Exemplary embodiments of the present invention relate generally to identifying perforations between units on a unit dose blister card.
In a typical hospital, nursing home, or other similar institution, doctors will visit their patients on a routine basis and prescribe various medications for each patient. In turn, each patient will likely be placed on a certain medication treatment plan that requires that he or she take one or more doses of various medications daily. Some medications may require that they be administered only at certain times of the day (e.g., after meals) and/or at intervals of one or more hours each day. In addition, patients may request certain medications on an elective basis for complaints, such as head or body aches. These requests are typically included with the doctor's medication request or prescription that he or she sends to a pharmacy of the hospital for filling.
Medication requests or prescriptions received by the pharmacy will likely be checked by a registered pharmacist and then entered into the pharmacy information system. These requests reflect not only orders that are added to a particular patient's treatment plan, but also changes in a patient's existing treatment plan. The pharmacy information system combines this information with the patient's existing medication schedule and develops a patient medication profile. Using the patient medication profile, a fill list can be created that lists all medications that must be distributed to all patients for a given time period (e.g., a day).
In some instances, this list is printed and used by a pharmacist or pharmacy technician to hand pick each of the drugs needed for each patient (in the form of unit doses) and place those drugs in corresponding patient-specific medication containers (e.g., boxes, bins or bags). A registered pharmacist then checks the accuracy of the patient order, and, assuming the order was accurate, the individual patient boxes are loaded into a large transport cart and delivered to a nursing unit.
Several drawbacks exist, however, to this method of medication retrieval and distribution. In particular, it is very time consuming and manpower intensive. As a result, systems were created for automating the process of retrieving unit dose medications and distributing them to patients according to their respective medication profiles. One example of such a system is the ROBOT-Rx® system, offered by McKesson Automation Inc. and described in U.S. Pat. Nos. 5,468,110, 5,593,267 and 5,880,443, and other examples are described in U.S. patent application Ser. Nos. 11/382,605, filed May 10, 2006, 11/611,956, filed Dec. 18, 2006 and 11/755,207, filed May 30, 2007, the contents of which are hereby incorporated herein by reference.
The ROBOT-Rx® system, like other similar systems, is a stationary robotic system that automates the drug storing, dispensing, returning, restocking and crediting process by using barcode technology. In particular, single doses of medications are re-packaged, for example in a clear plastic bag, so that each package contains a barcode corresponding to the package contents. The barcode may include the name of the medication, quantity, weight, instructions for use and/or expiration date.
The packaged medications are then stored in a storage area, such as a storage rack having a frame and a plurality of rod supports on which each package can be hung in a manner that provides each with an X, Y coordinate. Using the X, Y coordinates, packages can then be selected by an automated picking means (e.g., a robotic arm capable of moving at least in three, mutually orthogonal directions designated X, Y and Z), for distribution to individual patients.
More specifically, in one instance, a pharmacist or technician may manually enter the identification of a specific medication he or she would like the automated system to retrieve, for example, as a patient's first dose, in an emergency situation. The automated system, and, in particular, a computer associated with the automated system, would then locate the desired medication (i.e., the X, Y and Z coordinates of the medication) and instruct the picking means to retrieve the medication at that location. In another instance, the fill list created based on each patient's medication profile may be communicated to the computer associated with the automated system, providing the automated system with a current list of all patients and their individual medication needs. The computer also maintains a database of all medications stored in the storage area along with their corresponding X, Y and Z coordinates.
Patient-specific containers (e.g., drawers or bins) displaying barcodes that include the corresponding patient's unique identification code are placed on a conveyer belt associated with the automated system. At one point on the belt, a barcode reader reads the barcode displayed on the box and communicates the patient's identification to the computer. The computer will then retrieve the patient's medication needs from the fill list, and determine the corresponding coordinates for each medication by accessing the database.
The computer can then guide the picking means to select the desired unit dose medications and deposit them in the patient-specific boxes or containers. In particular, the picking means, which also includes a barcode reader, moves to the designated location of a particular medication, as instructed by the computer, scans the barcode displayed on the package containing the medication to determine the identification of the medication contained in the package, and provides the identity to the computer.
