A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
One or more implementations relate generally to object creation, and more particularly to creating objects utilizing a template.
The subject matter discussed in the background section should not be assumed to be prior art merely as a result of its mention in the background section. Similarly, a problem mentioned in the background section or associated with the subject matter of the background section should not be assumed to have been previously recognized in the prior art. The subject matter in the background section merely represents different approaches, which in and of themselves may also be inventions.
Conventional systems (e.g., multi-tenant on-demand database systems, etc.) may utilize one or more objects to facilitate system usage by one or more tenants of the system. For example, the objects may be used to enable report generation within the system, data manipulation within the system, etc. Unfortunately, the creation of these objects has been associated with various limitations.
Just by way of example, systems may utilize a significant amount of resources during the creation of objects within the system. For instance, each object within the system may need to be individually created and have its parameters manually established. Accordingly, it is desirable to optimize the creation of objects within a system.
In accordance with embodiments, there are provided mechanisms and methods for creating an object within a system, utilizing a template. These mechanisms and methods for creating an object within a system, utilizing a template can enable increased efficiency, resource and time savings, more intuitive object creation, etc.
In an embodiment and by way of example, a method for creating an object within a system, utilizing a template is provided. In one embodiment, a request is received to create an object within a system. Additionally, the object is created within the system, utilizing a template. Further, the object is distributed to all tenants of the system.
While one or more implementations and techniques are described with reference to an embodiment in which creating an object within a system, utilizing a template is implemented in a system having an application server providing a front end for an on-demand database system capable of supporting multiple tenants, the one or more implementations and techniques are not limited to multi-tenant databases nor deployment on application servers. Embodiments may be practiced using other database architectures, i.e., ORACLE®, DB2® by IBM and the like without departing from the scope of the embodiments claimed.
Any of the above embodiments may be used alone or together with one another in any combination. The one or more implementations encompassed within this specification may also include embodiments that are only partially mentioned or alluded to or are not mentioned or alluded to at all in this brief summary or in the abstract. Although various embodiments may have been motivated by various deficiencies with the prior art, which may be discussed or alluded to in one or more places in the specification, the embodiments do not necessarily address any of these deficiencies. In other words, different embodiments may address different deficiencies that may be discussed in the specification. Some embodiments may only partially address some deficiencies or just one deficiency that may be discussed in the specification, and some embodiments may not address any of these deficiencies.
In the following drawings like reference numbers are used to refer to like elements. Although the following figures depict various examples, the one or more implementations are not limited to the examples depicted in the figures.
General Overview
Systems and methods are pr vided for creating an object within a system, utilizing a template.
As used herein, the term multi-tenant database system refers to those systems in which various elements of hardware and software of the database system may be shared by one or more customers. For example, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows for a potentially much greater number of customers.
Next, mechanisms and methods for creating an object within a system, utilizing a template will be described with reference to example embodiments.
Additionally, in one embodiment, the object may include any item associated with the data of a system. For example, the object may enable data management within the system, data manipulation within the system, data storage within the system, etc. In another embodiment, the object may include a standard object within the system. For example, the object may include an object accessible by all users (e.g., organizations, etc.) within the system. In another example, the standard object may have one or more standardized system platform behaviors. In yet another embodiment, the object may include an entity, a receipt, a quote, a line item, an address, etc.
Further, it should be noted that, as described above, such multi-tenant on-demand database system may include any service that relies on a database system that is accessible over a network, in which various elements of hardware and software of the database system may be shared by one or more customers (e.g. tenants). For instance, a given application server may simultaneously process requests for a great number of customers, and a given database table may store rows for a potentially much greater number of customers. Various examples of such a multi-tenant on-demand database system will be set forth in the context of different embodiments that will be described during reference to subsequent figures.
Further still, as shown in operation 104, the object is created within the system, utilizing a template. In one embodiment, the template may include a standard template entity. For example, the template may include a standard template object with one or more low-level parameters, standard system fields, etc. In another embodiment, one or more standard system fields of the template may be predefined. In yet another embodiment, one or more platform features of the system may be supported by the template.
Also, in one embodiment, the template may be created by an entity associated with the system. For example, the template may be created by a customer of the system, an administrator of the system, etc. In another embodiment, the template may be created utilizing an interface (e.g., a graphical user interface (GUI), etc.). In yet another embodiment, the object may be associated with a platform of the system. For example, the object may include a platform entity of the system, etc.
In addition, in one embodiment, the template may be used as the basis for the object. In another embodiment, the object may inherit one or more characteristics from the template. For example, the object may inherit one or more of standard fields and standard features from the template. In another embodiment, the object may include an identifier. For example, the object may include a distinct key prefix. In another example, the key prefix may start with a digit. In yet another example, the key prefix may indicate a type of the object.
