The present disclosure relates generally to mobile communication systems.
Access to basic telephony service is particularly important for rural and isolated communities. Telephony access allows small-scale enterprises, cooperatives, and farmers to obtain accurate information on fair prices for their products and to access regional and national markets. Access also reduces the cost of transportation and supports the local tourist industry. By bringing markets to people via telecommunications, rather than forcing people to leave in search of markets, urban migration is reduced and greater income and employment potential are generated in rural areas.
Unfortunately, the last decade of the telecommunications boom has not alleviated the disparities between urban and rural communities. The average imbalance, in terms of telephone penetration, in Asia, for example, is over ten to one and is often as high as twenty to one. This means that a country whose urban markets have a penetration of four (4) telephone lines per one-hundred (100) inhabitants, e.g., India and Pakistan, has a rural penetration of less than 0.2 per one-hundred (100). The situation is more acute in most African countries and in some parts of Latin America. By comparison, the disparity in average income level between urban and rural residents in the developing world is usually less than four to one.
Current telephone systems are expensive to deploy. For example, a typical cellular system that includes a mobile switching center (MSC), a base station controller (BSC), and a home location register/visitor location register (HLR/VLR) can cost over $2.0 million. Moreover, such a system may require a minimum of ten thousand users in order to be economically viable. In many rural areas, the population is not large enough to support the installation of such a system. Further, in many cases, the conditions in which the equipment, e.g., the MSC, BSC, and HLR/VLR, are to be operated are extremely harsh and environmentally prohibitive. An alternative to such a cellular system can include a wired system, but the costs associated with deploying and maintaining land lines are too high for certain rural areas.
Accordingly, there exists a need for an improved communications system that is relatively inexpensive to deploy and relatively inexpensive to operate.
The present invention is pointed out with particularity in the appended claims. However, other features are described in the following detailed description in conjunction with the accompanying drawings in which:
In a particular embodiment, a non-transitory computer readable storage medium of a first distributed management architecture (DMA) system includes a first home location register (HLR) that stores information associated with one or more mobile subscribers that are registered with the first DMA system. The non-transitory computer readable storage medium includes a community location register (CLR) associated with a second DMA system. The CLR stores information associated with a second HLR of the second DMA system, and the second HLR stores information associated with one or more mobile subscribers that are registered with the second DMA system. The non-transitory computer readable storage medium includes instructions that, when executed by a processor, cause the processor to initiate connection of a call from a first mobile subscriber to a second mobile subscriber via the first DMA system and the second DMA system when the second mobile subscriber is registered with the second DMA system.
In another particular embodiment, a non-transitory computer readable storage medium comprises instructions that are executable by a processor. A call is received from a first mobile subscriber that is directed to a second mobile subscriber. The call is received at a first DMA system of a DMA network that includes at least the first DMA system and a second DMA system. The instructions cause the processor to determine whether the second mobile subscriber is registered with the first DMA system based on information stored at a first HLR of the first DMA system. The first HLR includes information associated with one or more mobile subscribers that are registered with the first DMA system. When the second mobile subscriber is not registered with the first DMA system the instructions cause the processor to determine whether the second mobile subscriber is registered with the second DMA system based on information stored at a second CLR associated with the second DMA system. The second CLR is stored at the first DMA system and includes information associated with a second HLR of the second DMA system. The second HLR includes information associated with one or more mobile subscribers that are registered with the second DMA system.
In another particular embodiment, a method includes receiving registration information associated with a mobile subscriber at a second DMA system of a DMA network. The registration information is received while the mobile subscriber is located within a coverage area associated with a third DMA system of the DMA network. A location update request is received at the second DMA system, where the location update request is related to the mobile subscriber and is sent from a first DMA system of the DMA network. The method includes sending a second location update request from the second DMA system to the third DMA system in response to receiving the location update request from the first DMA system. A destination IP address associated with the mobile subscriber is received from the third DMA system, and the destination IP address associated with the mobile subscriber is sent to the first DMA system. A call may be connected from the first DMA system to the third DMA system via a peer-to-peer IP connection based on a source IP address associated with the first DMA system and the destination IP address associated with the mobile subscriber
An authentication, authorization, and accounting module of a first distributed mobile architecture includes a home location register. The home location register provides information associated with one or more mobile subscribers that are registered with the first distributed mobile architecture. Also, the information within the home location register at the first distributed mobile architecture is also provided at a first community location register at a second distributed mobile architecture that is accessible to the first distributed mobile architecture. The module further includes a second community location register that includes information associated with one or more mobile subscribers registered with the second distributed mobile architecture.
