Not Applicable
Not Applicable
The present invention relates generally to automated arrangement music media file selection, and more specifically to a system, method and computer program product for automatically selecting, suggesting and/or playing of a music media file in dependence on behavioral information and one or signal inputs.
Electronic Media Players have become popular personal entertainment devices due to their highly portable nature and interconnectivity with existing computer networks, for example the Internet. The accessibility and simplicity in downloading music and other electronic media continues to fuel the popularity of these devices as is exemplified by Apple Computer, Inc.'s highly successful iPod™ portable media player. Other manufacturers have competing Media Players offering various functionalities and file playing compatibilities in an effort to differentiate their products in the marketplace.
As discussed in Apple Computer, Inc., patent application, US 2004/0224638 A1, Ser. No. 10/423,490 to Fadell, et al., which is herein incorporated by reference in its entirety; an increasing number of consumer products are incorporating circuitry to play musical media files and other electronic media.
For example, many portable electronic devices such as cellular telephones and personal digital assistants (PDAs) include the ability to play electronic musical media in many of the most commonly available file formats including MP3, AVI, WAV, MPG, QT, WMA, AIFF, AU, RAM, RA, MOV, MIDI, etc.
In the relevant art, portable media players lack the ability to correlate a user's activities, schedules, locations, motions, physiological and psychological states to select, suggest and/or automatically play a music media file to enhance the user's listening experience. Users are therefore reliant on manual selections, a preestablished play list(s) or musical selections of others which do not take into account the many variables that affect a user's musical listening preferences. For example, a user's musical listening preferences are highly variable based on the user's mood, scheduled events, current activity, seasonal changes, weather conditions, user listening preferences, physiological state, physiological state, locale and other variables which impact a user's musical preferences.
Therefore, a predictive mechanism that automatically performs musical selection, suggestion and/or playing is a highly desirable feature for incorporation into portable media players available in the relevant art.
The invention as described herein addresses the need in the relevant art and provides a predictive mechanism that automatically performs musical selection, suggestion and/or playing for incorporation into portable media players. Various embodiments of the present invention perform predictive musical selection, suggestion, and/or playing by storing data over a period of time indicative of how a user's musical choices correlate with chronographic information and/or sensor information, and/or using the stored data along with current chronographic information and/or current sensor data to predicatively select, suggest, and/or play a current musical selection to the user that has an increased likelihood of matching the users then current musical preferences.
An underlying premise of the current invention assumes a user's personal preference in music at any particular moment may be influenced by one or more current conditions of the user and/or the user's environment referred to herein as ambient factors. In a first example of an ambient factor; a current time of day, day of week, and season of the year are all chronographic ambient factors that may affect a user's song preference inclinations at a given moment. In a second example of an ambient factor; a current air temperature, cloud conditions, precipitation conditions, sun conditions, smog conditions, pollen count, UV index, and barometric pressure are all meteorological ambient factors that may affect a user's song preference inclinations at a given moment.
In third example of an ambient factor; a user's current geographic location, speed of motion, direction of motion, elapsed time spent at rest, elapsed time spent in motion, orientation, inclination, and/or route of travel may be considered geo-spatial ambient factors that may affect a user's song preference inclinations at a given moment. In a fourth example of an ambient factor; a user's current heart rate, respiration rate, pulse rate, and skin temperature are all physiological ambient factors that may affect a user's song preference inclinations at a given moment.
Lastly, in a fifth example of an ambient factor; a user's current activity such as walking the dog, exercising at the gym, working at the office, going out to lunch, relaxing at the beach, or going for a run, are all behavioral ambient factors that that may affect a user's song preference inclinations at a given moment.
In various embodiments of the present invention an automated music media file selection system, method and computer program product is provided that accumulates a store of information in a datastore that is programmed to correlate a particular user's historical music media file selection with one or more ambient factors present at the moment the user's music media file selections were made. The datastore is then interpreted to provide a predicted music media file selection in the future. The information contained in the datastore is referred to herein as ambient influence information because it represents how one or more ambient factors is likely to influence a particular user's future music media file selections.
In various embodiments of the present invention, the collection and interpretation of the collected ambient influence information along with correlations made with current chronographic information and/or current ambient factor data received from sensors is used to predicatively select, suggest, and/or play a current musical selection to the user that has an increased likelihood of correlating with the users then current musical preferences.
In various embodiments of the invention, the ambient influence information is further correlated with an accessible datastore of user schedule information and/or an accessible datastore of current meteorological information to further correlate the ambient factor data received from sensors each time the user expresses his or her musical selection to the system. In this way the present invention generates a datastore of correlations between chronographic information and/or sensor information and/or schedule information and/or meteorological information, with respect to a user's musical selection inclinations. This information is then stored in the ambient influence information datastore and includes one or more correlated chronographic, meteorological, geo-spatial, behavioral, and/or physiological ambient factors associated with the user.
In various embodiments of the present invention, the store of ambient influence information is also used along with current schedule information for the user and/or current meteorological data accessed over a network to predicatively select, suggest, and/or play a current musical selection to the user that has a greater likelihood of correlating with the users then current musical preferences.
As used herein current chronographic information and/or current sensor data is defined as data collected from time reference sources and/or sensors respectively that reflects real-time or near-real time ambient factors. Similarly current schedule information and/or current meteorological data is defined as data that reflects the real-time or near-real time scheduled activity of the user and/or real-time or near-real time meteorological conditions of the user's local environment respectively.
Stored chronographic information, sensor data, schedule information and/or meteorological data, is referred to herein as the ambient influence information associated with a user's historical musical selections. Thus the present invention can be described as a system, method and computer program product for collecting and correlating ambient influence information with current ambient factors to predicatively select, suggest, and/or play a current musical selection to the user that has a greater likelihood of being in agreement with a users current musical preferences. As will be described herein, an exemplary system, method and computer program product by which the present invention makes such predictive selections and/or suggestions utilizing a weighted randomization process.
In an exemplary systematic embodiment of the invention, a predictive music media selection system for a portable media player is disclosed. The exemplary systematic embodiment of the invention comprises; a processor; a main memory coupled to the processor; a communications infrastructure coupled to the processor; a secondary memory coupled to the communications infrastructure having retrievably stored therein;
a plurality of music media files playable by the processor and ambient influence information relationally associated with each of the plurality of music media files; an ambient factors providing circuit operatively coupled to the communications infrastructure; and at least one predictive program stored in at least a portion of the main memory having instructions executable by the processor to; select and suggest or automatically play at least one of the plurality of music media files retrieved from the secondary memory in at least partial dependence on a correlation assessment between one or more ambient factors and the ambient influence information.