After the computer confirms that the correct unit dose medication is contained in the package, the picking means will remove the package from the storage area (e.g., using a vacuum generator to produce suction to pull the package off the rod, or other holding means, and hold the package until it can be deposited) and drop it into the patient-specific container.
The process is repeated until the patient's prescription has been filled (i.e., until the patient-specific medication container contains each dose of medication to be taken by the patient in the given time period or, in the instance where the unit dose retrieved the first dose for a new patient, until that first dose has been retrieved). The conveyor belt then moves the patient-specific container to a check station where an operator can use yet another barcode reader to scan the barcode label on the patient-specific container to retrieve and display the patient's prescription, as well as to scan the barcodes on each package in the container to verify that the medications are correct.
As described above, unit dose medications dispensed robotically may be packaged into bags, boxes or a variety of other over-wraps prior to being stored in the storage area. This repackaging effort is performed for several reasons. First, the size and shape of the raw packages vary greatly; therefore, without some commonality in product shape, robotic handling becomes extremely difficult. Second, while robotic systems typically rely on barcodes to identify the products throughout the process, the majority of products originating from various manufacturers do not contain barcodes of any kind or are inconsistent with respect to the information they provide. Accordingly, in these instances, over-wrapping the unit dose with a package containing a barcode may be accomplished for identification purposes.
More recently, efforts have been made to reduce any need for repackaging since, for example, repackaging adds material costs to the final product and requires both additional technician time to perform the packaging as well as additional pharmacist time to validate the content of the package against the description on the label. In addition, repacking by a hospital, or similar institution, shortens the expiration date of the repackaged item based on United States Pharmacopeia/National Formulary (USP/NF) repackaging standards. Moreover, since efforts are being made to ensure that all human drug products have a barcode on the smallest container or package distributed which, in many instances, is the unit dose medication, each unit dose on a unit dose blister card will have a barcode thereon. This includes all human prescription drug products and over-the-counter drugs that are dispensed pursuant to an order in the hospital. The barcode must contain, at a minimum, a National Drug Code (NDC) in a linear barcode, in the Uniform Code Council (UCC) or Health Industry Business Communications Council (HIBCC) format. Following the effective date of this mandate, assuming that the unit dose medications are the smallest container or package used, therefore, all unit dose medications will contain barcodes that can be used by robotic dispensing systems, thus eliminating the need to overwrap or repackage merely for identification purposes.
However, even though improvements may be achieved by enhancing the utility of an automated dispensing system in relation to eliminating repackaging or over-wrapping operations, such systems still require a fair amount of manual intervention to prepare the medications for automated dispensing. Additionally, there is no standard shape or configuration for unit dose blister cards, so automatic dispensing of unit doses was a challenge. This challenge was initially met by U.S. patent application Ser. Nos. 11/382,605, filed May 10, 2006, which provided a robotic device capable of dispensing unit dose blisters automatically. However, a requirement still remained for each of the unit dose blisters to be singulated manually. For example, a technician must typically undertake the tedious task of manual separation of each single unit dose blister for singulation and placement of such unit dose blisters, oriented bar code up, into a dedicated tray cavity. In some cases, technicians may be required to singulate up to three to four thousand doses per day (or more). Accordingly, it may be desirable to provide a mechanism by which to automatically singulate unit doses on a blister card.
In general, exemplary embodiments of the present invention provide an improvement over the known prior art by, among other things, providing a means for handling unit dose blisters in a manner that permits identification of the location of perforations between unit dose blisters on a blister card. The blister card may then be reliably and automatically cut so that each unit dose blister is singulated without increasing the risk of penetrating the seal on any of the unit dose blisters.
In particular, according to one aspect of the present invention, a storage apparatus is provided that is configured to accept a plurality of different types of unit dose packages. The storage apparatus of this aspect of the present invention may comprise a carrier configured to hold a plurality of different types of unit dose packages of different shapes and sizes, such that when held, respective unit dose packages lie and are maintained in a predetermined plane relative to the carrier.
In one exemplary embodiment, a method of determining a perforation location on a blister card comprising at least one unit dose blister of medication is provided. The method may include performing a data extraction operation with respect to a surface of the blister card and determining perforation location information defining a location of at least one perforation adjoining two unit dose blisters on the blister card based on the data extracted.
