This invention relates to oil field production apparatus and techniques, and more particularly, to such apparatus and techniques, including wellbore maintenance operations, for use in the production of low pressure wells.
In a typical five-spot producing pattern, four production wells are spaced around a production well that is centrally located. Each well operates independently. Rod pumps can be used to assist in lifting the production fluids, which are typically oil and water, to the surface. Pumps for artificial lift extend the field life by reducing the bottomhole pressure and thereby recovering more oil economically. Typically the bottom of the rod pumping string is placed above the producing interval in order to allow fluid separation and minimize the possibility of the string becoming stuck. Fluid levels should be above the pumping string intake to avoid “pounding the pump” which increases wear and reduces the life of the equipment. This in turn results in an increase of backpressure being placed on the reservoir due to the hydrostatic head. Minimizing this hydrostatic head would increase production rates and extend field life and reserves.
During fairly routine well maintenance operations, wells are often “killed” in order to safely remove and repair the rod strings. Killing a well involves injecting a high density, typically water based, fluid into the production well to provide sufficient hydrostatic pressure to keep the well from flowing. Oftentimes this fluid is displaced into the reservoir. In low pressure gas wells, rod pumps are used to keep water out of the reservoir as much as possible. If significant concentrations of water get into the reservoir, the pressure in the reservoir may not be high enough to move it back out. This often results in a significant effort to get these wells back producing. Sometimes the wells are never successfully returned to production.
According to an aspect of the present invention, a method of performing a wellbore maintenance operation is disclosed. The method includes providing a drainage wellbore and a production wellbore. The drainage wellbore is perforated such that the drainage wellbore receives reservoir fluids from a producing zone of a subterranean reservoir. The production wellbore is in fluid communication with the drainage wellbore, such as through a drainage string, so that the reservoir fluids received by the drainage wellbore flow to the production wellbore. Fluid is injected into the production wellbore until the flow of the reservoir fluids from the drainage wellbore to the production wellbore is stopped. Maintenance is then performed on the production wellbore.
In one or more embodiments, fluid is injected into the production wellbore until the fluid level within the production wellbore is at an elevation above the elevation of the perforations in the drainage wellbore. In one or more embodiments, fluid injection is stopped prior to the fluid reaching the perforations in the drainage wellbore.
In one or more embodiments, at least two drainage wellbores are provided and fluid is injected into the production wellbore until the fluid level within the production wellbore is at an elevation above the perforations in the two drainage wellbores. In one or more embodiments, fluid injection is stopped prior to the fluid reaching any of the perforations in the two drainage wellbores.
In one or more embodiments, gas is injected into the drainage wellbore to force the fluid back up through production wellbore and allow the reservoir fluids received by the drainage wellbore to flow to the production wellbore. The reservoir fluids can then be produced from the production wellbore.
According to another aspect of the present invention, a method of performing a wellbore maintenance operation is disclosed. The method includes providing a system of wellbores including a drainage wellbore, a drainage string, and a production wellbore for producing reservoir fluids. The drainage wellbore includes a perforation such that the drainage wellbore receives reservoir fluids from a producing zone of a subterranean reservoir. The drainage string extends between the drainage wellbore and the production wellbore. Reservoir fluids received by the drainage wellbore flow through the drainage string to the production wellbore for production. A fluid is injected into the production wellbore until the hydrostatic pressure in the production wellbore is sufficient to stop the flow of the reservoir fluids received by the drainage wellbore from flowing to the production wellbore. Maintenance is then performed on the production wellbore.
In one or more embodiments, fluid is injected into the production wellbore until the fluid level within the production wellbore is at an elevation above the elevation of the perforations in the drainage wellbore. In one or more embodiments, fluid injection is stopped prior to the fluid reaching the perforations in the drainage wellbore.
In one or more embodiments, at least two drainage wellbores are provided and fluid is injected into the production wellbore until the fluid level within the production wellbore is at an elevation above the perforations in the two drainage wellbores. In one or more embodiments, fluid injection is stopped prior to the fluid reaching any of the perforations in the two drainage wellbores.
In one or more embodiments, gas is injected into the drainage wellbore to force the fluid back up through production wellbore and allow the reservoir fluids received by the drainage wellbore to flow to the production wellbore. The reservoir fluids can then be produced from the production wellbore.