Further, in one embodiment, the object may be stored in a database of the system once it is created. For example, the object may be stored within a single database table that stores all objects created within the system. In another embodiment, creating the object may include creating a subclass for the object. For example, a concrete subclass may be created for the object that may handle one or more of the loading of the object, the saving of the object, etc. In yet another embodiment, the object may include a plurality of fields. For example, a pool of standard fields may be implemented for the object. In another embodiment, one or more of the plurality of fields may be initialized (e.g., given a value, activated, deactivated, etc.) utilizing metadata.
Further still, as shown in operation 106, the object is distributed to all tenants of the system. In one embodiment, the tenants of the system may include the customers of the system, the clients of the system, the users of the system, etc. In another embodiment, distributing the object to all tenants of the system may include making the object available for use by all tenants of the system. For example, the system may include a multi-tenant on-demand database system, and the object may be made available to all tenants of the multi-tenant on-demand database system. In this way, the creation of the object may be simplified within the system environment. Additionally, the time taken to create objects within the system may be reduced. Further, standard and consistent behavior may be enforced across all objects at a core level of the system.
As shown in operation 202, a standard template entity is added to a system. In one embodiment, the standard template entity (e.g., a standard template object, etc.) may be added to an extensible markup language (XML) file (e.g., udd.xml, etc.) of the system. In another embodiment, one or more low-level system parameters may be specified within the standard template entity. For example, one or more standard fields may be defined for the standard template entity, such as a primary key, a RecordTypeId, a CurrencyIsoCode, audit fields, flex fields, etc.
In yet another embodiment, the standard template entity may support one or more flex fields. For example, the standard template entity may support one or more flex fields of data type TEXT, MULTILINETEXT, STRINGPLUSCLOB, EMAIL, PHONE, FAX, URL, INTEGER, DOUBLE, PERCENT, CURRENCY, DYNAMICENUM, MULTIENUM, DATEONLY, DATETIME, ENTITYID, etc.
Additionally, as shown in operation 204, a plurality of platform entities is dynamically created utilizing the standard template entity. In one embodiment, each of the plurality of platform entities e.g., platform objects, etc.) may automatically inherit one or more of the standard fields defined for the standard template entity. In another embodiment, the plurality of platform entities may be created utilizing abuse platform object (BPO) framework. In yet another embodiment, each platform entity may be defined within an XML filed of the system using one or more new keywords. Table 1 illustrates an exemplary platform entity definition. Of course, it should be noted that the definition shown in Table 1 is net forth for illustrative purposes only, and thus should not be construed as limiting in any manner.
Further, in one embodiment, there may be some overlap with the existing attributes on <entity> and <field>. In this way, the new keywords may simplify parsing, and may also make documentation in udd.xsd easier. In another embodiment, a parser of the XML file may be enhanced to merge the standard template entity with the platform entity definitions to generate Java and plsql code in Entities.java, Bogusfields.java, gKeyPrefixes_h.sql, cUddMetadata.sql, etc., as if they are any other standard entities. This may allow programmatic references to the platform entities and flex fields in generic, generated, or hand-written Java/plsql code. Additionally, the parser of the XML file may be enhanced to generate one or more of EntityCommon and FieldCommon instances at appserver startup time. In other words, they may behave like any other standard entities at the udd level.
Table 2 illustrates one or more possible relationships between the plurality of platform entities and other entities. Of course, it should be noted that the possible relationships shown in Table 2 are set forth for illustrative purposes only, and thus should not be construed as limiting in any manner.
Additionally, in one embodiment, the platform entities may have master-detail relationships involving locking a parent before children when summaries are present, sharing of a child driven by sharing of parent, cascade delete and cascade undelete behaviors. In another embodiment, having a platform entity be a child of opportunity and then have its own custom child entity may indicate a multi-level master-detail chain from account->opportunity->platform->custom, and this is may not be the longest chain possible. In yet another embodiment, platform entities may not have secondary master-detail relationships. In still another embodiment, lookup relationships may involve cascade set-null on deletes, and subsequent restore on undeletes.
Table 3 illustrates a list of exemplary platform features that the platform entities may support. Of course, it should be noted that the exemplary platform features shown in Table 3 are set forth for illustrative purposes only, and thus should not be construed as limiting in any manner.
Table 4 illustrates exemplary available options for the platform entities. Of course, it should be noted that the options shown in Table 4 are set forth for illustrative purposes only, and thus should not be construed as limiting in any manner.