Various exemplary systematic embodiments of the invention further includes instructions executable by the processor to; select and suggest or automatically play at least one of the plurality of music media files using a weighted random selection process; monitor and store a user's interactions with the portable media player in the ambient influence information; generate an array in another portion of the main memory; populate the array with unique indicia associated with each of the plurality of music media files; the indicia being weighted in the array according to the ambient influence information and at least one or more ambient factors; randomly select an element of the array; and retrieve at least one music media file using the unique indicia contained in the array element as an index; and, alter a tempo or to perform gait matching on a playing music media file in dependence on the sensor signals.
In a related exemplary systematic embodiment of the invention the ambient factors includes at least one of chronographic information, external downloadable information and sensor information. In another related exemplary systematic embodiment of the invention the sensor information includes at least one of; meteorological information, physiological information, geo-spatial information, motion information, and environmental information, and a combination thereof. In yet another related systematic embodiment of the invention the weighting is derived from a correlation between the ambient influence information and one or more of the ambient factors.
In yet another related exemplary systematic embodiment of the invention, the ambient influence information includes established relationships between the user's musical preferences, one or more ambient factors and/or chronographic information.
In an exemplary methodic embodiment of the invention, a method for predictive music media selection for a portable media player is provided which comprises; providing at least one predictive program operatively loaded into a main memory of the portable media player; monitoring user music media selections associated with a plurality music media files playable by the portable media player; monitoring ambient factors received by the portable media player; accumulating ambient factors and user interactions in an ambient influence information datastore; associating the ambient influence information with the plurality music media files; and determining correlated weighting factors in at least partial dependence on the ambient factors and ambient influence information contained in the datastore.
In a related exemplary methodic embodiment of the invention, the method further includes; generating an array in another portion of the main memory; populating the array with unique indicia associated with the plurality of music media files; the indicia being weighted in the array according to the correlated weighting factors; randomly selecting an element of the array; and retrieving at least one music media file using the unique indicia contained in the array element as an index. In another related exemplary methodic embodiment of the invention, the method further includes suggesting or automatically playing the at least one music media file. In yet another related exemplary methodic embodiment of the invention, the method further includes; altering a tempo or performing gait matching of a playing music media file in dependence on at least one of the ambient factors.
Various exemplary methodic embodiments of the invention describe how the weighting is derived from a correlation between the ambient factors and the ambient influence information; and how the ambient factors includes at least one of chronographic information, external downloadable information and sensor information.
In an exemplary computer program product embodiment of the invention, a computer program product is provided for use in a portable media player which is embodied in a tangible form having instructions executable by a processor to select and suggest or automatically play at least one music file from a plurality of music media files stored in datastore in dependence on a determined correlation between one or more ambient factors and accumulated ambient influence information.
Various exemplary computer product embodiments of the invention further includes instructions executable by the processor to monitor a user's interactions with the portable media player and the one or more ambient factors to determine the correlation; retrievably store the correlation in a relational association with the accumulated ambient influence information; alter a tempo or to perform gait matching of a playing music media file in dependence on the one or more ambient factors. In another related exemplary computer product embodiment of the invention the accumulated ambient influence information includes established relationships between a user's music preferences and archives of one or more ambient factors. In yet another related exemplary computer product embodiment of the invention the tangible form comprises magnetic media, optical media or logical media.
The features and advantages of the invention will become apparent from the following detailed description when considered in conjunction with the accompanying drawings. Where possible, the same reference numerals and characters are used to denote like features, elements, components or portions of the invention. Optional components or feature are generally shown in dashed lines. It is intended that changes and modifications can be made to the described embodiment without departing from the true scope and spirit of the subject invention as defined in the claims.
FIG. 1—depicts a generalized block diagram of a portable media player.
FIG. 2—depicts an embodiment of the invention in which a predictive application is accumulating ambient factors signals and other information for future music media file prediction.
FIG. 2A—depicts an embodiment of the invention in which the predictive application is utilizing the accumulated ambient influence information and other information to select, suggest or play a music media file.
FIG. 3—depicts a first flow chart of an embodiment of the invention in which the predictive application is accumulating ambient factors and other information for future music media file prediction.
FIG. 3A—depicts a second flow chart of an embodiment of the invention in which the predictive application is utilizing the accumulated ambient influence information and correlated weighting factors to select, suggest or play a music media file
The invention provides a system, method and computer program product which automatically selects, suggests and/or plays a music media file by collecting ambient influence information over a period of time and using such information along with current ambient factors to predicatively select, suggest, and/or play a current musical selection to the user.
Where necessary, computer programs and algorithms are envisioned to be programmed in a high level language object oriented language, for example Java™ C++, C#, or Visual Basic™.
Referring to
A central processor 5 is provided to interpret and execute logical instructions stored in the main memory 10. The main memory 10 is the primary general purpose storage area for instructions and data to be processed by the central processor 5. The main memory 10 is used in its broadest sense and includes RAM, EEPROM and ROM.
A timing circuit 15 is provided to coordinate activities within the portable media player in near real time. The central processor 5, main memory 10 and timing circuit 15 are directly coupled to the communications infrastructure 90.
A display interface 20 is provided to drive a display 25 associated with the portable media player 100. The display interface 20 is electrically coupled to the communications infrastructure 90 and provides signals to the display 25 for visually outputting both graphics and alphanumeric characters. The display interface 20 may include a dedicated graphics processor and memory to support the displaying of graphics intensive media. The display 25 may be of any type (e.g., cathode ray tube, gas plasma) but in most circumstances will usually be a solid state device such as liquid crystal display.
A secondary memory subsystem 30 is provided which houses retrievable storage units such as a hard disk drive 35, a removable storage drive 40, an optional logical media storage drive 45 and an optional removal storage unit 50. One skilled in the art will appreciate that the hard drive 35 may be replaced with flash memory.
The removable storage drive 40 may be a replaceable hard drive, optical media storage drive or a solid state flash RAM device. The logical media storage drive 45 may include a flash RAM device, an EEPROM encoded with playable media, or optical storage media (CD, DVD). The removable storage unit 50 may be logical, optical or of an electromechanical (hard disk) design.
A communications interface 55 subsystem is provided which allows for standardized electrical connection of peripheral devices to the communications infrastructure 90 including, serial, parallel, USB, and Firewire™ connectivity. For example, a user interface 60 and a transceiver 65 are electrically coupled to the communications infrastructure 90 via the communications interface 55. For purposes of this specification, the term user interface 60 includes the hardware and operating software by which a user interacts with the portable media player 100 and the means by which the portable media player conveys information to the user and may include the display 25.
