraevsky et al. | Nov 1998 | A |
5840075 | Mueller et al. | Nov 1998 | A |
5842995 | Mahadevan-Jansen et al. | Dec 1998 | A |
5843000 | Nishioka et al. | Dec 1998 | A |
5843052 | Benja-Athon | Dec 1998 | A |
5847827 | Fercher | Dec 1998 | A |
5862273 | Pelletier | Jan 1999 | A |
5865754 | Sevick-Muraca et al. | Feb 1999 | A |
5867268 | Gelikonov et al. | Feb 1999 | A |
5871449 | Brown | Feb 1999 | A |
5872879 | Hamm | Feb 1999 | A |
5877856 | Fercher | Mar 1999 | A |
5887009 | Mandella et al. | Mar 1999 | A |
5892583 | Li | Apr 1999 | A |
5920373 | Bille | Jul 1999 | A |
5920390 | Farahi et al. | Jul 1999 | A |
5921926 | Rolland et al. | Jul 1999 | A |
5949929 | Hamm | Sep 1999 | A |
5951482 | Winston et al. | Sep 1999 | A |
5956355 | Swanson et al. | Sep 1999 | A |
5968064 | Selmon et al. | Oct 1999 | A |
5983125 | Alfano et al. | Nov 1999 | A |
5987346 | Benaron et al. | Nov 1999 | A |
5991697 | Nelson et al. | Nov 1999 | A |
5994690 | Kulkarni et al. | Nov 1999 | A |
6002480 | Izatt et al. | Dec 1999 | A |
6004314 | Wei et al. | Dec 1999 | A |
6006128 | Izatt et al. | Dec 1999 | A |
6010449 | Selmon et al. | Jan 2000 | A |
6014214 | Li | Jan 2000 | A |
6033721 | Nassuphis | Mar 2000 | A |
6044288 | Wake et al. | Mar 2000 | A |
6048742 | Weyburne et al. | Apr 2000 | A |
6053613 | Wei et al. | Apr 2000 | A |
6069698 | Ozawa et al. | May 2000 | A |
6091496 | Hill | Jul 2000 | A |
6091984 | Perelman et al. | Jul 2000 | A |
6111645 | Tearney et al. | Aug 2000 | A |
6117128 | Gregory | Sep 2000 | A |
6120516 | Selmon et al. | Sep 2000 | A |
6134003 | Tearney et al. | Oct 2000 | A |
6134010 | Zavislan | Oct 2000 | A |
6134033 | Bergano et al. | Oct 2000 | A |
6141577 | Rolland et al. | Oct 2000 | A |
6151522 | Alfano et al. | Nov 2000 | A |
6159445 | Klaveness et al. | Dec 2000 | A |
6160826 | Swanson et al. | Dec 2000 | A |
6161031 | Hochmann et al. | Dec 2000 | A |
6166373 | Mao | Dec 2000 | A |
6174291 | McMahon et al. | Jan 2001 | B1 |
6175669 | Colston et al. | Jan 2001 | B1 |
6185271 | Kinsinger | Feb 2001 | B1 |
6191862 | Swanson et al. | Feb 2001 | B1 |
6193676 | Winston et al. | Feb 2001 | B1 |
6198956 | Dunne | Mar 2001 | B1 |
6201989 | Whitehead et al. | Mar 2001 | B1 |
6208415 | De Boer et al. | Mar 2001 | B1 |
6208887 | Clarke | Mar 2001 | B1 |
6249349 | Lauer | Jun 2001 | B1 |
6263234 | Engelhardt et al. | Jul 2001 | B1 |
6264610 | Zhu | Jul 2001 | B1 |
6272376 | Marcu et al. | Aug 2001 | B1 |
6274871 | Dukor et al. | Aug 2001 | B1 |
6282011 | Tearney et al. | Aug 2001 | B1 |
6308092 | Hoyns | Oct 2001 | B1 |
6324419 | Guzelsu et al. | Nov 2001 | B1 |
6341036 | Tearney et al. | Jan 2002 | B1 |
6353693 | Kano et al. | Mar 2002 | B1 |
6359692 | Groot | Mar 2002 | B1 |
6377349 | Fercher | Apr 2002 | B1 |
6384915 | Everett et al. | May 2002 | B1 |