Additionally, in one embodiment, the platform entities may be created utilizing metadata. For example, a developer in the system may create a platform entity my writing one or more lines in an XML file (e.g., udd.xml, etc.) that assign values to one or more fields within the platform entity, denote that one or more features of the platform entity are supported or not supported, etc. In this way, the metadata may define one or more aspects of the platform entity. In another embodiment, features such as search query, reporting, apex triggers, visualforce, etc, may be implemented in the framework of the standard template and may not have to be individually implemented for each of the platform entities.
Further still, as shown in operation 206, the platform entities are stored in a single database table of the system. In one embodiment, the single database table may include a plurality of columns that are allocated for one or more standard fields of the platform entities. In another embodiment, each platform entity may have a unique key prefix that identifies that entity within the database table. In yet another embodiment, metadata drafted by a developer to describe the platform entities may be interpreted at runtime (e.g., by an interpreter, etc.), and may get mapped to one or more portions of the single database table.
In another embodiment, the plurality of platform entities may be created and stored in a manner similar to those of custom entities (e.g., custom objects, etc.). See, for example, U.S. patent application Ser. No. 10/817,161, filed Apr. 2, 2004, which describes exemplary techniques for custom object creation.
Additionally, in one embodiment, a new database table (e.g., core.standard_entity_data, etc.) may be created. In another embodiment, the database table may have an the columns in core.custom_entity_data, plus a predetermined amount of new columns (e.g., fifty columns called std0 through std49 for up to 50 flex fields, minus the columns last_activity and setup_owner, etc.). All platform entities defined using <platformEntity> may be stored in this table, despite having distinct key prefixes. If more flex fields are desired, the table may be redefed to add more. In another embodiment, flex and custom fields may be interleaved in order to maximize the chances that for any platform object, all relevant fields will belong to the first 255 columns in the table. This may minimize oracle row-chaining. In yet another embodiment, data may be stored in this table in a manner similar to custom fields being stored in varchar2(765) fields.
Further, in one embodiment, the name field may be denormalized (e.g., into core.name_denorm and core.search_name_lookup, etc.). In another embodiment, flex foreign key fields may be denormalized into core.custom_foreign_key_value, and negative index_num values may be used to distinguish them from custom fields. In yet another embodiment, 1's complement. slot 0 may be represented by −1, slot 1 by −2, slot 2 by −3, etc. In still another embodiment, the same negative values may be used to identify the flex field in core.delete_event_foreign_key. This may be the same for long text flex fields, where data beyond the 255th character may be stored in a separate table. And this may be the same for custom indexes on flex fields. In another embodiment, all the denormalized tables may be maintained synchronously during each save/delete/undelete operation, etc.
Further still, as shown in operation 208, the plurality of platform entities are made available to a plurality of tenants of the system. For example, all tenants of a multi-tenant on-demand database system may be able to access the plurality of platform entities. In this way, standard object creation may need to be done only once by drafting the standard template entity (e.g., within the BPO infrastructure, etc.), and the creation of each platform entity may only necessitate the use of metadata to detail behavior within the BPO platform, thereby avoiding the need to write code for each platform entity.
Also, in one embodiment, a concrete subclass of EntityObject may be created for platform objects, which may handle the regular loading and saving of all platform objects. It may call into one set of plsql methods to load or save objects, just like custom objects. However, additional feature functionality is desired, concrete subclasses may be created for individual platform objects, and existing java hooks may be overridden. For example, flex fields may be referred to using the generated java UddId constants, and they may be manually updated in java.
In another embodiment, when bulk inserting platform objects, plsql may insert all 50 flex field slots and 501 custom field slots together with all standard fields in one FORALL plsql insert statement. In yet another embodiment, just the standard fields may not be inserted, followed by an update to update the custom fields, to avoid oracle row chaining. And multiple variations of insert statements may be avoided for different number of custom fields. When bulk updating platform objects, the standard fields may be updated in one FORALL plsql update statement, then the custom fields may be updated in another FORALL plsql update statement. There may be a plurality of variations (20, 100, 300, 501) of update statements for different number of custom fields, and there are 2 variations for standard fields (15, 50).
With the addition of platform objects and knowledge article abstract entities (and with the possibility of adding custom fields to the standard table of CampaignMember), multiple combinations may be available for having or not having key_prefix in the table, having or not having a separate custom field table, etc. Additionally, all plsql where we test if a key_prefix is custom may be examined, and may be replaced with cUddMetadata.has_custom_field_table( ) and the new cUddMetadata.is_key_prefix_in_table( ) where appropriate. This may provide for one code path using execute immediate for all tables despite the combinations. For example, see RowLock.sql. Several generic functions may be affected, such as picklist replace, autonumber population, pk-chunking, etc.