The transceiver 65 facilitates the remote exchange of data and synchronizing signals between the portable media player 100 and other devices in processing communications 85 with the portable media player 100.
The transceiver 65 is envisioned to be of a radio frequency type normally associated with computer networks for example, wireless computer networks based on BlueTooth™ or the various IEEE standards 802.11x, where x denotes the various present and evolving wireless computing standards or WiMax 802.16.
Alternately, digital cellular communications formats compatible with for example GSM, 3G and evolving cellular communications standards. Both peer-to-peer (PPP) and client-server models are envisioned for implementation of the invention. In a third alternative embodiment, the transceiver 65 may include hybrids of computer communications standards, cellular standards and evolving satellite radio standards.
The user interface 60 employed on the portable media play 100 may include a vibratory unit (not shown); a pointing device (not shown) such as a mouse, thumbwheel or track ball, an optional touch screen (not shown); one or more pushbuttons (not shown); one or more sliding or circular rheostat controls (not shown) and one or more switches (not shown.) The user interface 60 provides interrupt signals to the processor 5 that may be used to interpret user interactions with the portable media player 100 and may be used in conjunction with the display 25. One skilled in the art will appreciate that the user interface devices which are not shown are well known and understood.
A sensor interface 70 is provided which allows one or more sensors 75 to be operatively coupled to the communications infrastructure 90. A portion of the sensors 75A, 75B, 75C, 75D may be installed within the case (not shown) housing the portable media player 100. Alternately, one or more sensors 75E may be peripheral to the portable media player 100 and coupled to the sensor interface 70 by an external jack or wireless arrangement which utilizes the transceiver 65.
A wide range of real time and near real time sensor types are envisioned to be connectable to the portable media player 100; examples of which includes meteorological sensors, physiological sensors, navigational sensors, geo-spatial sensors, motion sensors, inclination sensors, environmental sensors, and a combination thereof. References made to sensor data and/or external downloaded data such as schedule data and meteorological data may be used interchangeably herein with the term ambient factors.
These sensors provide the ambient factor data to the processor 5 via the sensor interface 70 coupled to the communications infrastructure 90. Lastly, an audio subsystem 85 is provided and electrically coupled to the communications infrastructure 95.
The audio subsystem provides for the playback and recording of digital media, for example, multi or multimedia encoded in any of the exemplary formats MP3, AVI, WAV, MPG, QT, WMA, AIFF, AU, RAM, RA, MOV, MIDI, etc. The audio subsystem includes a microphone input port 95A and a headphone or speaker output port 95B. Connection of the microphone 95A and/or headset 95B includes both traditional cable and wireless arrangements known in the art. As referred to in this specification, “media” refers to video, audio, streaming and any combination thereof.
In addition, the audio subsystem is envisioned to optionally include features such as graphic equalization, volume, balance, fading, base and treble controls, surround sound emulation, and noise reduction. One skilled in the art will appreciate that the above cited list of file formats is not intended to be all inclusive.
The portable media player 100 includes an operating system, the necessary hardware and software drivers necessary to fully utilize the devices coupled to the communications infrastructure, media playback and recording applications and at least one predictive program 240 (
The at least one predictive program 240 (
Optionally, the portable media player 100 is envisioned to include at least one remote authentication application, one or more cryptography applications capable of performing symmetric and asymmetric cryptographic functions, and secure messaging software (not shown.)
The present invention includes various distinct inventive arrangements that enable a portable media player to select, suggest and/or play a musical media that the user is more likely to be in the mood to listen to as compared to a music media file selected purely at random.
Various arrangements include storing ambient factors ( for example sensor data) over a period of time indicative of how a user's past music media file selections were statistically correlated with chronographic, meteorological, geo-spatial, physiological, and/or behavioral ambient factors of the user at the time those choices were made, and by using the stored ambient influence information AIIa 250A (
More specifically, the various arrangements includes a data archival routine for collecting and storing chronographic information, sensor data, schedule data, and/or meteorological data each time the user expresses a musical selection or preference, relationally correlating this data with the musical selection or preference that was expressed, and a predictive musical media file selection routine which selects a particular music media file from a plurality of music media files stored in a datastore 260 (
Referring to a data storage routine of the present invention,
User preferences 210 includes for example, a user's interactions and personal preferences associated with the portable media player 100, such as music media file selections, volume settings, display brightness settings, sound balance, etc., accomplished with the user interface 60.
External downloadable data 205 includes data accessed from an external source for example, user schedule data or meteorological data. Schedule data includes, for example, activities defined by the user such as “at work”, “at the gym”, “walk the dog”, “relax at home”, “do chores”, “do gardening”, “go running”, “go cycling”, “at the park”, “at the beach”, “grocery shopping”, etc. Each activity represented by the schedule data is relationally associated with particular time(s) of day and/or particular day(s) of the week within the schedule data. Thus the schedule data can be used along with current time and/or date information to determine a current scheduled activity (i.e. a current behavioral ambient factor) of the user.
The schedule data for a particular user may be entered directly into the portable media player 100 through the user interface 60 of the portable media player 100 or can be created in a third party software application such as Microsoft Outlook™ and downloaded into the portable media player 100 as a schedule data file. Meteorological information for example, may include the current weather location of the user accessed from a weather service such as www.weather.com, which provides localized weather information. Based upon the user's current location (as determined by the user's zip code, GPS sensor information, or other locative information), current weather information can be accessed for the user's local region and provided to predictive program 240. The external downloadable data 205 may also include sunrise and sunset data for the user's current location and for the current date.
In this way, the downloaded meteorological data 205 can be used by the predictive program 240 along with current time and sensor data to determine the current sun conditions for the location of the user, sun conditions indicating for example if the sun has already come up in the morning, if the sun has already set in the evening, and/or if the sun is currently in the process of coming up and/or going down.
Having access to the sensor signals 75, chronological information 15, user preference data 210, and/or external downloadable data 205, the predictive program 240 is programmed to store ambient influence information AIIa 250A in a file containing one or more of the ambient factors AFa1 215, AFa2 220, AFa3 225, AFa4 230, AFa5 235 that are present at a given time when the user expresses a music media file 200A selection.
For example, at a given time when the user selects a music media file 200A from a plurality of music media files 200N stored in a datastore 260 associated with the portable media player 100, the predictive program 240 receives an interrupt signal from the user interface 60 that the user has selected that particular music media file 200A and in response the predictive program 240 stores ambient influence information AIIa 250A correlated with one or more ambient factors AFa1 215, AFa2 220, AFa3 225, AFa4 230, AFa5 235 received from sensor signals 75, chronological information 15, user preferences data 210, and/or downloadable external data 205 in an ambient influence information file AIIa 250A located in the datastore 260.