In a particular embodiment, the module also includes a third community location register that includes information associated with one or more mobile subscribers registered with a third distributed mobile architecture. In another particular embodiment, the first home location register includes information associated with one or more mobile subscribers that are registered with the first distributed mobile architecture.
In yet another particular embodiment, the module further includes a visitor location register that includes information associated with one or more roaming mobile subscribers that are temporarily registered with the first distributed mobile architecture. In still another particular embodiment, the home location register includes an international mobile subscriber identification (IMSI), an electronic series number (ESN), a mobile directory number (MDN), a location indicator, a temporary location directory number (TLDN), a registration indicator, a timer, a mobile switching center (MSC) preference indicator, an integrated services digital network (ISDN) preference indicator; and a voice over Internet protocol (VoIP) preference indicator.
Additionally, in a particular embodiment, the community location register includes an international mobile subscriber identification (IMSI), an electronic series number (ESN), and a mobile directory number (MDN). Also, the visitor location register includes an international mobile subscriber identification (IMSI), an electronic series number (ESN), a temporary location directory number (TLDN), a registration indicator, a timer, a mobile switching center (MSC) preference indicator, an integrated services digital network (ISDN) preference indicator, and a voice over Internet protocol (VoIP) preference indicator.
In another embodiment, a method of communication includes registering a first mobile subscriber within a home location register of a distributed mobile architecture and registering a second mobile subscriber within the home location register. Further, the method includes receiving a call from the first mobile subscriber to a second mobile subscriber, locating data associated with the first mobile subscriber within the home location register, locating data associated the second mobile subscriber within the home location register, and connecting the call between the first mobile subscriber and the second mobile subscriber via the distributed mobile architecture.
In yet another embodiment, a method of establishing communication via a distributed mobile architecture network includes receiving a call from a first mobile subscriber to a second mobile architecture and locating data that is associated with the second mobile subscriber within a community location register at the first distributed mobile architecture. The community location register can include information that is associated with one or more mobile subscribers registered with the second distributed mobile architecture.
In still another embodiment, a method of establishing a call between a first mobile subscriber and a second mobile subscriber includes receiving a location update request relating to the second mobile subscriber at a second distributed mobile architecture. In this embodiment, the location update request is sent from a first distributed mobile architecture.
In yet still another embodiment, a distributed mobile architecture includes a processor, a computer readable medium that is accessible to the processor, and an authentication, authorization, and accounting module that is embedded within the computer readable medium. In this embodiment, the authentication, authorization, and accounting module includes a home location register that includes information associated with one or more mobile subscribers that are registered with the distributed mobile architecture. Further, the authentication, authorization, and accounting module includes a community location register that includes information associated with a home location register of another distributed mobile architecture.
In another embodiment, a system includes a first distributed mobile architecture, a second distributed mobile architecture that is coupled to the first distributed mobile architecture via an Internet protocol network, and a third distributed mobile architecture that is coupled to the first distributed mobile architecture and the second distributed mobile architecture via the Internet protocol network. In this embodiment, the first distributed mobile architecture includes a home location register, a second community location register that is associated with the second distributed mobile architecture, and a third community location register that is associated with the third distributed mobile architecture.
Referring to
As illustrated in
Within the distributed and associative communications system 100, the controlling logic can be distributed and de-centralized. Moreover, the wireless coverage provided by the disclosed system 100 is self-healing and redundant. In other words, due to the interconnectivity via the IP network 110, if one or more of the DMAs 106 loses power, fails, or is otherwise inoperable, telephony traffic handled by the inoperable DMA 106 can re-routed to one of the remaining operable DMAs 106. Additionally, user data stored in a database, e.g., a home locator resource (HLR) or a visitor locator resource (VLR), can be distributed equally and fully among all of the DMAs 106. It can also be appreciated that new cellular coverage sites can be easily added to the system 100 as the demand for users increases. Specifically, a DMA can be deployed, connected to an antenna, connected to the IP network, and activated to provided cellular coverage in a new area.
As shown in
In a particular embodiment, as described in detail herein, a mobile subscriber can communicate with another mobile subscriber via the first distributed mobile architecture 202, the second distributed mobile architecture 204, or the third distributed mobile architecture 206. Further, in a particular embodiment, a mobile subscriber can communicate with another mobile subscriber via the first distributed mobile architecture 202 and the second distributed mobile architecture 204, the first distributed mobile architecture 202 and the third distributed mobile architecture 206, and the second distributed mobile architecture 204 and the third distributed mobile architecture 206. Additionally, in a particular embodiment, a mobile subscriber can communicate with another mobile subscriber via the first distributed mobile architecture 202, the second distributed mobile architecture 204, or the third distributed mobile architecture 206.