According to another aspect of the present invention, a method of performing a wellbore maintenance operation is disclosed. The method includes providing a drainage wellbore and a production wellbore. The drainage wellbore receives reservoir fluids from a producing zone of a subterranean reservoir. The production wellbore is in fluid communication with the drainage wellbore such that the reservoir fluids received by the drainage wellbore flow to the production wellbore. A fluid is injected into the production wellbore until the hydrostatic pressure in the production wellbore is sufficient to stop the flow of the reservoir fluids received by the drainage wellbore from flowing to the production wellbore. Maintenance is then performed on the production wellbore. Gas is then injected into the drainage wellbore to force the fluid back up through production wellbore and allow the reservoir fluids received by the drainage wellbore to flow to the production wellbore. The reservoir fluids are then produced from the production wellbore.
In one or more embodiments, the drainage wellbore is in fluid communication with the producing zone of the reservoir through a perforation in the drainage wellbore. Fluid is injected into the production wellbore until the fluid level within the production wellbore is at an elevation above the elevation of the perforations in the drainage wellbore.
In one or more embodiments, the drainage wellbore is in fluid communication with the producing zone of the reservoir through a perforation in the drainage wellbore. Fluid injection is stopped prior to the fluid reaching the perforations in the drainage wellbore.
In one or more embodiments, at least two drainage wellbores are provided, each drainage wellbore being in fluid communication with the producing zone of the reservoir through a perforation in the drainage wellbore. Fluid is injected into the production wellbore until the fluid level within the production wellbore is at an elevation above the perforations in the two drainage wellbores.
In one or more embodiments, at least two drainage wellbores are provided, each drainage wellbore being in fluid communication with the producing zone of the reservoir through a perforation in the drainage wellbore. Fluid injection is stopped prior to the fluid reaching any of the perforations in the two drainage wellbores.
Referring to prior art
Each well 11 typically includes a string of production casing or tubing 21 that is carried within outer casing 15. Tubing 21 has an opening for receiving production fluids (typically oil, water, and gas) at its lower end. Packer seals 23 are positioned between production tubing 21 and casing 15 to force production fluids from reservoir 13 to flow through production tubing 21.
Pump assemblies 25, which have a rod pumping string positioned within production tubing 21, are used for communicating production fluids to the surface. For example, pump assemblies 25 can be used when the pressure associated with reservoir 13 is low and produced fluids do not flow to the surface. Pump assemblies 25 help to extend the life of wells 11.
Typically the bottom of the rod pumping string of pump assembly 25 is positioned above “the producing interval” in order to allow initial fluid separation between the gas and liquid phases of the production fluids, and to minimize the possibility of the string becoming stuck. It is preferable that the fluid levels of the liquids in the production fluids remain above the pumping string intake to avoid “pounding the pump” which increases wear and reduces the life of the equipment. Maintaining the liquid levels of the production fluids above the intake of pump assembly 25 increases the hydrostatic head within production tubing 21 which in turn results in backpressure being placed on reservoir 13. Reducing this hydrostatic head can further increase production rates and extend field life associated with reservoir 13.
Referring to
Production well 11′ extends into reservoir 13 adjacent drainage wellbores 27. Production well 11′ is drilled and completed with substantially the same components as wells 11 in
As shown in
As shown in
As previously described, to perform such operations in conventional well arrangements, such as production wells 11 shown in
According to a method of the present invention, fluidly connected production well 11′ and drainage wellbores 27 act as the closed end of a manometer. In order to “kill” production well 11′ and drainage wellbores 27, fluid can be injected into the bore of production well 11′. As the fluid level of the injected fluid and the produced fluid collecting in production well 11′, drainage wellbores 27, and drainage strings 33 rises, the fluid compresses the separated gas above it in drainage wellbores 27. As seen in
Moreover, returning production well 11′ after maintenance is performed is simplified as gas can be injected into drainage wellbores 27 to push the fluid back up through production wellbore 11′. Accordingly, this reduces the likelihood of the “kill” fluid from entering perforations 29 and allows the reservoir fluids received by drainage wellbore 29 to resume flowing to production wellbore 11′. Accordingly, the reservoir fluids can then be produced again from the production wellbore.
While the invention has been shown in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but susceptible to various changes without departing from the scope of the invention.
The present application for patent claims the benefit of U.S. Provisional Application bearing Ser. No. 61/286,520, filed on Dec. 15, 2009, which is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61286520 | Dec 2009 | US |