The ambient influence information file AIIa 250A is relationally 255A associated with the music media file 200A selected by the user. This relational association 255A is generally performed through the use of a unique music media file identifier ID 265A, 270A that is received by predictive program 240 as part of the selection process. In this way, the predictive program 240 stores the ambient factors AFa1 215, AFa2 220, AFa3 225, AFa4 230, AFa5 235 that identifies the particular conditions currently present in the environment of the user when music media file 200A was selected and correlates the ambient factors AFa1 215, AFa2 220, AFa3 225, AFa4 230, AFa5 235 with that music media file 200A in the datastore 260 as ambient influence information AIIa 250A.
In general, two kinds of events trigger the predictive program 240 to update the ambient influence information file 250A associated with a music media file 200A stored in the datastore 260 of the portable media player 100.
A first event type refers to a manual music media file 200A selection which represents the situation where a user manually selects a music media file 200A from a plurality of music media files stored in the datastore 260 from a menu displayed on the user interface 30. The second type of event refers to an automated music media file selection which represents the situation where the predictive program 240 running on the portable media player 100 automatically selects and suggests and/or plays a music media file to the user and the user optionally accepts the suggestion. The user's optional acceptance may be performed by explicit an action such as pressing a button or selecting a user interface option, or may be performed by default as a result of the user not explicitly rejecting the suggestion.
A reasonable presumption is made that the manual music media file selection by the user is more indicative of a user's personal music preferences at a particular time than an automated music media file selection. As such, the correlation between the selection of a particular music media file and the historical ambient influence information AIIa 250A is considered to be weaker when it is the result of an automated music media file selection. To accommodate such different correlation strengths between a musical selection and the recorded ambient influence information that is collected and stored by the predictive program 240 at the time when a particular music preference is expressed by the user, weighting factors may optionally be stored along with the ambient influence information AIIa 250A for each selection of a particular music media file by the user.
The weighting factors may also reflect the relative importance of each of the ambient factors within a particular set of ambient influence information. For example the time of day that the music media file selection was made may be weighted heavier than the user's pulse rate. Such weighting factors are shown for example as Uwa 241, Twa 242, Swa 243, Mwa 244, and Dwa 246.
In addition, when a user selects a music media file 200A either manually and/or through an automated selection process, the predictive program 240 of the present invention may query the user to provide through the user interface 60 a subjective rating that indicates a level or strength value to the user's current music media file selection preference. For example the user may be prompted to provide a subjective rating value from 1 to 10 indicating the strength or level of preference to the current music media file selection. This subjective rating may also be used to influence the weighting factors that are used to correlate a particular set of ambient influence information.
Therefore, if a user spontaneously selects a particular music media file and then provides a high subjective rating of 9 (on a scale of 1 to 10) indicating his level of preference to the particular music media file, numerically high weighting factors will be used when correlating the users music media file selection to the ambient influence information determined at the time the selection was made.
Conversely, if a user selects a particular music media file 200A and then provides a lower subjective rating of 4 (on a scale of 1 to 10) indicating his level of preference to the particular music media file, numerically smaller weighting factors will be used when correlating the users music media file selection to the ambient influence information determined at the time the selection was made.
In various embodiments of the invention, the weighting factors are stored along with ambient influence information 250A in the datastore 260. Alternately, in other embodiments of the invention, the weighting factors are mathematically combined with some or all of the data represented in the ambient influence information which are then stored as weighted values.
In another example, the chronological information 15 may relate to the current time of the day (TOD) and may be mathematically combined with a time weighting factor Twa 242 to arrive at a second weighted ambient factor component AFa2 220. Likewise, the sensor signals 75, for example, may be used to monitor the ambient temperature.
The ambient temperature may then be mathematically combined with a temperature weighting factor, Swa 243 to arrive at a third ambient factor component AFa3 225. Thus, each time that the predictive program 240 receives an interrupt signal from the user interface 60 that the user has selected a music media file 250A from the plurality of music media files stored in the datastore 260 of the portable media player 100, the predictive program 240 accesses and stores 245 ambient influence information AIIa 250A optionally with or without the use of weighting factors.
The determined ambient influence information is stored in one or more ambient influence information file(s) AIIn 250N where the accumulated sets of ambient influence information determined for a plurality of historical music media file selections 200N is each relationally 255N associated with the music media files 200N that was selected by the user at that time.
In the exemplary embodiment shown in
In one exemplary embodiment of the present invention, the ambient influence information file AIIa 250A is configured to accumulate up to 20 sets of ambient influence information AIIa 250A for past music media file selections of each music media file stored within datastore 260. In this example, the ambient influence information AIIa 250A represents the ambient factors AFa1 215, AFa2 220, AFa3 225, AFa4 230, AFa5 235 present in the environment of the user for each of the last 20 times the user selected that particular music media file. The ambient influence information AIIa 250A may represent the time of day, the cloud conditions, and the GPS location of the user, that was recorded for each of the last 20 times that a particular music media file 200A was selected by the user.
A circular file arrangement may be implemented to limit the size of accumulated ambient influence information AIIa 250A. For example, when a music media file 200A is user selected more than N times, the ambient influence information file AIIa 250A may be configured to overwrite the oldest set of ambient factors recorded in the ambient influence information file AIIa 250A. In this way only data for the maximum N of the most recent selections of a particular music media file 200A is accumulated within the ambient influence information file AIIa 250A.
In an exemplary embodiment of the invention, the ambient influence information file AIIa 250A provides a data structure that is indexed by its unique identifier ID 270A and configured to store up to N sets of ambient influence information for each ID (with or without weighting factors); where each of the N sets of ambient influence information AIIa 250A represents a historical set of ambient factors AFa1 215, AFa2 220, AFa3 225, AFa4 230, AFa3 235 present at a given time the user selected the music media file 200A having the unique identifier ID 265A.
Once the ambient factors AFa1 215, AFa2 220, AFa3 225, AFa4 230, AFa3 235 have been has been collected and stored in the ambient influence information file AIIa 250A in the datastore 260 and relationally retrievable 255A by the predictive program 240, the predictive program 240 may be operative to automatically select, suggest and/or play a particular music media file 200A from the plurality of music media files 200N stored in the datastore 260. Selection of the music media file 200A being made at least in part upon correlations with one or more current ambient factors AFa1 215, AFa2 220, AFa3 225, AFa4 230, AFa3 235 with the ambient influence information AIIa 250A available in the datastore 260. This process is performed each time the predictive program 240 determines that a music media file 200A should be selected, suggested and/or played for the user.