Further, in a particular embodiment, the first mobile subscriber 210 of the first DMA 202 can be connected locally to the second mobile subscriber 210 of the first DMA 202 after locating the second mobile subscriber 210 within the a home location register (HLR) within the first DMA 202. Additionally, the first or second mobile subscriber 210, 212 of the first DMA 202 can be connected to the first or second mobile subscriber 212, 214 of the second DMA 204 after locating the first or second mobile subscriber 212, 214 of the second DMA 204 within a second community location register (CLR) associated with the second DMA 202 that is stored within the first DMA 202. Moreover, the first or second mobile subscriber 210, 212 of the first DMA 202 can be connected to the first or second mobile subscriber 216, 218 of the third DMA 206 after locating the first or second mobile subscriber 216, 218 of the third DMA 206 within a third community location register (CLR) associated with the third DMA 206 that is stored within the first DMA 202.
As a mobile subscriber roams into a coverage area that is not provided by the DMA to which the mobile subscriber is registered, the mobile subscriber can be temporarily registered with a new DMA while the mobile subscriber is roaming. CLR information concerning the roaming mobile subscriber can be obtained from the new DMA in order to complete a call to the roaming mobile subscriber.
As depicted in
As further illustrated in
As depicted in
In an exemplary, non-limiting embodiment, the GK 310 can act as an AAA server and a feather server to support advanced supplementary service, short message service, etc. Moreover, the GK 310 can act as a call manager and can support ISUP and PSTN function calls. Additionally, the GK 310 can act as a signal gateway, e.g., IP to SS7 inter-working, ISUP, GSM MAP or ANSI-41 to PSTN and ANSI-42/GSM. The GK 310 can also function as a data call server.
As illustrated in
In an exemplary, non-limiting embodiment, the BTS interface 338 can be an IS-95A OR IS-2000 interface over E1 or ATM, or the BTS interface 338 can be a GSM BTS, e.g., an Abis interface. Further, the BTS interface 338 can be a universal mobile telecommunications system (UMTS) Iub interface or customized application for mobile network enhanced logic (CAMEL). In an illustrative embodiment, the CPC 334 can be connected to one or more BTSs 336.
In a particular embodiment, a DMA can be implemented as a system or a device. For example, a DMA system or a DMA device can include a DMA server or an DMA on board processor.
In a particular embodiment, as indicated in
In an exemplary, non-limiting embodiment, the first CLR 416 within the second DMA 402 and the first CLR 424 within the third DMA 404 correspond to the HLR 408 of the first DMA 400. More particularly, the first CLR 416 within the second DMA 402 and the first CLR 424 within the third DMA 404 include information that is stored within the HLR 408 of the first DMA server 400. In a particular embodiment, that information can include mobile location information associated with the first DMA server 400, e.g., a mobile location of the first DMA server 400.
Additionally, in an exemplary, non-limiting embodiment, the second CLR 410 within the first DMA 400 and the second CLR 426 within the third DMA 404 correspond to the HLR 418 of the second DMA 402. More particularly, the second CLR 410 within the first DMA 400 and the second CLR 426 within the third DMA 404 include the information that is stored within the HLR 418 of the second DMA server 402. In a particular embodiment, that information can include mobile location information associated with the second DMA server 402, e.g., a mobile location of the first DMA server 402.
Also, in an exemplary, non-limiting embodiment, the third CLR 412 within the first DMA 400 and the third CLR 420 within the second DMA 402 correspond to the HLR 428 of the third DMA 404. More particularly, the third CLR 412 within the first DMA 400 and the third CLR 420 within the second DMA 402 include the information that is stored within the HLR 428 of the third DMA server 404. In a particular embodiment, that information can include mobile location information associated with the third DMA server 404, e.g., a mobile location of the third DMA server 404.
Referring to
As illustrated in
As shown in
In a particular embodiment, the visitor mobile communication device can be connected to an MSC, an ISDN, or a VoIP network based on the preference indicators 526, 528, 530. For example, a particular visitor mobile communication device may want to connect to a VoIP network before an ISDN and an MSC.