In another exemplary embodiment, an apparatus for determining a perforation location on a blister card comprising at least one unit dose blister of medication is provided. The apparatus may include a perforation detector configured to perform a data extraction operation with respect to a surface of the blister card and determine perforation location information defining a location of at least one perforation adjoining two unit dose blisters on the blister card based on the data extracted.
In another exemplary embodiment, a system for determining a perforation location on a blister card comprising at least one unit dose blister of medication is provided. The system may include a perforation detector and a cutter. The perforation detector may be configured to perform a data extraction operation with respect to a surface of the blister card and determine perforation location information defining a location of at least one perforation adjoining two unit dose blisters on the blister card based on the data extracted. The cutter may be configured to utilize the perforation location information to singulate two unit dose blisters by cutting the blister card substantially along the perforation.
Having thus described the invention in general terms, reference will now be made to the accompanying drawings, which are not necessarily drawn to scale, and wherein:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the inventions are shown. Indeed, these inventions may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Like numbers refer to like elements throughout.
In general, exemplary embodiments of the present invention provide a mechanism by which unit dose blisters may be separated either automatically or with minimal manual assistance. In this regard, embodiments of the present invention may further provide a mechanism by which perforations that separate each unit dose blister may be detected on a blister card. Thereafter, a cutting device may be employed to cut along the detected perforations in order to cingulate the unit dose blisters. In some cases, by detecting and thereafter cutting based on the detected perforations, singulation may be accomplished with respect to unit dose blisters on blister cards having various different shapes and/or orientations in a manner that reduces the likelihood of cutting into the seal around each unit dose blister or the barcode or human readable text that identifies the medication in the unit dose blister. For example, the blister card itself may experience alignment irregularities that place the perforations (and therefore also the sealed portions of each unit dose blister on the blister card) in positions that are not consistent relative to the edges of the blister cards when compared to other blister cards among a plurality of blister cards for different or even in some cases the same type of product. Thus, embodiments of the present invention may provide a mechanism for singulating and thereafter handling unit dose packages in their natural, raw state in a repeatable fashion so that they can be selectively retrieved and delivered, for example by one of the automatic retrieval systems discussed above (e.g., the ROBOT-Rx® system or a robot system able to handle blister dispensing such as that described in U.S. patent application Ser. Nos. 11/382,605, filed May 10, 2006).
The term “unit dose blister” refers to a unit dose medication, or one or more oral solids of the same or different strength, form or type, that has been sealed in a package, such as a vinyl and foil package in which the vinyl conforms to the shape of the medication. The vinyl is typically sealed to a foil that offers a flat surface with medication information printed on the opposite side from the vinyl cavity.
When unit dose medications are packaged into a blister, they are typically packaged with several medications per blister card. Thus, there are a corresponding number of equally-spaced vinyl foamed cavities per blister card. These cavities are typically separated by a perforation. During formation of a blister card, several manufacturing stations are encountered, but there is no correlation between the handling techniques employed at each station. Accordingly, a blister card that passes through a station for forming a cavity, labeling of the blister, punching of the blister receptacle, punching out of the card, etc., may not be handled in the same manner at each station as the previous or subsequent blister card. Accordingly, inconsistencies may be created between different blister cards. A singulated blister is one that has been separated from a blister card typically along its perforation.