6393312 | Hoyns | May 2002 | B1 |
6394964 | Sievert, Jr. et al. | May 2002 | B1 |
6421164 | Tearney et al. | Jul 2002 | B2 |
6437867 | Zeylikovich et al. | Aug 2002 | B2 |
6445944 | Ostrovsky | Sep 2002 | B1 |
6459487 | Chen et al. | Oct 2002 | B1 |
6463313 | Winston et al. | Oct 2002 | B1 |
6469846 | Ebizuka et al. | Oct 2002 | B2 |
6485413 | Boppart et al. | Nov 2002 | B1 |
6485482 | Belef | Nov 2002 | B1 |
6501551 | Tearney et al. | Dec 2002 | B1 |
6501878 | Hughes et al. | Dec 2002 | B2 |
6549801 | Chen et al. | Apr 2003 | B1 |
6552796 | Magnin et al. | Apr 2003 | B2 |
6556305 | Aziz et al. | Apr 2003 | B1 |
6556853 | Cabib et al. | Apr 2003 | B1 |
6558324 | Von Behren et al. | May 2003 | B1 |
6564087 | Pitris et al. | May 2003 | B1 |
6564089 | Izatt et al. | May 2003 | B2 |
6615071 | Casscells, III et al. | Sep 2003 | B1 |
6622732 | Constantz | Sep 2003 | B2 |
6654127 | Everett et al. | Nov 2003 | B2 |
6657730 | Pfau et al. | Dec 2003 | B2 |
6680780 | Fee | Jan 2004 | B1 |
6685885 | Nolte et al. | Feb 2004 | B2 |
6687007 | Meigs | Feb 2004 | B1 |
6687010 | Horii et al. | Feb 2004 | B1 |
6687036 | Riza | Feb 2004 | B2 |
6692430 | Adler | Feb 2004 | B2 |
6741355 | Drabarek | May 2004 | B2 |
6790175 | Furusawa et al. | Sep 2004 | B1 |
6806963 | Wälti et al. | Oct 2004 | B1 |
6816743 | Moreno et al. | Nov 2004 | B2 |
6839496 | Mills et al. | Jan 2005 | B1 |
6900899 | Nevis | May 2005 | B2 |
6903820 | Wang | Jun 2005 | B2 |
6961123 | Wang et al. | Nov 2005 | B1 |
6980299 | de Boer | Dec 2005 | B1 |
7006231 | Ostrovsky et al. | Feb 2006 | B2 |
7072047 | Westphal et al. | Jul 2006 | B2 |
7075658 | Izatt et al. | Jul 2006 | B2 |
7113288 | Fercher | Sep 2006 | B2 |
7177027 | Hirasawa et al. | Feb 2007 | B2 |
7231243 | Tearney et al. | Jun 2007 | B2 |
7782464 | Mujat et al. | Aug 2010 | B2 |
20010047137 | Moreno et al. | Nov 2001 | A1 |
20020016533 | Marchitto et al. | Feb 2002 | A1 |
20020064341 | Fauver et al. | May 2002 | A1 |
20020076152 | Hughes et al. | Jun 2002 | A1 |
20020085209 | Mittleman et al. | Jul 2002 | A1 |
20020093662 | Chen et al. | Jul 2002 | A1 |
20020122182 | Everett et al. | Sep 2002 | A1 |
20020122246 | Tearney et al. | Sep 2002 | A1 |
20020161357 | Anderson et al. | Oct 2002 | A1 |
20020163622 | Magnin et al. | Nov 2002 | A1 |
20020172485 | Keaton et al. | Nov 2002 | A1 |
20020188204 | McNamara et al. | Dec 2002 | A1 |
20020196446 | Roth et al. | Dec 2002 | A1 |
20020198457 | Tearney et al. | Dec 2002 | A1 |
20030023153 | Izatt et al. | Jan 2003 | A1 |
20030026735 | Nolte et al. | Feb 2003 | A1 |
20030067607 | Wolleschensky et al. | Apr 2003 | A1 |
20030135101 | Webler | Jul 2003 | A1 |
20030164952 | Deichmann et al. | Sep 2003 | A1 |
20030171691 | Casscells, III et al. | Sep 2003 | A1 |
20030174339 | Feldchtein et al. | Sep 2003 | A1 |