Referring to
Moving to block 706, the first DMA receives a call from the first mobile subscriber to be routed to the second mobile subscriber. At block 708, the first DMA locates the first mobile subscriber within the home location register (HLR) of the first DMA. Proceeding to block 710, the first DMA locates the second mobile subscriber within the second community location register (CLR) associated with the second DMA. At block 712, the first DMA sends a location update request (LocUpdate) to the second DMA. Next, at block 714, the first DMA receives an acknowledgement from the second DMA. In an illustrative embodiment, the acknowledgement includes the current address of the second mobile subscriber within the second DMA. Continuing to block 716, the first DMA connects the first mobile subscriber to the second mobile subscriber via the first DMA and the second DMA by assigning an IP address at both the first DMA and the second DMA. The method then ends at state 718.
Referring to
Moving to block 808, a third DMA pre-fetches the home location register (HLR) information for the first DMA and stores it within a first community location register (CLR) at the third DMA. At block 810, the third DMA pre-fetches the home location register (HLR) information for the second DMA and stores it within a second community location register (CLR) at the third DMA.
Proceeding to block 812, the third DMA registers the second mobile subscriber within a visitor location register (VLR) of the third DMA. In a particular embodiment, this indicates that the second mobile subscriber has roamed into a coverage area controlled by the third DMA. At block 814, the third DMA sends the registration information of the second mobile subscriber to the second DMA.
Moving to block 816, the first DMA receives a call from the first mobile subscriber to be routed to the second mobile subscriber. Thereafter, at block 818, the first DMA locates the first mobile subscriber within the home location register (HLR) of the first DMA. At block 820, the first DMA locates the second mobile subscriber within the second community location register (CLR) that is associated with the second DMA.
Proceeding to block 822, the first DMA sends a location update request (LocUpdate) to the second DMA. At block 824, the second DMA sends the location update (LocUpdate) to the third DMA. Then, at block 826, the second DMA receives an acknowledgement from the third DMA. In a particular embodiment, the acknowledgement includes a current address of the second mobile subscriber within the third DMA. For example, the third DMA can retrieve the current address of the second mobile subscriber from the VLR within the third DMA. Continuing to block 828, the first DMA receives the acknowledgement from the second DMA with the address of the second mobile subscriber. Next, at block 830, the first DMA connects the first mobile subscriber to the second mobile subscriber via the first DMA and the third DMA. For example, an IP address at the third DMA is assigned to the call and is used to route the call over an IP network between the first DMA and the third DMA. The method then ends at state 832.
Referring to
As further depicted in
Referring to
Referring to
As illustrated in
Referring now to
Using a single back-haul connection greatly minimizes costs associated with the wireless communication network. Further, the system 1400 shown in
Referring to
The mobile cellular coverage sites 1602 can be deployed to provide a temporary web of cellular coverage for a plurality of mobile communication devices, e.g., devices carried by soldiers during a battle. The mobile in-field communications system 1600 can be recalled, moved, and re-deployed as necessary. Further, the system can include a wireless connection, e.g., 802.11a, 802.11b, microwaves, to the PSTN 1614.
Referring to
Referring to
In a particular embodiment, the first satellite transceiver 2008 can communicate with a second satellite transceiver 2012 via a satellite 2014. As shown, the second satellite transceiver 2012 can be connected to a terrestrial server gateway 2016, e.g. a DMA gateway, that can provide connectivity to an operations and management platform (OMP) 2018, a call detail record (CDR) 2020, and a visitor location register gateway (VLR-GW) 2022. The OMP 2018, the CDR 202, and the VRL-GW 2022 can be separate from or incorporated within the server gateway 2016.
Accordingly, the system 2000 shown in
In a particular embodiment, the first satellite transceiver 2108 can communicate with a second satellite transceiver 2112 via a satellite 2114. As shown, the second satellite transceiver 2112 can be connected to a terrestrial server gateway 2116, e.g. a DMA gateway, that can provide connectivity to an operations and management platform (OMP) 2118, a call detail record (CDR) 2120, and a visitor location register gateway (VLR-GW) 2122. The OMP 2118, the CDR 212, and the VRL-GW 2122 can be separate from or incorporated within the server gateway 2116.
Accordingly, the system shown in
Referring to
Continuing to block 2208, the DMA is activated, e.g., powered on. At block 2210, a network connection is established with another remote DMA. In a particular embodiment, the network connection is a peer-to-peer connection between the DMAs. Moving to block 2212, DMA software within the DMA is activated. Thereafter, at decision step 2214, it is determined whether the system is operational. That decision can be a performed by the DMA, e.g., by a self-diagnostic routine or module within the DMA. Alternatively, that decision can be determined manually by a technician. If the system is not operational, a system check is performed at block 2216. In a particular embodiment, the system check performed at block 2216 is performed by a self-diagnostic routine or module within the DMA. On the other hand, a technician can perform the system check. After the system check, the logic then returns to decision step 2214 and continues as described herein. At decision step 2214, if the system is operational, the method proceeds to block 2218 and call transmission is allowed. The method then ends at state 2220.