In an exemplary embodiment, it may be expected that a distance between perforations 70 is relatively constant along a given direction. However, a distance between a perforation and an edge of the blister card 50 may not be the same as the distance between perforations. Thus, for example, as shown in
As one of ordinary skill in the art will recognize, while reference is made throughout to unit dose blisters of the form described above, these unit dose blisters provide just one form in which unit dose medications may be packaged. Use of unit dose blisters in the description of exemplary embodiments included herein should not, therefore, be taken as limiting the scope of the present invention to use with such unit dose packages. In contrast, other unit dose packages may similarly be used in connection with exemplary embodiments without departing from the spirit and scope of the present invention. Furthermore, it should be noted that although the blister card 50 of
Reference is now made to
The system 100 of exemplary embodiments may include a means for storing a plurality of unit dose blisters of various shapes and sizes, referred to herein as a “storage system” 102. As shown, the storage system 102 of one exemplary embodiment, which is also illustrated in
In this regard, the blister mount receptacles 150 of one embodiment shown in
In an exemplary embodiment, the system of
As shown in
In an exemplary embodiment, at least one blister card 50 (e.g., from a strip 1×5 to 10×10) may be passed proximate to the perforation detector 170 along a media path (a portion of which is shown by the platform forming media path 190 on which the blister card 50 rests in
In an exemplary embodiment, one or both of the perforation detector 170 and the blister card cutter 180 may include or otherwise operate under the control of processing circuitry, an example of which is shown in
An exemplary embodiment will now be described referring to
The processor 200 may be embodied as various processing means such as a processing element, a coprocessor, a controller or various other processing devices including integrated circuits such as, for example, an ASIC (application specific integrated circuit), an FPGA (field programmable gate array), a hardware accelerator, or the like. The processor 200 may be configured (e.g., via hardcoded instructions or via execution of software instructions) to perform or control the various functions of the processing circuitry. The memory 210 may include volatile and/or non-volatile memory, and typically stores content, data or the like. For example, the memory 210 may store content transmitted from, and/or received by, the processing circuitry. Also for example, the memory 210 may store software applications, instructions or the like for the processor 200 to perform steps associated with operation of the processing circuitry in accordance with embodiments of the present invention.
In one exemplary embodiment, the memory 210 stores instructions for directing the processor 200 to control the perforation detector 170 in relation to detecting perforation location information for the blister card 50. Once perforation location information has been determined for the blister card 50, the memory 210 may further store (e.g., temporarily) the perforation location information for use by the processor 200 in directing the blister card cutter 180 in cutting the blister card 50 according to the perforation location information to separate unit dose blisters of the blister card 50 along the perforations. As such, in addition to the instructions for directing the perforation detector 170 and the blister card cutter 180 to perform their respective operations, in one exemplary embodiment, the memory 210 further stores coordinate information such as distance information defining a distance from an edge of the blister card (e.g., a reference edge) to a first perforation and thereafter a distance between each subsequent perforation line. The process of perforation location information determination may be repeated (or simultaneously accomplished) in horizontal and vertical directions under the control of the processor 200. However, in an exemplary embodiment, rather than a single processor controlling both the perforation detector 170 and the blister card cutter 180, each of the perforation detector 170 and the blister card cutter 180 may include their own respective instances of the processor 200 and the memory 210.
Thus, according to one example, the memory 210 may temporarily store the distances X, X′ and X″ along with distances Y, Y′ and Y″ for use by the blister card cutter 180 in cutting the blister card 50. In an exemplary embodiment, the media path 190 may be characterized by having a “fence” 192 against which a reference edge of the blister card 50 may be mated in order to provide a reference from which distances from the edge of the blister card 50 may be measured with respect to each perforation line detected. In some cases, a fence may be provided in each of the horizontal and vertical directions in order to provide a reference edge from which to measure distances X, X′ and X″ along with distances Y, Y′ and Y″. Thus, a distance to a first perforation may be measured from the reference edge and each distance to a subsequent perforation may be measured from the prior perforation. However, distances could alternatively all be measured from the reference edge and not from adjacent perforations. In some cases, only a position of the first distance (e.g., X or Y) from the reference edge may need to be determined as the distances between perforations may be consistent and/or known based on the type of blister card.