Referring to
Using the recorded ambient influence information AIIa 250A, AIIb 250B, AIIc 250C, AIIn 250N stored for the plurality of music media files 200A, 200B, 200C, 200N the predictive program 240 determines 270 the correlated weighted factors Wfa 275A, Wfb 275B, Wfc 275C, Wfn 275N for the weighted random selection process. The correlated weighted factors Wfa 275A, Wfb 275B, Wfe 275C, Wfn 275N used in the weighted random selection process are determined algorithmically such that those music media files 200A, 200B, 200C, 200N having stored ambient influence information with the closest statistical correlation to the current ambient factors 215x, Afx2 220x, Afx3 225x, Afx4 230x, Afx3 235x are weighted to provide the greatest chance of being selected at random 290 from, for example, a randomization array 280-289.
In this example, the predictive program 240 determined that music media file A 200A has a correlated weighted factor Wfa 275A of 5, music media file B 200B having a correlated weighting factor Wfb 275B of 3, music media file C 200C having a correlated weighting factor Wfc 275C of 1 and music media file N 200N having a correlated weighting factor Wfn 275N of 1 as well
As such, the unique identifier ID 265A associated with music media file A 200A will occupy 5 out of the 10 elements of the array 280-284, the unique identifier ID 265B associated with music media file B 200B will occupy 3 out of 10 elements of the array 285-287, the unique identifier ID 265C associated with music media file C 200C will occupy 1 out of 10 elements of the array 288 and the unique identifier ID 265N associated with music media file N 200N will occupy 1 out of 10 elements of the array 289. A random number generator 290 is used to determine which of the array elements 280-289 will be selected. In this example, array element 5284 is selected which contains the unique identifier ID 265A associated with music media file A 200A. Music media file A 200A is selected using its associated unique identifier ID 265A and suggested or automatically played for the user.
The randomization array size of 10 elements 280-289 used in this example was determined arbitrarily to illustrate the weighted selection process is performed. In actual practice, the size of the array may be based upon the number of available music media files available for selection.
The determination of the correlated weighting factors Wfa 275A, Wfb 275B, Wfc 275C, Wfn 275N many be performed by many algorithms known in the relevant art. The algorithms selected should be able to provide a level of correlation between one or more of the current ambient factors 215x, Afx2 220x, Afx3 225x, Afx4 230x, Afx3 235x and one or more of the recorded ambient influence information AIIa 250A, AIIb 250B, AIIc 250C, AIIn 250N.
In various embodiments of the invention, correlation of chronological, meteorological, geo-spatial, physiological, and behavioral ambient factors with ambient influence information may be arranged to have varying impacts upon the computation of the correlated weighted factors for a particular musical media file. For example, in one embodiment chronological ambient factors may be weighted to have three times the computational effect upon the correlated weighted factor than meteorological ambient factors.
Storage of the accumulated ambient factor data may be accomplished in a datastore by many common arrangements. For example, the data structure shown below may be used to maintain the accumulated data. In this example data structure, a unique identifier ID is associated with each music media file stored in the datastore and n is a value between 0 and N, representing the ambient influence information specific to a particular recorded ambient factor and N representing the maximum number of sets of recorded ambient factors to be maintained. One skilled in the art will appreciate that the data structure for storing the accumulated ambient factors may take a variety of forms.
In various embodiments of the invention, each set of n historical accumulations of ambient factors for each music media file ID may be used by the predictive program 240 to determine and maintains a statistical measure of a central tendency for each recorded ambient factors (e.g., time of day, cloud conditions, user pulse rate.) This may be accomplished for example using simple statistical mean and standard deviation(s) across the total number N of accumulated historical ambient factors for each unique identifier ID associated with a music media file.
Alternatively, this may be accomplished by performing a frequency distribution analysis across the total number N of accumulated historical ambient factors where the recorded ambient factor data is processed to determine which ambient factor data values or ranges of ambient factor data values occur with the highest frequency in the set of ambient factor data stored. For example, N=20 historical time of day values may be stored for a music media file of ID=1213. A frequency distribution analysis may be performed on the 20 ambient factor data points to determine which ranges of times of day occur most frequently in the data.
For example, the analysis may be performed using predefined ranges of MIDNIGHT-4 AM, 4 AM-8 AM, 8 AM-NOON, NOON-4 PM, 4 PM-8 PM, and 8 PM to MIDNIGHT. Each of these ranges is generally called a bin. The analysis is performed by sorting each of the 20 time-of-day values into their respective bins and then determines what frequency samples fall into each bin.
In this example, a particular user may have selected a particular music media file with ID=1341 at times of day in the past such that 18 of the 20 time of day values stored in the ambient influence information datastore fall within 8 PM to MIDNIGHT time range bin. Thus the frequency would be 18/20 or 90% of the time this music media file was selected by the user during this time range, thereby providing a statistical correlation between the user's preference to that particular music media file and the time of day. The same type of bin analysis may be performed for other collected data such as pulse rates, GPS location ranges, days-of-the-week, scheduled life events, etc.
In this way, the ambient influence information file maintains statistical correlations between its associated music media file based on correlations made with one or more ambient factors and a user's preference for the particular music media file.
One skilled in the art will appreciate that the storage and use of ambient factor data for the predictive selection of individual music media files may be used for individual music media files, musical albums, musical artists, and musical genres.
Referring to
In some embodiments the statistical analysis includes a frequency analysis upon one or more sets of chronographic, meteorological, geo-spatial, behavioral, and/or physiological data.
The ambient information datastore is relationally associated with the music media files 325 from which correlated weighting factors can be determined between the ambient factors and ambient information datastore 330. The correlated weighting factors are used to determine the probability that a particular music media file will be selected for suggesting or playing to a user using for example the method provided in the description under
Referring to
The process is initiated 345 by a predictive program monitoring the current ambient factors. The predictive program determines correlated weighted factors for each of a plurality of music media files stored in a datastore based upon the stored ambient influence information and the current ambient factors.
The predictive program then populates a randomization array with a weighted number of unique identifier instances 360 or indicia associated with each music media file based upon the correlated weighted factors determined for each particular music media file.
A random selection of an element of the array is performed and a music media file associated with the unique identifier contained in the selected array element is used to retrieve the associated music media file from the datastore which then loaded into the main memory of the portable media player 365.
If the portable media player is configured to automatically play the retrieved music media file 370, the music media file begins playing 385 automatically after the currently playing music media file has finished. Alternately 370, if the portable media player is configured to suggest the selected music media file 375, the user is prompted to accept the suggested music media file 380.