20030199769 | Podoleanu et al. | Oct 2003 | A1 |
20030216719 | Debenedictics et al. | Nov 2003 | A1 |
20030236443 | Cespedes et al. | Dec 2003 | A1 |
20040076940 | Alexander et al. | Apr 2004 | A1 |
20040086245 | Farroni et al. | May 2004 | A1 |
20040100631 | Bashkansky et al. | May 2004 | A1 |
20040100681 | Bjarklev et al. | May 2004 | A1 |
20040126048 | Dave et al. | Jul 2004 | A1 |
20040126120 | Cohen et al. | Jul 2004 | A1 |
20040133191 | Momiuchi et al. | Jul 2004 | A1 |
20040150829 | Koch et al. | Aug 2004 | A1 |
20040166593 | Nolte et al. | Aug 2004 | A1 |
20040189999 | De Groot et al. | Sep 2004 | A1 |
20040212808 | Okawa et al. | Oct 2004 | A1 |
20040239938 | Izatt | Dec 2004 | A1 |
20050018201 | De Boer | Jan 2005 | A1 |
20050036150 | Izatt et al. | Feb 2005 | A1 |
20050075547 | Wang | Apr 2005 | A1 |
20050083534 | Riza et al. | Apr 2005 | A1 |
20060033923 | Hirasawa et al. | Feb 2006 | A1 |
20060103850 | Alphonse et al. | May 2006 | A1 |
20060155193 | Leonardi et al. | Jul 2006 | A1 |
20060171503 | O'Hara et al. | Aug 2006 | A1 |
20060244973 | Yun et al. | Nov 2006 | A1 |
20070086017 | Buckland et al. | Apr 2007 | A1 |
20070258094 | Izatt et al. | Nov 2007 | A1 |
20080204762 | Izatt et al. | Aug 2008 | A1 |
20100086251 | Xu et al. | Apr 2010 | A1 |
20100150467 | Zhao et al. | Jun 2010 | A1 |
Number | Date | Country |
---|---|---|
1550203 | Dec 2004 | CN |
4105221 | Sep 1991 | DE |
4309056 | Sep 1994 | DE |
19542955 | May 1997 | DE |
10351319 | Jun 2005 | DE |
0110201 | Jun 1984 | EP |
0251062 | Jan 1988 | EP |
0590268 | Apr 1994 | EP |
0933096 | Aug 1999 | EP |
1426799 | Jun 2004 | EP |
1257778 | Dec 1971 | GB |
2030313 | Apr 1980 | GB |
2209221 | May 1989 | GB |
4135550 | May 1992 | JP |
4135551 | May 1992 | JP |
9219930 | Nov 1992 | WO |
9303672 | Mar 1993 | WO |
9533971 | Dec 1995 | WO |
9628212 | Sep 1996 | WO |
9732182 | Sep 1997 | WO |
9801074 | Jan 1998 | WO |
9814132 | Apr 1998 | WO |
9835203 | Aug 1998 | WO |
9838907 | Sep 1998 | WO |
9846123 | Oct 1998 | WO |
9848838 | Nov 1998 | WO |
9905487 | Feb 1999 | WO |
9944089 | Sep 1999 | WO |
9957507 | Nov 1999 | WO |
0058766 | Oct 2000 | WO |
0108579 | Feb 2001 | WO |
0138820 | May 2001 | WO |
0142735 | Jun 2001 | WO |
0236015 | May 2002 | WO |
0238040 | May 2002 | WO |
02054027 | Jul 2002 | WO |
03020119 | Mar 2003 | WO |
03052478 | Jun 2003 | WO |
03062802 | Jul 2003 | WO |
2004034869 | Apr 2004 | WO |
2004066824 | Aug 2004 | WO |
2004088361 | Oct 2004 | WO |
2004105598 | Dec 2004 | WO |
2005000115 | Jan 2005 | WO |
2005054780 | Jun 2005 | WO |
2005082225 | Sep 2005 | WO |
2006014392 | Feb 2006 | WO |
2006130797 | Dec 2006 | WO |
2007038787 | Apr 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20060270929 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
60686518 | May 2005 | US |