In an exemplary embodiment, the blister card cutter 180 may include one or more adjustable cutting instrument (e.g., one or more cutting blades) that may be aligned relative to the reference edge. Although the adjustable cutting instrument may be manually adjustable, in some embodiments, the adjustable cutting instrument may be programmable and/or automatically adjustable. In cases where the blister card cutter 180 includes a single blade, the blade may be configured to ride a track or carriage assembly that extends in a direction substantially parallel to the reference edge at an adjustable distance from the reference edge. Thus, for example in reference to
In one exemplary embodiment in which multiple blades are employed, a plurality of blades may be positioned to make respective cuts at a distance X′ or X″ (or Y′ or Y″) from an edge of the blister card 50 and at distance X (or Y) from perforation lines measured from another perforation line rather than from an edge of the blister card 50. In some cases, the blades may be adjusted to make first cuts along one direction (e.g., the horizontal direction) and then the blades may be adjusted to make second cuts along another direction substantially perpendicular to the direction of the first cuts (e.g., the vertical direction). However, in some cases, the adjustable cutting blades may be adjusted between cuts, but maintained in a constant orientation and an orientation of the blister card 50 may be adjusted. In yet another alternative embodiment, two sets of adjustable blades may be employed in which each of the two sets has an orientation that corresponds to the orientations of the perforations 70 (e.g., a vertically oriented blade set and a horizontally oriented blade set). In any case, either the blades may be moved relative to the blister card 50 or the blister card 50 may be moved relative to the blades (or both may move) in order to perform the cutting.
The perforation detector 170 may be configured to provide the perforation location information to the blister card cutter 180 in any one of numerous alternative ways. Generally speaking, the perforation detector 170 may determine perforation location information based on data gathered from a sensor 172 that may form a portion of or otherwise be in communication with the perforation detector 170. The sensor 172 may be configured to perform an information extraction operation with respect to a surface of a blister card proximate to the sensor 172 to extract data for facilitating determination of perforation location information and the perforation detector 170 may communicate the extracted data to the perforation detector 170. The perforation detector 170 may be configured to determine perforation location information based on and in response to extraction of the extracted data. The sensor 172 may be embodied in different ways depending upon the perforation detection method employed by the perforation detector 170.
In this regard, in an exemplary embodiment as shown in the example of
In an alternative embodiment such as that shown in the example of
The indicia reader 174 may be embodied as, for example, a barcode or RFID tag reader, or a camera configured to capture an image of a portion of the blister card (e.g., having the indicia 175) and then analyze the image in order to extract the desired information. Reference to scanning the portion of the blister card may, therefore, include scanning one or more optical signals across the portion of the blister card or, alternatively, where an image of the portion of the blister card has been captured using a camera, decoding or interrogating the pixels of that image.
In another alternative embodiment such as that shown in the example of
In yet another alternative embodiment such as that shown in the example of
In still another alternative embodiment such as that shown in the example of
In an exemplary embodiment, the system 100 may further include a means for selectively retrieving a unit dose blister (or similar unit dose package) from the storage system and delivering the unit dose blister to a specified location, referred to herein as a “picking system”, which may generally be disposed proximate to the storage system 102 in order to enable the picking system to select a blister card from corresponding package mount receptacles 150. A front panel 202, behind which the picking system of one exemplary embodiment may be located, is illustrated in
As also shown in
In one exemplary embodiment, blisters that have been singulated (i.e., separated into unit doses) by the perforation detector 170 and the blister card cutter 180 of an exemplary embodiment of the present invention may be loaded into the restock trays 229. In some cases, the restock trays 229 may be loaded with singulated unit dose blisters by a pharmacy technician after singulation by the perforation detector 170 and the blister card cutter 180. However, in at least one exemplary embodiment, the perforation detector 170 and the blister card cutter 180 may be included as a portion of the system 100 and singulated unit dose blisters may be automatically transferred into the restock trays 229 after passing along the media path 190 and having singulation operations conducted thereon. In addition, already singulated unit dose blisters that have been returned, for whatever reason, from a patient (or cabinet) may also be loaded into the restock trays 229. In embodiments where the restock trays are manually loaded, a pharmacy technician may then open the drawer 222, load the tray 229 (or stack of trays) into the first section 222F of the drawer 222, and then close the drawer 222 to enable the restocking process to begin. Once the first section 222F of the drawer 222 has been filled with restock trays 229 carrying unit dose blisters (or at any point when it is desired to restock the storage, retrieval and dispensing system 100), a tray removal system 227, essentially comprising a lifting mechanism 227a, a reversing conveyor 227b, a plurality of tray holding latches 227c and a corresponding plurality of tray holding latch actuators 227d will singulate the bottom tray 229 in the stack of trays in the full section 222F of the drawer 222, and transfer the singulated tray 229 to the picking system. In particular, in one exemplary embodiment, the lifting mechanism 227a will extend upward lifting the stack of trays 229 in the full section 222F of the drawer 222 off of the tray holding latches 227c, which are configured to hold the stack of trays 229. The tray holding latch actuators 227d can then be extended outward in order to retract the tray holding latches 227c, in other words, to remove the tray holding latches 227c from the bottom of the stack of trays 229. The lifting mechanism 227a can then retract or drop the height of one tray 229, and the tray holding latch actuators 227d can then be extended back inward in order to allow the tray holding latches 227c to extend under the stack of trays one tray 229 up from the bottom tray 229. Finally, the lifting mechanism 227a can lower the rest of the way, such that the tray holding latches 227c now support the remaining trays (i.e., the original stack of trays minus the bottom tray), and the singulated bottom tray now rests on the reversing conveyer 227b.