If the user accepts the 380 the suggested music media file, the music media file begins playing 385 automatically after the currently playing music media file has finished. Alternately 380, if the user rejects the suggested music media file for playing, the predictive program selects another array element and retrieves its associated music media file which again is loaded into the main memory of the portable media player 10 (
Once a music media file has been accepted and/or has begun playing, the accumulated ambient influence information data associated with the music media file is updated 390. For example, if the music media file has been accepted by the user, the ambient influence information data associated with that music media file may be updated to reflect the positive association between the current ambient information and the accepted music media file. In this way the correlation between the current ambient factors and the accepted music media file is strengthened.
In some embodiments of the present invention, if the music media file is rejected by the user, the ambient influence information data associated with that music media file may be updated to reflect the negative association between the current ambient information and the rejected music media file. In this way the correlation between the current ambient factors and the rejected music media file is weakened.
An option is available for the predictive program to adjust the tempo or perform gait matching of a music media file to correlate with a sensor signal, for example a sensor signal providing data indicative of a users walking speed and/or other user motion characteristics. If this option is desired 395, the tempo adjustment or gaits matching functions are performed 400.
Alternately 395, if tempo adjustment or perform gait matching is not desired or already has been accomplished, an option is provided to allow continuation of the automated music media file selection. If this option is desired 405, the predictive program continues monitoring user interactions and sensor signals to suggest or play another music media file 350.
Alternately, if automated music media file selection is no longer desired 405, the portable media player user cancels the automated function which ends the process 410.
The foregoing described embodiments of the invention are provided as illustrations and descriptions. They are not intended to limit the invention to precise form described. In particular, it is contemplated that functional implementation of the invention described herein may be implemented equivalently in hardware, software, firmware, and/or other available functional components or building blocks.
No specific limitation is intended to a particular arrangement. Other variations and embodiments are possible in light of above teachings, and it is not intended that this Detailed Description limit the scope of invention, but rather by the Claims following herein.
This application is a non-provisional application claiming benefit and priority under 35 U.S.C. § 119(e) from applicant's U.S. provisional applications Ser. No. 60/648,197, filed on Jan. 27, 2005 and Ser. No. 60/665,291 filed on Mar. 26, 2005, to the instant inventor; the aforementioned provisional applications are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4018121 | Chowing | Apr 1977 | A |
4054749 | Suzuki | Oct 1977 | A |
4091302 | Yamashita | May 1978 | A |
4360345 | Hon | Nov 1982 | A |
4403208 | Hodgson et al. | Sep 1983 | A |
4430595 | Nakasone | Feb 1984 | A |
4490810 | Hon | Dec 1984 | A |
4712101 | Culver | Dec 1987 | A |
4823634 | Culver | Apr 1989 | A |
4868549 | Affinito | Sep 1989 | A |
4907973 | Hon | Mar 1990 | A |
4919418 | Miller | Apr 1990 | A |
4934694 | McIntosh | Jun 1990 | A |
4949089 | Ruszkowski, Jr. | Aug 1990 | A |
4983901 | Lehmer | Jan 1991 | A |
5047918 | Schwartz et al. | Sep 1991 | A |
5047952 | Kramer et al. | Sep 1991 | A |
5164530 | Iwase | Nov 1992 | A |
5185561 | Good | Feb 1993 | A |
5186629 | Rohen | Feb 1993 | A |
5189355 | Larkins | Feb 1993 | A |
5220260 | Schuler | Jun 1993 | A |
5273038 | Beavin | Dec 1993 | A |
5296846 | Ledley | Mar 1994 | A |
5296871 | Paley | Mar 1994 | A |
5451192 | Hefele | Sep 1995 | A |
5499360 | Barbara et al. | Mar 1996 | A |
5534917 | MacDougall | Jul 1996 | A |
5559412 | Schuler | Sep 1996 | A |
5572201 | Graham et al. | Nov 1996 | A |
5614687 | Yamada et al. | Mar 1997 | A |
5629594 | Jacobus | May 1997 | A |
5634051 | Thomson | May 1997 | A |
5643087 | Marcus | Jul 1997 | A |
5666138 | Culver | Sep 1997 | A |
5690582 | Ulrich et al. | Nov 1997 | A |
5699441 | Sagawa et al. | Dec 1997 | A |
5701140 | Rosenberg | Dec 1997 | A |
5704791 | Gillio | Jan 1998 | A |
5709219 | Chen | Jan 1998 | A |
5721566 | Rosenberg | Feb 1998 | A |
5724264 | Rosenberg | Mar 1998 | A |
5728960 | Sitrick | Mar 1998 | A |
5731804 | Rosenberg | Mar 1998 | A |
5742278 | Chen | Apr 1998 | A |
5747714 | Kniest et al. | May 1998 | A |
5754023 | Roston | May 1998 | A |