In this way, standard objects that support standardized platform behaviors may be created in a simplified way. Developers may not need to write any plsql to achieve basic functionality such as loading into and saving from EntityObjects, having custom fields, standardized sharing checks, etc. Many platform behaviors such as workflow, standard summary fields, apex triggers, API and SOQL exposure, visual force support, etc. may involve also no or very minimum java code.
System Overview
Environment 310 is an environment in which an on-demand database system exists. User system 312 may be any machine or system that is used by a user to access a database user system. For example, any of user systems 312 can be a handheld computing device, a mobile phone, a laptop computer, a work station, and/or a network of computing devices. As illustrated in
An on-demand database system, such as system 316, is a database system that is made available to outside users that do not need to necessarily be concerned with building and/or maintaining the database system, but instead may be available for their use when the users need the database system (e.g., on the demand of the users). Some on-demand database systems may store information from one or more tenants stored into tables of a common database image to form a multi-tenant database system (MTS). Accordingly, “on-demand database system 316” and “system 316” will be used interchangeably herein. A database image may include one or more database objects. A relational database management system (RDMS) or the equivalent may execute storage and retrieval of information against the database object(s). Application platform 318 may be a framework that allows the applications of system 316 to run, such as the hardware and/or software, e.g., the operating system. In an embodiment, on-demand database system 316 may include an application platform 318 that enables creation, managing and executing one or more applications developed by the provider of the on-demand database system, users accessing the on-demand database system via user systems 312, or third party application developers accessing the on-demand database system via user systems 312.
The users of user systems 312 may differ in their respective capacities, and the capacity of a particular user system 312 might be entirely determined by permissions (permission levels) for the current user. For example, where a salesperson is using a particular user system 312 to interact with system 316, that user system has the capacities allotted to that salesperson. However, while an administrator is using that user system to interact with system 316, that user system has the capacities allotted to that administrator. In systems with a hierarchical role model, users at one permission level may have access to applications, data, and database information accessible by a lower permission level user, but may not have access to certain applications, database information, and data accessible by a user at a higher permission level. Thus, different users will have different capabilities with regard to accessing and modifying application and database information, depending on a user's security or permission level.
Network 314 is any network or combination of networks of devices that communicate with one another. For example, network 314 can be any one or any combination of a LAN (local area network), WAN (wide area network), telephone network, wireless network, point-to-point network, star network, token ring network, hub network, or other appropriate configuration. As the most common type of computer network in current use is a TCP/IP (Transfer Control Protocol and Internet Protocol) network, such as the global internetwork of networks often referred to as the “Internet” with a capital “I,” that network will be used in many of the examples herein. However, it should be understood that the networks that the one or more implementations might use are not so limited, although TCP/IP is a frequently implemented protocol.
User systems 312 might communicate with system 316 using TCP/IP and, at a higher network level, use other common Internet protocols to communicate, such as HTTP, FTP, AFS, WAP, etc. In an example where HTTP is used, user system 312 might include an HTTP client commonly referred to as a “browser” for sending and receiving HTTP messages to and from an HTTP server at system 316. Such an HTTP server might be implemented as the sole network interface between system 316 and network 314, but other techniques might be used as well or instead. In some implementations, the interface between system 316 and network 314 includes load sharing functionality, such as round-robin HTTP request distributors to balance loads and distribute incoming HTTP requests evenly over a plurality of servers. At least as for the users that are accessing that server, each of the plurality of servers has access to the MTS' data; however, other alternative configurations may be used instead.
In one embodiment, system 316, shown in
One arrangement for elements of system 316 is shown in
Several elements in the system shown in
According to one embodiment, each user system 312 and all of its components are operator configurable using applications, such as a browser, including computer code run using a central processing unit such as an Intel Pentium® processor or the like. Similarly, system 316 (and additional instances of an MTS, where more than one is present) and all of their components might be operator configurable using application(s) including computer code to run using a central processing unit such as processor system 317, which may include an Intel Pentium® processor or the like, and/or multiple processor units. A computer program product embodiment includes a machine-readable storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the embodiments described herein. Computer code for operating and configuring system 316 to intercommunicate and to process webpages, applications and other data and media content as described herein are preferably downloaded and stored on a hard disk, but the entire program code, or portions thereof, may also be stored in any other volatile or non-volatile memory medium or device as is well known, such as a ROM or RAM, or provided on any media capable of storing program code, such as any type of rotating media including floppy disks, optical discs, digital versatile disk (DVD), compact disk (CD), microdrive, and magneto-optical disks, and magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data. Additionally, the entire program code, or portions thereof, may be transmitted and downloaded from a software source over a transmission medium, e.g., over the Internet, or from another server, as is well known, or transmitted over any other conventional network connection as is well known (e.g., extranet, VPN. LAN, etc.) using any communication medium and protocols (e.g., TCP/IP, HTTP, HTTPS, Ethernet, etc.) as are well known. It will also be appreciated that computer code for implementing embodiments can be implemented in any programming language that can be executed on a client system and/or server or server system such as, for example, C, C++, HTML, any other markup language. Java™, JavaScript, ActiveX, any other scripting language, such as VBScript, and many other programming languages as are well known may be used. (Java™ is a trademark of Sun Microsystems, Inc.).