Once the singulated tray has been transferred to the picking system via the reversing conveyer 227b, the picking system can then deposit each unit dose blister into a unit dose blister mount at a specified location within the storage system 102. Once all of the unit dose blisters have been removed from the restock tray 229 the tray removal system 227 will transfer the empty tray 229 to the second section 222E of the drawer 222 (in a manner substantially opposite that discussed above with respect to singulation of the bottom full tray), from which it can be removed by a technician upon opening the drawer 222.
In this regard, a method according to one embodiment of the invention, as shown in
In some embodiments, certain ones of the operations above may be modified or further amplified as described below. It should be appreciated that each of the modifications or amplifications below may be included with the operations above either alone or in combination with any others among the features described herein. In this regard, for example, utilizing the perforation location information to singulate the two unit dose blisters may include setting a blade position of at least one adjustable blade based on the perforation location information and cutting along the perforation using at least one adjustable blade. In an exemplary embodiment, performing the data extraction operation with respect to the surface of the blister card may include bending the blister card, and determining perforation location information may include determining a position of the blister card at which the blister card is bent. Alternatively, performing the data extraction operation with respect to the surface of the blister card may include scanning a surface of the blister card with a reader to extract indicia of the blister card, and determining perforation location information may include referencing a database to determine the perforation location information based on a mapping of different indicia to respective perforation location data. In another alternative, performing the data extraction operation with respect to the surface of the blister card may include detecting an amount of light passing through the blister card, and determining perforation location information may include determining a position of a perforation line based on the amount of light passing through a respective portion of the blister card. In yet another alternative, performing the data extraction operation with respect to the surface of the blister card may include scanning the surface with a laser sensor, and determining perforation location information may include determining a position of a perforation line based on discontinuities detected by the laser sensor on the surface of the blister card. In yet another alternative, performing the data extraction operation with respect to the surface of the blister card may include detecting an amount of electrical charge passing through the blister card, and determining perforation location information may include determining a position of a perforation line based on the amount of electrical charge detected at a respective portion of the blister card.
Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. Moreover, although the foregoing descriptions and the associated drawings describe exemplary embodiments in the context of certain exemplary combinations of elements and/or functions, it should be appreciated that different combinations of elements and/or functions may be provided by alternative embodiments without departing from the scope of the appended claims. In this regard, for example, different combinations of elements and/or functions than those explicitly described above are also contemplated as may be set forth in some of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
This application is a continuation of and claims priority to U.S. application Ser. No. 12/411,022, filed Mar. 25, 2009, the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
635457 | Yandall | Oct 1899 | A |
678441 | Stevens | Jul 1901 | A |
1564794 | Humphreys | Dec 1925 | A |
2270473 | Porcelli | Jan 1942 | A |
2758710 | Egmont | Aug 1956 | A |
2782989 | Knox | Feb 1957 | A |
3160048 | Barley | Dec 1964 | A |
3182542 | Cochran | May 1965 | A |
3329181 | Buss et al. | Jul 1967 | A |
3340384 | Rosen et al. | Sep 1967 | A |
3656391 | Von Arx | Apr 1972 | A |
4253364 | Kiefer et al. | Mar 1981 | A |
4337679 | Krylov et al. | Jul 1982 | A |
4679473 | Hirata et al. | Jul 1987 | A |
4716799 | Hartmann | Jan 1988 | A |
4717042 | McLaughlin | Jan 1988 | A |
4785969 | McLaughlin | Nov 1988 | A |
4847764 | Halvorson | Jul 1989 | A |
4932301 | Buck | Jun 1990 | A |
5014875 | McLaughlin et al. | May 1991 | A |
5048816 | Chun et al. | Sep 1991 | A |
5131301 | Gergek | Jul 1992 | A |
5190185 | Blechl | Mar 1993 | A |
5314243 | McDonald et al. | May 1994 | A |
5346297 | Colson, Jr. et al. | Sep 1994 | A |
5346456 | Rutledge et al. | Sep 1994 | A |
5377572 | Sonobe et al. | Jan 1995 | A |
5377864 | Blechl et al. | Jan 1995 | A |
5405048 | Rogers et al. | Apr 1995 | A |
5431299 | Brewer et al. | Jul 1995 | A |
5460294 | Williams | Oct 1995 | A |
5468110 | McDonald et al. | Nov 1995 | A |
5480062 | Rogers et al. | Jan 1996 | A |
5520450 | Colson, Jr. et al. | May 1996 | A |
5564803 | McDonald et al. | Oct 1996 | A |
5593267 | McDonald et al. | Jan 1997 | A |
5630347 | Elvio | May 1997 | A |
5661978 | Holmes et al. | Sep 1997 | A |
D384578 | Wangu et al. | Oct 1997 | S |
5713485 | Liff et al. | Feb 1998 | A |
5716114 | Holmes et al. | Feb 1998 | A |
5745366 | Higham et al. | Apr 1998 | A |
5761877 | Quandt | Jun 1998 | A |
5797515 | Liff et al. | Aug 1998 | A |
5805456 | Higham et al. | Sep 1998 | A |
5807222 | Totani | Sep 1998 | A |
5842976 | Williamson | Dec 1998 | A |
5878885 | Wangu et al. | Mar 1999 | A |
5880443 | McDonald et al. | Mar 1999 | A |
5883806 | Meador et al. | Mar 1999 | A |
5893697 | Zini et al. | Apr 1999 | A |
5905653 | Higham et al. | May 1999 | A |
5912818 | McGrady et al. | Jun 1999 | A |
5927540 | Godlewski | Jul 1999 | A |
5940306 | Gardner et al. | Aug 1999 | A |
5971593 | McGrady | Oct 1999 | A |
6003006 | Colella et al. | Dec 1999 | A |
6011999 | Holmes | Jan 2000 | A |
6021392 | Lester et al. | Feb 2000 | A |
6035610 | Vonderhorst et al. | Mar 2000 | A |
6039467 | Holmes | Mar 2000 | A |
6065819 | Holmes et al. | May 2000 | A |
6068156 | Liff et al. | May 2000 | A |
6109774 | Holmes et al. | Aug 2000 | A |
6112502 | Frederick et al. | Sep 2000 | A |
6116461 | Broadfield et al. | Sep 2000 | A |
6151536 | Arnold et al. | Nov 2000 | A |