Referring to
Continuing to block 2310, the second DMA is activated. At block 2312, a network connection is established between the second DMA and another remote DMA. In a particular embodiment, the network connection is a peer-to-peer IP connection between the DMAs. Further, in a particular embodiment, the peer-to-peer connection is established via a private IP network. At block 2314, DMA software within the second DMA is activated.
Proceeding to decision step 2316, it is determined whether the system is operational. That decision can be a performed by the second DMA, e.g., by a self-diagnostic routine or module within the second DMA. Alternatively, the decision can be determined manually by a technician. If the system is not operational, a system check is performed at block 2318. In a particular embodiment, the system check performed at block 2318 is performed by a self-diagnostic routine or module within the second DMA. On the other hand, a technician can perform the system check. After the system check, the logic then returns to decision step 2316 and continues as described herein. At decision step 2316, if the system is operational, the method proceeds to block 2320 and call transmission is allowed via the second DMA. The method then ends at state 2322.
With the configuration of structure described above, the present disclosure provides a flexible telecommunications system, i.e., a network of DMAs, that is distributive and associative, i.e., it can operate stand-alone or seamlessly within an existing cellular or other network. Moreover, a DMA can be integrated with virtually any third party base station. The DMA can operate with multiple air interfaces including CDMA IS-95, CDMA 1X, CDMA EVDO, GSM, GPRS, W-CDMA, 802.11 (Wi-fi), 802.16 (Wi-fi), etc. Further, the DMA can provide integrated prepaid billing, OAMP, network management, and AAA functionality. The DMA can include a Java based user interface and feature configuration system. Also, the DMA can provide real time call metering, call detail record (CDR) generation, and real time call provisioning. The DMA 406 may be implemented in a relatively small footprint and has a relatively low power requirement. Further, the DMA 406 may be implemented using inexpensive and widely available computer equipment.
With one or more of the deployment configurations described above, the present system provides mobile to landline calls from mobile handsets within a DMA cellular coverage area. Also, mobile to landline calls can be made from mobile handsets roaming into DMA coverage areas. Mobile to mobile calls can be made from home/roaming handsets to DMA handsets and vice versa. Further, mobile to IP calls and IP to mobile calls can be made from within a DMA coverage area. IP to IP calls can be made from any DMA handset to any IP phone. Additionally, IP to landline calls and landline to IP calls can be made from a DMA handset to any phone. Further, land-line to mobile calls to DMA handsets can be made.
The systems described above can support call forwarding, call waiting, 3-way calling caller ID, voice mail, and mobile to mobile SMS service, i.e., text messaging. Further, the systems described above can provide broadcast SMS service, mobile to land high-speed IP data (1X or GPRS) service and mobile-to-mobile high speed IP data (1X or GPRS) service. Also, the systems described above can provide IP-PBX capability.
Further, one or more of the illustrated systems can provide IP transport between distributed elements, e.g., DMAs. Packet back-haul from BTS to RAN can be provided. Further, the control logic within the DMAs can be distributed and associated. Associated systems can be redundant, self-healing, self-organizing, and scalable. Distributed systems can be “snap-together,” i.e., a DMA can be linked to a previously deployed DMA in order to broaden, or otherwise extend, cellular coverage. Further, distributed systems can be de-centralized to avoid single points of failure.
One or more of the systems described above can also provide soft and softer call handoffs on the same frequency interfaces. Also, soft handoffs can be provided on different systems. Further, a DMA based system can operate stand-alone with a billing system provided by a DMA and CDR generation. Or, a system can use the SS7 network to pass CDRs to a central switch for integrated billing and operation with an existing network.