According to one embodiment, each system 316 is configured to provide webpages, forms, applications, data and media content to user (client) systems 312 to support the access by user systems 312 as tenants of system 316. As such, system 316 provides security mechanisms to keep each tenant's data separate unless the data is shared. If more than one MTS is used, they may be located in close proximity to one another (e.g., in a server farm located in a single building or campus), or they may be distributed at locations remote from one another (e.g., one or more servers located in city A and one or more servers located in city B). As used herein, each MTS could include one or more logically and/or physically connected servers distributed locally or across one or more geographic locations. Additionally, the term “server” is meant to include a computer system, including processing hardware and process space(s), and an associated storage system and database application (e.g., OODBMS or RDBMS) as is well known in the art. It should also be understood that “server system” and “server” are often used interchangeably herein. Similarly, the database object described herein can be implemented as single databases, a distributed database, a collection of distributed databases, a database with redundant online or offline backups or other redundancies, etc., and might include a distributed database or storage network and associated processing intelligence.
User system 312, network 314, system 316, tenant data storage 322, and system data storage 324 were discussed above in
Application platform 318 includes an application setup mechanism 438 that supports application developers' creation and management of applications, which may be saved as metadata into tenant data storage 322 by save routines 436 for execution by subscribers as one or more tenant process spaces 404 managed by tenant management process 410 for example. Invocations to such applications may be coded using PL/SOQL 434 that provides a programming language style interface extension to API 432. A detailed description of some PL/SOQL language embodiments is discussed in commonly owned co-pending U.S. Provisional Patent Application 60/828,192 entitled, PROGRAMMING LANGUAGE METHOD AND SYSTEM FOR EXTENDING APIS TO EXECUTE IN CONJUNCTION WITH DATABASE APIS, by Craig Weissman, filed Oct. 4, 2006, which is incorporated in its entirety herein for all purposes. Invocations to applications may be detected by one or more system processes, which manages retrieving application metadata 416 for the subscriber making the invocation and executing the metadata as an application in a virtual machine.
Each application server 400 may be communicably coupled to database systems, e.g., having access to system data 325 and tenant data 323, via a different network connection. For example, one application server 4001 might be coupled via the network 314 (e.g., the Internet), another application server 400N-1 might be coupled via a direct network link, and another application server 400N might be coupled by yet a different network connection. Transfer Control Protocol and Internet Protocol (TCP/IP) are typical protocols for communicating between application servers 400 and the database system. However, it will be apparent to one skilled in the art that other transport protocols may be used to optimize the system depending on the network interconnect used.
In certain embodiments, each application server 400 is configured to handle requests for any user associated with any organization that is a tenant. Because it is desirable to be able to add and remove application servers from the server pool at any time for any reason, there is preferably no server affinity for a user and/or organization to a specific application server 400. In one embodiment, therefore, an interface system implementing a load balancing function (e.g., an F5 Big-IP load balancer) is communicably coupled between the application servers 400 and the user systems 312 to distribute requests to the application servers 400. In one embodiment, the load balancer uses a least connections algorithm to route user requests to the application servers 400. Other examples of load balancing algorithms, such as round robin and observed response time, also can be used. For example, in certain embodiments, three consecutive requests from the same user could hit three different application servers 400, and three requests from different users could hit the same application server 400. In this manner, system 316 is multi-tenant, wherein system 316 handles storage of, and access to, different objects, data and applications across disparate users and organizations.
As an example of storage, one tenant might be a company that employs a sales force where each salesperson uses system 316 to manage their sales process. Thus, a user might maintain contact data, leads data, customer follow-up data, performance data, goals and progress data, etc., all applicable to that user's personal sales process (e.g., in tenant data storage 322). In an example of a MTS arrangement, since all of the data and the applications to access, view, modify, report, transmit, calculate, etc., can be maintained and accessed by a user system having nothing more than network access, the user can manage his or her sales efforts and cycles from any of many different user systems. For example, if a salesperson is visiting a customer and the customer has Internet access in their lobby, the salesperson can obtain critical updates as to that customer while waiting for the customer to arrive in the lobby.