6170230 | Chudy et al. | Jan 2001 | B1 |
6176392 | William et al. | Jan 2001 | B1 |
6189727 | Shoenfeld | Feb 2001 | B1 |
6223934 | Shoenfeld | May 2001 | B1 |
6256967 | Hebron et al. | Jul 2001 | B1 |
6283322 | Liff et al. | Sep 2001 | B1 |
6289656 | Wangu et al. | Sep 2001 | B1 |
6338007 | Broadfield et al. | Jan 2002 | B1 |
6339732 | Phoon et al. | Jan 2002 | B1 |
6361263 | Dewey et al. | Mar 2002 | B1 |
6370841 | Chudy et al. | Apr 2002 | B1 |
6449927 | Hebron et al. | Sep 2002 | B2 |
6471089 | Liff et al. | Oct 2002 | B2 |
6497342 | Zhang et al. | Dec 2002 | B2 |
6499270 | Peroni et al. | Dec 2002 | B2 |
6532399 | Mase | Mar 2003 | B2 |
6564121 | Wallace et al. | May 2003 | B1 |
6581798 | Liff et al. | Jun 2003 | B2 |
6609047 | Lipps | Aug 2003 | B1 |
6611733 | De La Huerga | Aug 2003 | B1 |
6625952 | Chudy et al. | Sep 2003 | B1 |
6640159 | Holmes et al. | Oct 2003 | B2 |
6650964 | Spano, Jr. et al. | Nov 2003 | B2 |
6671579 | Spano, Jr. et al. | Dec 2003 | B2 |
6681149 | William et al. | Jan 2004 | B2 |
6742671 | Hebron et al. | Jun 2004 | B2 |
6755931 | Vollm et al. | Jun 2004 | B2 |
6760643 | Lipps | Jul 2004 | B2 |
6776304 | Liff et al. | Aug 2004 | B2 |
6785589 | Eggenberger et al. | Aug 2004 | B2 |
6790198 | White et al. | Sep 2004 | B1 |
6793424 | Yamada et al. | Sep 2004 | B2 |
6814254 | Liff et al. | Nov 2004 | B2 |
6814255 | Liff et al. | Nov 2004 | B2 |
6847861 | Lunak et al. | Jan 2005 | B2 |
6874684 | Denenberg et al. | Apr 2005 | B1 |
6892780 | Vollm et al. | May 2005 | B2 |
6895304 | Spano, Jr. et al. | May 2005 | B2 |
6975922 | Duncan et al. | Dec 2005 | B2 |
6985797 | Spano, Jr. et al. | Jan 2006 | B2 |
6996455 | Eggenberger et al. | Feb 2006 | B2 |
7010389 | Lunak et al. | Mar 2006 | B2 |
7014063 | Shows et al. | Mar 2006 | B2 |
7016766 | William et al. | Mar 2006 | B2 |
7040504 | Broadfield et al. | May 2006 | B2 |
7052097 | Meek, Jr. et al. | May 2006 | B2 |
7072737 | Lunak et al. | Jul 2006 | B2 |
7072855 | Godlewski et al. | Jul 2006 | B1 |
7077286 | Shows et al. | Jul 2006 | B2 |
7085621 | Spano, Jr. et al. | Aug 2006 | B2 |
7092796 | Vanderveen | Aug 2006 | B2 |
7093755 | Jordan et al. | Aug 2006 | B2 |
7100792 | Hunter et al. | Sep 2006 | B2 |
7103419 | Engleson et al. | Sep 2006 | B2 |
7111780 | Broussard et al. | Sep 2006 | B2 |
7139639 | Broussard et al. | Nov 2006 | B2 |
7150724 | Morris et al. | Dec 2006 | B2 |
7171277 | Engleson et al. | Jan 2007 | B2 |
7182007 | Berge et al. | Feb 2007 | B2 |
7218231 | Higham | May 2007 | B2 |
7228198 | Vollm et al. | Jun 2007 | B2 |
7249688 | Hunter et al. | Jul 2007 | B2 |
7348884 | Higham | Mar 2008 | B2 |
7417729 | Greenwald | Aug 2008 | B2 |
7419133 | Clarke et al. | Sep 2008 | B2 |
7426425 | Meek, Jr. et al. | Sep 2008 | B2 |
7428859 | Fujita et al. | Sep 2008 | B2 |
7540222 | Kim | Jun 2009 | B2 |
7554449 | Higham | Jun 2009 | B2 |
7571024 | Duncan et al. | Aug 2009 | B2 |
7588167 | Hunter et al. | Sep 2009 | B2 |
7748628 | Greyshock | Jul 2010 | B2 |
7971327 | Deringor et al. | Jul 2011 | B2 |
8036773 | Braun et al. | Oct 2011 | B2 |
20010049986 | Roberts et al. | Dec 2001 | A1 |
20060123969 | Fujita et al. | Jun 2006 | A1 |
20070261525 | Yamaguchi et al. | Nov 2007 | A1 |
20070265730 | Greyshock | Nov 2007 | A1 |
Number | Date | Country | |
---|---|---|---|
20130139662 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12411022 | Mar 2009 | US |
Child | 13680774 | US |