5755577 | Gillio | May 1998 | A |
5767839 | Rosenberg | Jun 1998 | A |
5769640 | Jacobus | Jun 1998 | A |
5791908 | Gillio | Aug 1998 | A |
5800177 | Gillio | Sep 1998 | A |
5800178 | Gillio | Sep 1998 | A |
5807267 | Bryars et al. | Sep 1998 | A |
5821920 | Rosenberg | Oct 1998 | A |
5825308 | Rosenberg | Oct 1998 | A |
5828197 | Martin | Oct 1998 | A |
5839901 | Karkanen | Nov 1998 | A |
5857939 | Kaufman | Jan 1999 | A |
5870740 | Rose et al. | Feb 1999 | A |
5882206 | Gillio | Mar 1999 | A |
5889670 | Schuler | Mar 1999 | A |
5889672 | Schuler | Mar 1999 | A |
5890128 | Diaz et al. | Mar 1999 | A |
5890995 | Bobick et al. | Apr 1999 | A |
5897437 | Nishiumi | Apr 1999 | A |
5928248 | Acker | Jul 1999 | A |
5941837 | Amano et al. | Aug 1999 | A |
5952596 | Kondo | Sep 1999 | A |
5953693 | Sakiyama et al. | Sep 1999 | A |
5989188 | Birkhoelzer et al. | Nov 1999 | A |
6024576 | Bevirt et al. | Feb 2000 | A |
6088017 | Tremblay | Jul 2000 | A |
6096004 | Megland | Aug 2000 | A |
6106301 | Merril | Aug 2000 | A |
6111577 | Ziles | Aug 2000 | A |
6119114 | Smadja | Sep 2000 | A |
6154201 | Levin et al. | Nov 2000 | A |
6160489 | Perry | Dec 2000 | A |
6192340 | Abecassis | Feb 2001 | B1 |
6199067 | Geller | Mar 2001 | B1 |
6211861 | Rosenberg et al. | Apr 2001 | B1 |
6244742 | Yamada | Jun 2001 | B1 |
6256011 | Culver | Jul 2001 | B1 |
6287262 | Amano et al. | Sep 2001 | B1 |
6292747 | Amro et al. | Sep 2001 | B1 |
6298323 | Kaemmerer | Oct 2001 | B1 |
6300938 | Culver | Oct 2001 | B1 |
6304520 | Watanabe | Oct 2001 | B1 |
6314094 | Boys et al. | Nov 2001 | B1 |
6323412 | Loo | Nov 2001 | B1 |
6366272 | Rosenberg | Apr 2002 | B1 |
6376971 | Pelrine | Apr 2002 | B1 |
6401027 | Xu et al. | Jun 2002 | B1 |
6401037 | Muller et al. | Jun 2002 | B1 |
6411896 | Shuman et al. | Jun 2002 | B1 |
6417782 | Darnall | Jul 2002 | B1 |
6429846 | Rosenberg | Aug 2002 | B2 |
6470207 | Simon | Oct 2002 | B1 |
6470302 | Cunningham | Oct 2002 | B1 |
6477239 | Ohki et al. | Nov 2002 | B1 |
6498982 | Bellesfield et al. | Dec 2002 | B2 |
6515593 | Stark et al. | Feb 2003 | B1 |
6522292 | Ellenby et al. | Feb 2003 | B1 |
6526411 | Ward | Feb 2003 | B1 |
6529831 | Smith et al. | Mar 2003 | B1 |
6539232 | Hendrey et al. | Mar 2003 | B2 |
6563487 | Martin | May 2003 | B2 |
6564210 | Korda et al. | May 2003 | B1 |
6598707 | Nakagaki et al. | Jul 2003 | B2 |
6618593 | Drutman et al. | Sep 2003 | B1 |
6626728 | Holt | Sep 2003 | B2 |
6636835 | Ragsdale-Elliott et al. | Oct 2003 | B2 |
6640187 | Chenault | Oct 2003 | B1 |
6655817 | Devlin | Dec 2003 | B2 |
6657116 | Gunnerson | Dec 2003 | B1 |
6665644 | Kanevsky et al. | Dec 2003 | B1 |
6671736 | Virine et al. | Dec 2003 | B2 |
6683538 | Wilkes, Jr. | Jan 2004 | B1 |
6686531 | Pennock et al. | Feb 2004 | B1 |
6686911 | Levin | Feb 2004 | B1 |
6697044 | Shahoian | Feb 2004 | B2 |
6697048 | Rosenberg et al. | Feb 2004 | B2 |
6781289 | Levin | Feb 2004 | B2 |
6721706 | Strubbe et al. | Apr 2004 | B1 |
6732090 | Shanahan et al. | May 2004 | B2 |
6735568 | Buckwalter et al. | May 2004 | B1 |
6749537 | Hickman | Jun 2004 | B1 |
6768066 | Wehrenberg | Jul 2004 | B2 |
6768246 | Pelrine | Jul 2004 | B2 |
6772026 | Bradbury et al. | Aug 2004 | B2 |
6801837 | Carlstedt et al. | Oct 2004 | B2 |
6804643 | Kiss | Oct 2004 | B1 |
6808472 | Hickman | Oct 2004 | B1 |
6812394 | Weissflog | Nov 2004 | B2 |
6812624 | Pei | Nov 2004 | B1 |
6822635 | Shahoian | Nov 2004 | B2 |
6829599 | Chidlovskii | Dec 2004 | B2 |
6858970 | Malkin | Feb 2005 | B2 |
6863220 | Selker | Mar 2005 | B2 |
6871142 | Kumada et al. | Mar 2005 | B2 |
6879284 | Dufek | Apr 2005 | B2 |
6882086 | Kornbluh | Apr 2005 | B2 |
6885362 | Suomela | Apr 2005 | B2 |
6888457 | Wilkinson et al. | May 2005 | B2 |
6906533 | Yoshida | Jun 2005 | B1 |
6915295 | Okamoto et al. | Jul 2005 | B2 |
6917373 | Vong et al. | Jul 2005 | B2 |
6921351 | Hickman | Jul 2005 | B1 |
6929481 | Alexander | Aug 2005 | B1 |
6941324 | Plastina et al. | Sep 2005 | B2 |
6950695 | Chen | Sep 2005 | B2 |
6956538 | Moore | Oct 2005 | B2 |
6958707 | Siegel | Oct 2005 | B1 |
6965842 | Rekimoto | Nov 2005 | B2 |
6970088 | Kovach | Nov 2005 | B2 |
6978684 | Nurse | Dec 2005 | B2 |
6982697 | Wilson | Jan 2006 | B2 |
6982700 | Rosenberg et al. | Jan 2006 | B2 |
6983139 | Dowling et al. | Jan 2006 | B2 |
6985143 | Pharr | Jan 2006 | B2 |
6986320 | Shelton | Jan 2006 | B2 |
6987221 | Platt | Jan 2006 | B2 |
7007001 | Oliver et al. | Feb 2006 | B2 |
7012593 | Yoon et al. | Mar 2006 | B2 |
7023423 | Rosenberg | Apr 2006 | B2 |
7027823 | Mikuni | Apr 2006 | B2 |
7031875 | Ellenby et al. | Apr 2006 | B2 |
7046588 | Heo | May 2006 | B2 |
7092964 | Dougherty et al. | Aug 2006 | B1 |
7100835 | Selker | Sep 2006 | B2 |
7136945 | Gibbs et al. | Nov 2006 | B2 |
7138575 | Childs et al. | Nov 2006 | B2 |
7156773 | Takai et al. | Jan 2007 | B2 |
7166062 | Watterson et al. | Jan 2007 | B1 |
7181438 | Szabo | Feb 2007 | B1 |
7199708 | Terauchi et al. | Apr 2007 | B2 |
7225565 | DiBenedetto et al. | Jun 2007 | B2 |
7227071 | Tagawa et al. | Jun 2007 | B2 |