While each user's data might be separate from other users' data regardless of the employers of each user, some data might be organization-wide data shared or accessible by a plurality of users or all of the users for a given organization that is a tenant. Thus, there might be some data structures managed by system 316 that are allocated at the tenant level while other data structures might be managed at the user level. Because an MTS might support multiple tenants including possible competitors, the MTS should have security protocols that keep data, applications, and application use separate. Also, because many tenants may opt for access to an MTS rather than maintain their own system, redundancy, up-time, and backup are additional functions that may be implemented in the MTS. In addition to user-specific data and tenant specific data, system 316 might also maintain system level data usable by multiple tenants or other data. Such system level data might include industry reports, news, postings, and the like that are sharable among tenants.
In certain embodiments, user systems 312 (which may be client systems) communicate with application servers 400 to request and update system-level and tenant-level data from system 316 that may require sending one or more queries to tenant data storage 322 and/or system data storage 324. System 316 (e.g., an application server 400 in system 316) automatically generates one or more SQL statements (e.g., one or more SQL queries) that are designed to access the desired information, System data storage 324 may generate query plans to access the requested data from the database.
Each database can generally be viewed as a collection of objects, such as a set of logical tables, containing data fitted into predefined categories. A “table” is one representation of a data object, and may be used herein to simplify the conceptual description of objects and custom objects. It should be understood that “table” and “object” may be used interchangeably herein. Each table generally contains one or more data categories logically arranged as columns or fields in a viewable schema. Each row or record of a table contains an instance of data for each category defined by the fields. For example, a CRM database may include a table that describes a customer with fields for basic contact information such as name, address, phone number, fax number, etc. Another table might describe a purchase order, including fields for information such as customer, product, sale price, date, etc. In some multi-tenant database systems, standard entity tables might be provided for use by all tenants. For CRM database applications, such standard entities might include tables for Account, Contact, Lead, and Opportunity data, each containing pre-defined fields. It should be understood that the word “entity” may also be used interchangeably herein with “object” and “table”.
In some multi-tenant database systems, tenants may be allowed to create and store custom objects, or they may be allowed to customize standard entities or objects, for example by creating custom fields for standard objects, including custom index fields. U.S. patent application Ser. No. 10/817,161, filed Apr. 2, 2004, entitled “Custom Entities and Fields in a Multi-Tenant Database System”, and which is hereby incorporated herein by reference, teaches systems and methods for creating custom objects as well as customizing standard objects in a multi-tenant database system. In certain embodiments, for example, all custom entity data rows are stored in a single multi-tenant physical table, which may contain multiple logical tables per organization. It is transparent to customers that their multiple “tables” are in fact stored in one large table or that their data may be stored in the same table as the data of other customers.