The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the scope of the disclosure. Thus, to the maximum extent allowed by law, the scope of the disclosure is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
The present application claims priority from and is a divisional of patent application Ser. No. 11/393,993 filed on Mar. 30, 2006 and entitled “SYSTEM, METHOD, AND DEVICE FOR PROVIDING COMMUNICATIONS USING A DISTRIBUTED MOBILE ARCHITECTURE,” the contents of which are expressly incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4284848 | Frost | Aug 1981 | A |
5590175 | Gallant et al. | Dec 1996 | A |
5623495 | Eng et al. | Apr 1997 | A |
5734979 | Lu et al. | Mar 1998 | A |
5933784 | Gallagher et al. | Aug 1999 | A |
5991639 | Rautiola et al. | Nov 1999 | A |
6122499 | Magnusson | Sep 2000 | A |
6131038 | Sekine et al. | Oct 2000 | A |
6141564 | Bruner et al. | Oct 2000 | A |
6160804 | Ahmed et al. | Dec 2000 | A |
6411825 | Csapo et al. | Jun 2002 | B1 |
6418308 | Heinonen et al. | Jul 2002 | B1 |
6421325 | Kikinis | Jul 2002 | B1 |
6515985 | Shmulevich et al. | Feb 2003 | B2 |
6539237 | Sayers et al. | Mar 2003 | B1 |
6542497 | Curry et al. | Apr 2003 | B1 |
6584098 | Dutnall | Jun 2003 | B1 |
6611533 | Liao et al. | Aug 2003 | B1 |
6614784 | Glitho et al. | Sep 2003 | B1 |
6647426 | Mohammed | Nov 2003 | B2 |
6678155 | Bresniker | Jan 2004 | B1 |
6694134 | Lu et al. | Feb 2004 | B1 |
6697355 | Lim | Feb 2004 | B1 |
6704409 | Dilip et al. | Mar 2004 | B1 |
6731932 | Rune et al. | May 2004 | B1 |
6735184 | Davidson et al. | May 2004 | B1 |
6751207 | Lee et al. | Jun 2004 | B1 |
6760325 | Hameleers et al. | Jul 2004 | B1 |
6763226 | McZeal, Jr. | Jul 2004 | B1 |
6763233 | Bharatia | Jul 2004 | B2 |
6791988 | Hameleers | Sep 2004 | B1 |
6795444 | Vo et al. | Sep 2004 | B1 |
6807431 | Sayers et al. | Oct 2004 | B2 |
6807432 | Hwang | Oct 2004 | B2 |
6816706 | Hohnstein et al. | Nov 2004 | B1 |
6819652 | Akhtar et al. | Nov 2004 | B1 |
6829473 | Raman et al. | Dec 2004 | B2 |
6831903 | Kang | Dec 2004 | B2 |
6839356 | Barany et al. | Jan 2005 | B2 |
6859652 | Karabinis et al. | Feb 2005 | B2 |
6871072 | Meche | Mar 2005 | B1 |
6879582 | Dhara et al. | Apr 2005 | B1 |
6879677 | Trandal et al. | Apr 2005 | B2 |
6917813 | Elizondo | Jul 2005 | B2 |
6937708 | Hirose | Aug 2005 | B2 |
6958983 | Musikka et al. | Oct 2005 | B2 |
6985454 | Wiedeman et al. | Jan 2006 | B1 |
7003286 | Brown et al. | Feb 2006 | B2 |
7050414 | Lin | May 2006 | B2 |
7054307 | Papadimitriou et al. | May 2006 | B2 |
7054322 | D'Annunzio et al. | May 2006 | B2 |
7072650 | Stanforth | Jul 2006 | B2 |
7117015 | Scheinert et al. | Oct 2006 | B2 |
7120435 | Usher et al. | Oct 2006 | B2 |
7120436 | Kim | Oct 2006 | B2 |
7133670 | Moll et al. | Nov 2006 | B1 |
7133923 | MeLampy et al. | Nov 2006 | B2 |
7136651 | Kalavade | Nov 2006 | B2 |
7154901 | Chava et al. | Dec 2006 | B2 |
7158621 | Bayne | Jan 2007 | B2 |
7171216 | Choksi | Jan 2007 | B1 |
7299039 | Lee et al. | Nov 2007 | B2 |
7313399 | Rhee et al. | Dec 2007 | B2 |
7324478 | Park et al. | Jan 2008 | B2 |
7328268 | Foltak et al. | Feb 2008 | B1 |
7346334 | Gaeta et al. | Mar 2008 | B2 |
7349412 | Jones et al. | Mar 2008 | B1 |
7359700 | Swenson et al. | Apr 2008 | B2 |
7385947 | Wu et al. | Jun 2008 | B2 |