7229416 | Chen | Jun 2007 | B2 |
7232416 | Czernicki | Jun 2007 | B2 |
7249126 | Ginsburg et al. | Jul 2007 | B1 |
7271736 | Siegel et al. | Sep 2007 | B2 |
7283997 | Howard et al. | Oct 2007 | B1 |
RE39906 | Roston et al. | Nov 2007 | E |
7293060 | Komsi | Nov 2007 | B2 |
7310676 | Bourne | Dec 2007 | B2 |
7310895 | Whittlesey et al. | Dec 2007 | B2 |
7312766 | Edwards | Dec 2007 | B1 |
7312785 | Tsuk et al. | Dec 2007 | B2 |
7344508 | Surina | Mar 2008 | B2 |
7348967 | Zadesky et al. | Mar 2008 | B2 |
7359624 | Adams et al. | Apr 2008 | B2 |
7373820 | James | May 2008 | B1 |
20020008635 | Ewing et al. | Jan 2002 | A1 |
20020016786 | Pitkow et al. | Feb 2002 | A1 |
20020054060 | Schena | May 2002 | A1 |
20020078045 | Dutta | Jun 2002 | A1 |
20020116476 | Eyal et al. | Aug 2002 | A1 |
20020133418 | Hammond et al. | Sep 2002 | A1 |
20020142701 | Rosenberg | Oct 2002 | A1 |
20020152077 | Patterson | Oct 2002 | A1 |
20020186221 | Bell | Dec 2002 | A1 |
20030009497 | Yu | Jan 2003 | A1 |
20030033287 | Shanahan et al. | Feb 2003 | A1 |
20030041105 | Patrick | Feb 2003 | A1 |
20030047683 | Kaushal | Mar 2003 | A1 |
20030069077 | Korienek | Apr 2003 | A1 |
20030076301 | Tsuk et al. | Apr 2003 | A1 |
20030089218 | Gang et al. | May 2003 | A1 |
20030110038 | Sharma | Jun 2003 | A1 |
20030115193 | Okamoto et al. | Jun 2003 | A1 |
20030135490 | Barrett et al. | Jul 2003 | A1 |
20030187837 | Cutliss | Oct 2003 | A1 |
20030195884 | Boyd et al. | Oct 2003 | A1 |
20030220917 | Copperman et al. | Nov 2003 | A1 |
20030236582 | Zamir et al. | Dec 2003 | A1 |
20040015714 | Abraham et al. | Jan 2004 | A1 |
20040017482 | Weitman | Jan 2004 | A1 |
20040019588 | Doganata et al. | Jan 2004 | A1 |
20040068486 | Chidlovskii | Apr 2004 | A1 |
20040097806 | Hunter | May 2004 | A1 |
20040103087 | Mukherjee et al. | May 2004 | A1 |
20040124248 | Selker | Jul 2004 | A1 |
20040164971 | Hayward | Aug 2004 | A1 |
20040166937 | Rothschild | Aug 2004 | A1 |
20040186824 | Delic et al. | Sep 2004 | A1 |
20040204240 | Barney | Oct 2004 | A1 |
20040224638 | Fadell et al. | Nov 2004 | A1 |
20040225519 | Martin | Nov 2004 | A1 |
20040252397 | Hodge et al. | Dec 2004 | A1 |
20050021470 | Martin et al. | Jan 2005 | A1 |
20050039206 | Opdycke | Feb 2005 | A1 |
20050071328 | Lawrence et al. | Mar 2005 | A1 |
20050080786 | Fish | Apr 2005 | A1 |
20050096047 | Haberman et al. | May 2005 | A1 |
20050107218 | Chuang et al. | May 2005 | A1 |
20050107688 | Strommer | May 2005 | A1 |
20050130802 | Kinnunen et al. | Jun 2005 | A1 |
20050139660 | Maxymych et al. | Jun 2005 | A1 |
20050143173 | Barney et al. | Jun 2005 | A1 |
20050149213 | Guzak et al. | Jul 2005 | A1 |
20050149499 | Franz et al. | Jul 2005 | A1 |
20050154636 | Hildinger et al. | Jul 2005 | A1 |
20050174975 | Mgrdechian et al. | Aug 2005 | A1 |
20050197237 | Chen | Sep 2005 | A1 |
20050210419 | Kela et al. | Sep 2005 | A1 |
20050212749 | Marvit et al. | Sep 2005 | A1 |
20050222981 | Lawrence et al. | Oct 2005 | A1 |
20050222989 | Haveliwala et al. | Oct 2005 | A1 |
20050233859 | Takai et al. | Oct 2005 | A1 |
20050233861 | Hickman et al. | Oct 2005 | A1 |
20050251576 | Weel | Nov 2005 | A1 |
20050266961 | Shum et al. | Dec 2005 | A1 |
20050278317 | Gross et al. | Dec 2005 | A1 |
20050286546 | Basseli et al. | Dec 2005 | A1 |
20060017692 | Wehrenberg et al. | Jan 2006 | A1 |
20060020177 | Seo et al. | Jan 2006 | A1 |
20060022955 | Kennedy | Feb 2006 | A1 |
20060026521 | Hotelling et al. | Feb 2006 | A1 |
20060095412 | Zito et al. | May 2006 | A1 |
20060097991 | Hotelling et al. | May 2006 | A1 |
20060098772 | Reho et al. | May 2006 | A1 |
20060101377 | Toyama et al. | May 2006 | A1 |
20060107822 | Bowen | May 2006 | A1 |
20060111621 | Coppi et al. | May 2006 | A1 |
20060136173 | Case et al. | Jun 2006 | A1 |
20060161621 | Rosenberg | Jul 2006 | A1 |
20060167576 | Rosenberg | Jul 2006 | A1 |
20060167943 | Rosenberg | Jul 2006 | A1 |
20060173828 | Rosenberg | Aug 2006 | A1 |
20060173837 | Berstis et al. | Aug 2006 | A1 |
20060188109 | Makino et al. | Aug 2006 | A1 |
20060189386 | Rosenberg | Aug 2006 | A1 |
20060195361 | Rosenberg | Aug 2006 | A1 |
20060229163 | Waters | Oct 2006 | A1 |
20060253210 | Rosenberg | Nov 2006 | A1 |
20070021269 | Shum | Jan 2007 | A1 |
20070044641 | McKinney et al. | Mar 2007 | A1 |
20070067294 | Ward et al. | Mar 2007 | A1 |
20070125852 | Rosenberg | Jun 2007 | A1 |
20070135264 | Rosenberg | Jun 2007 | A1 |
20070156676 | Rosenberg | Jul 2007 | A1 |
20070156677 | Szabo | Jul 2007 | A1 |
20070173377 | Jamsen et al. | Jul 2007 | A1 |
20070271228 | Querel | Nov 2007 | A1 |
20080005075 | Horvitz et al. | Jan 2008 | A1 |
20080016040 | Jones et al. | Jan 2008 | A1 |
20080016218 | Jones et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
19650900 | Jun 1998 | DE |
WO-02073818 | Sep 2002 | WO |
WO2006086439 | Aug 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20060167576 A1 | Jul 2006 | US |
Number | Date | Country | |
---|---|---|---|
60648197 | Jan 2005 | US | |
60665291 | Mar 2005 | US |