While one or more implementations have been described by way of example and in terms of the specific embodiments, it is to be understood that one or more implementations are not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
This application claims the benefit of U.S. Provisional Patent Application 61/317,666, entitled “Base Platform Objects,” by Wong et al., filed Mar. 25, 2010, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
5386557 | Boykin | Jan 1995 | A |
5577188 | Zhu | Nov 1996 | A |
5608872 | Schwartz et al. | Mar 1997 | A |
5630125 | Zellweger | May 1997 | A |
5649104 | Carleton et al. | Jul 1997 | A |
5715450 | Ambrose et al. | Feb 1998 | A |
5761419 | Schwartz et al. | Jun 1998 | A |
5819038 | Carleton et al. | Oct 1998 | A |
5821937 | Tonelli et al. | Oct 1998 | A |
5831610 | Tonelli et al. | Nov 1998 | A |
5873096 | Lim et al. | Feb 1999 | A |
5918159 | Fomukong et al. | Jun 1999 | A |
5963953 | Cram et al. | Oct 1999 | A |
6064968 | Schanz | May 2000 | A |
6092083 | Brodersen et al. | Jul 2000 | A |
6161149 | Achacoso et al. | Dec 2000 | A |
6169534 | Raffel et al. | Jan 2001 | B1 |
6178425 | Brodersen et al. | Jan 2001 | B1 |
6189011 | Lim et al. | Feb 2001 | B1 |
6216135 | Brodersen et al. | Apr 2001 | B1 |
6233583 | Hoth | May 2001 | B1 |
6233617 | Rothwein et al. | May 2001 | B1 |
6266669 | Brodersen et al. | Jul 2001 | B1 |
6295530 | Ritchie et al. | Sep 2001 | B1 |
6324568 | Diec | Nov 2001 | B1 |
6324693 | Brodersen et al. | Nov 2001 | B1 |
6336137 | Lee et al. | Jan 2002 | B1 |
D454139 | Feldcamp | Mar 2002 | S |
6367077 | Brodersen et al. | Apr 2002 | B1 |
6393605 | Loomans | May 2002 | B1 |
6405220 | Brodersen et al. | Jun 2002 | B1 |
6434550 | Warner et al. | Aug 2002 | B1 |
6446089 | Brodersen et al. | Sep 2002 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6549908 | Loomans | Apr 2003 | B1 |
6553563 | Ambrose et al. | Apr 2003 | B2 |
6560461 | Fomukong et al. | May 2003 | B1 |
6574635 | Stauber et al. | Jun 2003 | B2 |
6577726 | Huang et al. | Jun 2003 | B1 |
6601087 | Zhu et al. | Jul 2003 | B1 |
6604117 | Lim et al. | Aug 2003 | B2 |
6604128 | Diec | Aug 2003 | B2 |
6609150 | Lee et al. | Aug 2003 | B2 |
6621834 | Scherpbier et al. | Sep 2003 | B1 |
6654032 | Zhu et al. | Nov 2003 | B1 |
6665648 | Brodersen et al. | Dec 2003 | B2 |
6665655 | Warner et al. | Dec 2003 | B1 |
6684438 | Brodersen et al. | Feb 2004 | B2 |
6711565 | Subramaniam et al. | Mar 2004 | B1 |
6724399 | Katchour et al. | Apr 2004 | B1 |
6728702 | Subramaniam et al. | Apr 2004 | B1 |
6728960 | Loomans | Apr 2004 | B1 |
6732095 | Warshavsky et al. | May 2004 | B1 |
6732100 | Brodersen et al. | May 2004 | B1 |
6732111 | Brodersen et al. | May 2004 | B2 |
6754681 | Brodersen et al. | Jun 2004 | B2 |
6763351 | Subramaniam et al. | Jul 2004 | B1 |
6763501 | Zhu et al. | Jul 2004 | B1 |
6768904 | Kim | Jul 2004 | B2 |
6772229 | Achacoso et al. | Aug 2004 | B1 |
6782383 | Subramaniam et al. | Aug 2004 | B2 |
6804330 | Jones et al. | Oct 2004 | B1 |
6826565 | Ritchie et al. | Nov 2004 | B2 |
6826582 | Chatterjee et al. | Nov 2004 | B1 |
6826745 | Coker et al. | Nov 2004 | B2 |
6829655 | Huang et al. | Dec 2004 | B1 |
6842748 | Warner et al. | Jan 2005 | B1 |
6850895 | Brodersen et al. | Feb 2005 | B2 |
6850949 | Warner et al. | Feb 2005 | B2 |
7062502 | Kesler | Jun 2006 | B1 |
7069231 | Cinarkaya et al. | Jun 2006 | B1 |
7076490 | Park et al. | Jul 2006 | B2 |
7181758 | Chan | Feb 2007 | B1 |
7209929 | Dominguez, Jr. et al. | Apr 2007 | B2 |
7289976 | Kihneman et al. | Oct 2007 | B2 |
7340411 | Cook | Mar 2008 | B2 |
7356482 | Frankland et al. | Apr 2008 | B2 |
7401094 | Kesler | Jul 2008 | B1 |
7412455 | Dillon | Aug 2008 | B2 |
7508789 | Chan | Mar 2009 | B2 |
7529734 | Dirisala | May 2009 | B2 |
7620655 | Larsson et al. | Nov 2009 | B2 |
7698160 | Beaven et al. | Apr 2010 | B2 |
7779039 | Weissman et al. | Aug 2010 | B2 |
8015495 | Achacoso et al. | Sep 2011 | B2 |