7406069 | Yashar et al. | Jul 2008 | B2 |
7424313 | Ham et al. | Sep 2008 | B2 |
7486967 | Pan et al. | Feb 2009 | B2 |
7536170 | Goldman et al. | May 2009 | B2 |
7539158 | Pan | May 2009 | B2 |
7548763 | Pan | Jun 2009 | B2 |
7552670 | Goldman et al. | Jun 2009 | B2 |
7606594 | Jesse et al. | Oct 2009 | B2 |
7653414 | Pan | Jan 2010 | B2 |
7738488 | Marsico et al. | Jun 2010 | B2 |
7760695 | Gopalakrishnan et al. | Jul 2010 | B2 |
7787879 | Philips et al. | Aug 2010 | B1 |
7840230 | Pan | Nov 2010 | B2 |
7855988 | Pan | Dec 2010 | B2 |
7856233 | Pan | Dec 2010 | B2 |
7979066 | Pan | Jul 2011 | B2 |
8036158 | Pan et al. | Oct 2011 | B2 |
8046420 | Pan | Oct 2011 | B2 |
8089920 | Pan | Jan 2012 | B2 |
8107409 | Pan | Jan 2012 | B2 |
20010036173 | Shmulevich et al. | Nov 2001 | A1 |
20010046859 | Kil | Nov 2001 | A1 |
20010055298 | Baker et al. | Dec 2001 | A1 |
20020009060 | Gross | Jan 2002 | A1 |
20020016180 | Derosier et al. | Feb 2002 | A1 |
20020045444 | Usher et al. | Apr 2002 | A1 |
20020051518 | Bondy et al. | May 2002 | A1 |
20020058502 | Stanforth | May 2002 | A1 |
20020061746 | Jo et al. | May 2002 | A1 |
20020160772 | Gailey et al. | Oct 2002 | A1 |
20030048766 | D'Annunzio et al. | Mar 2003 | A1 |
20030088698 | Singh et al. | May 2003 | A1 |
20030092441 | Taha et al. | May 2003 | A1 |
20030096628 | Bar-On et al. | May 2003 | A1 |
20030100302 | Armbruster et al. | May 2003 | A1 |
20030153343 | Crockett et al. | Aug 2003 | A1 |
20030186694 | Sayers et al. | Oct 2003 | A1 |
20040018829 | Raman et al. | Jan 2004 | A1 |
20040019539 | Raman | Jan 2004 | A1 |
20040203621 | Brown et al. | Oct 2004 | A1 |
20040203677 | Brown et al. | Oct 2004 | A1 |
20040204097 | Scheinert et al. | Oct 2004 | A1 |
20040253984 | Csapo et al. | Dec 2004 | A1 |
20040259556 | Czys | Dec 2004 | A1 |
20050064922 | Owens et al. | Mar 2005 | A1 |
20050070278 | Jiang | Mar 2005 | A1 |
20050075106 | Jiang | Apr 2005 | A1 |
20050091392 | Gesswein et al. | Apr 2005 | A1 |
20050250491 | Roy et al. | Nov 2005 | A1 |
20060046714 | Kalavade | Mar 2006 | A1 |
20060046760 | Bertino et al. | Mar 2006 | A1 |
20060052113 | Ophir et al. | Mar 2006 | A1 |
20060063544 | Zhao et al. | Mar 2006 | A1 |
20060098661 | Pan | May 2006 | A1 |
20060114934 | Shin et al. | Jun 2006 | A1 |
20060141984 | Taglienti et al. | Jun 2006 | A1 |
20060142011 | Kallio | Jun 2006 | A1 |
20060148465 | Perdomo et al. | Jul 2006 | A1 |
20060159039 | Jung et al. | Jul 2006 | A1 |
20060203746 | Maggenti et al. | Sep 2006 | A1 |
20060217121 | Soliman et al. | Sep 2006 | A1 |
20060221912 | Olivier et al. | Oct 2006 | A1 |
20060258358 | Kallio | Nov 2006 | A1 |
20070008968 | Baker et al. | Jan 2007 | A1 |
20070010245 | Levitan | Jan 2007 | A1 |
20070021097 | Gaeta et al. | Jan 2007 | A1 |
20070021118 | Ophir | Jan 2007 | A1 |
20070060124 | Kalavade | Mar 2007 | A1 |
20070076697 | Huotari et al. | Apr 2007 | A1 |
20070087738 | Melkesetian | Apr 2007 | A1 |
20070147598 | Somes et al. | Jun 2007 | A1 |
20070213075 | Jiang | Sep 2007 | A1 |
20070230352 | Kokku et al. | Oct 2007 | A1 |
20070232304 | Goldman et al. | Oct 2007 | A1 |
20070234892 | Goldman et al. | Oct 2007 | A1 |
20070243891 | Civanlar et al. | Oct 2007 | A1 |
20070271606 | Amann et al. | Nov 2007 | A1 |
20070287452 | Pan | Dec 2007 | A1 |