8082301 | Ahlgren et al. | Dec 2011 | B2 |
8095413 | Beaven | Jan 2012 | B1 |
8095594 | Beaven et al. | Jan 2012 | B2 |
8275836 | Beaven et al. | Sep 2012 | B2 |
8457545 | Chan | Jun 2013 | B2 |
8484111 | Frankland et al. | Jul 2013 | B2 |
20010044791 | Richter et al. | Nov 2001 | A1 |
20020002614 | Murphy | Jan 2002 | A1 |
20020022986 | Coker et al. | Feb 2002 | A1 |
20020029161 | Brodersen et al. | Mar 2002 | A1 |
20020029376 | Ambrose et al. | Mar 2002 | A1 |
20020035577 | Brodersen et al. | Mar 2002 | A1 |
20020042264 | Kim | Apr 2002 | A1 |
20020042843 | Diec | Apr 2002 | A1 |
20020072951 | Lee et al. | Jun 2002 | A1 |
20020082892 | Raffel et al. | Jun 2002 | A1 |
20020087560 | Bardwell | Jul 2002 | A1 |
20020129017 | Kil | Sep 2002 | A1 |
20020129352 | Brodersen et al. | Sep 2002 | A1 |
20020140731 | Subramaniam et al. | Oct 2002 | A1 |
20020143997 | Huang et al. | Oct 2002 | A1 |
20020162090 | Parnell et al. | Oct 2002 | A1 |
20020165742 | Robins | Nov 2002 | A1 |
20030004971 | Gong et al. | Jan 2003 | A1 |
20030018705 | Chen et al. | Jan 2003 | A1 |
20030018830 | Chen et al. | Jan 2003 | A1 |
20030066031 | Laane | Apr 2003 | A1 |
20030066032 | Ramachandran et al. | Apr 2003 | A1 |
20030069936 | Warner et al. | Apr 2003 | A1 |
20030070000 | Coker et al. | Apr 2003 | A1 |
20030070004 | Mukundan et al. | Apr 2003 | A1 |
20030070005 | Mukundan et al. | Apr 2003 | A1 |
20030074418 | Coker | Apr 2003 | A1 |
20030120675 | Stauber et al. | Jun 2003 | A1 |
20030151633 | George et al. | Aug 2003 | A1 |
20030159136 | Huang et al. | Aug 2003 | A1 |
20030187921 | Diec | Oct 2003 | A1 |
20030189600 | Gune et al. | Oct 2003 | A1 |
20030204427 | Gune et al. | Oct 2003 | A1 |
20030206192 | Chen et al. | Nov 2003 | A1 |
20030225730 | Warner et al. | Dec 2003 | A1 |
20030233404 | Hopkins | Dec 2003 | A1 |
20040001092 | Rothwein et al. | Jan 2004 | A1 |
20040010489 | Rio | Jan 2004 | A1 |
20040015981 | Coker et al. | Jan 2004 | A1 |
20040027388 | Berg et al. | Feb 2004 | A1 |
20040128001 | Levin et al. | Jul 2004 | A1 |
20040186860 | Lee et al. | Sep 2004 | A1 |
20040193510 | Catahan, Jr. et al. | Sep 2004 | A1 |
20040199489 | Barnes-Leon et al. | Oct 2004 | A1 |
20040199536 | Barnes Leon et al. | Oct 2004 | A1 |
20040199543 | Braud et al. | Oct 2004 | A1 |
20040249854 | Barnes-Leon et al. | Dec 2004 | A1 |
20040260534 | Pak et al. | Dec 2004 | A1 |
20040260659 | Chan et al. | Dec 2004 | A1 |
20040268299 | Lei et al. | Dec 2004 | A1 |
20050050555 | Exley et al. | Mar 2005 | A1 |
20050065925 | Weissman et al. | Mar 2005 | A1 |
20050091098 | Brodersen et al. | Apr 2005 | A1 |
20050223022 | Weissman et al. | Oct 2005 | A1 |
20050283478 | Choi et al. | Dec 2005 | A1 |
20060021019 | Hinton et al. | Jan 2006 | A1 |
20060206834 | Fisher et al. | Sep 2006 | A1 |
20070203929 | Bolivar | Aug 2007 | A1 |
20070203935 | de Souza | Aug 2007 | A1 |
20080249972 | Dillon | Oct 2008 | A1 |
20090063415 | Chatfield et al. | Mar 2009 | A1 |
20090100342 | Jakobson | Apr 2009 | A1 |
20090125830 | Marcek et al. | May 2009 | A1 |
20090177744 | Marlow et al. | Jul 2009 | A1 |
20110218958 | Warshavsky et al. | Sep 2011 | A1 |
20110247051 | Bulumulla et al. | Oct 2011 | A1 |
20120042218 | Cinarkaya et al. | Feb 2012 | A1 |
20130218948 | Jakobson | Aug 2013 | A1 |
20130218949 | Jakobson | Aug 2013 | A1 |
20130218966 | Jakobson | Aug 2013 | A1 |
20130247216 | Cinarkaya et al. | Sep 2013 | A1 |
20140359537 | Jackobson et al. | Dec 2014 | A1 |
20150006289 | Jakobson et al. | Jan 2015 | A1 |
20150007050 | Jakobson et al. | Jan 2015 | A1 |
20150095162 | Jakobson et al. | Apr 2015 | A1 |
20150142596 | Jakobson et al. | May 2015 | A1 |
20150172563 | Jakobson et al. | Jun 2015 | A1 |
Entry |
---|
U.S. Appl. No. 60/828,192, filed Oct. 4, 2006. |
Number | Date | Country | |
---|---|---|---|
20110238707 A1 | Sep 2011 | US |
Number | Date | Country | |
---|---|---|---|
61317666 | Mar 2010 | US |