20070291910 | Bucchieri et al. | Dec 2007 | A1 |
20080101314 | Bachmutsky | May 2008 | A1 |
20080101410 | Barkley et al. | May 2008 | A1 |
20080146158 | Pan et al. | Jun 2008 | A1 |
20080168523 | Ansari et al. | Jul 2008 | A1 |
20090003269 | Kumazawa et al. | Jan 2009 | A1 |
20090022155 | Rosenberg et al. | Jan 2009 | A1 |
20090067441 | Ansari et al. | Mar 2009 | A1 |
20090186626 | Raghothaman | Jul 2009 | A1 |
20090215449 | Avner et al. | Aug 2009 | A1 |
20090227230 | Camilleri et al. | Sep 2009 | A1 |
20090325584 | Pan | Dec 2009 | A1 |
20090327819 | Pan | Dec 2009 | A1 |
20100048197 | Jiang | Feb 2010 | A1 |
20100048208 | Gunaratnam et al. | Feb 2010 | A9 |
20100057485 | Luft | Mar 2010 | A1 |
20100080214 | Li et al. | Apr 2010 | A1 |
20100094878 | Soroca et al. | Apr 2010 | A1 |
20100217837 | Ansari et al. | Aug 2010 | A1 |
20110059740 | Pan | Mar 2011 | A1 |
20110060853 | Pan | Mar 2011 | A1 |
20110223921 | Pan | Sep 2011 | A1 |
20120002607 | Pan | Jan 2012 | A1 |
Number | Date | Country |
---|---|---|
0365885 | May 1990 | EP |
2007102003 | Sep 2007 | WO |
Entry |
---|
Pan, U.S. Appl. No. 13/309,003; “Providing Communications Using a Distributed Mobile Architecture”; filed Dec. 20, 2011. |
Hoffpauir, Scott D. et al., “Integrated Authentication Center and Method for Authentication in a Wireless Telecommunications Network,” Registration No. H1, 918, published Nov. 7, 2000, 19 pages. |
Requirements for Restriction/Election for U.S. Appl. No. 11/393,993 mailed Nov. 13, 2008, 5 pages. |
Non-Final Office Action for U.S. Appl. No. 11/393,993 mailed Apr. 6, 2009, 18 pages. |
Final Office Action for U.S. Appl. No. 11/393,993 mailed Nov. 12, 2009, 20 pages. |
Notice of Allowance and Fee(s) Due for U.S. Appl. No. 11/393,993 mailed Sep. 2, 2010, 7 pages. |
International Search Report and Written Opinion received in corresponding PCT Application No. PCT/US2009/045968 from the International Searching Authority (KR) mailed Jan. 21, 2010, 13 pages. |
B.G. Evans and K. Baughan; “Visions of 4G”; Electronics & Communication Engineering Journal; Dec. 2000; pp. 293-303. |
Shirshanka Das, Alok Nandan & Giovanni Pau (University of CA, Los Angeles, CA, USA); “SPAWN: A Swarming Protocol for Vehicular Ad-Hoc Wireless Networks”; VANET'04, Oct. 1, 2004, Philadelphia, PA, USA; ACM 1-58113-922-5/04/0010; 2 pgs. |
Yu-Chee Tseng, Chia-Ching Shen (National Chiao Tung University) & Wen-Tsuen Chen (National Tsing Hua University); “Integrating Mobile IP with AD Hoc Networks”; IEEE Computer Society; 0018-9162/03; 2003 IEEE; May 2003; pp. 48-55. |
Halim Yanikomeroglu, David D. Falconer & Van M. Sreng; “Coverage Enhancement Through Two-Hop Peer-to-Peer Relaying in Cellular Radio Networks”; Broadband Communications and Wireless Systems (BCWS) Centre Department of Systems & Computer Engineering, Carleton University, Ottawa, Canada; WWRF Meeting #7, Eindhoven, the Netherlands, Dec. 3-4, 2002, WG4: Spectrum, New Air Interfaces and Ad-Hoc Networking Multi-Hop Wireless Systems; 10 pages. |
Bur Goode; “Voice Over Internet Protocol (VoIP)”; 0018-9219/02 2002 IEEE; Proceedings of the IEEE; vol. 90, No. 9, Sep. 2002; pp. 1495-1517. |
Kyung-Hyu Lee, Kyu-Ok Lee & Kwon-Chul Park (Network Research Laboratory ETRI Korea) Jong-Ok Lee and Yoon-Hak Bang (Network Planning Team KT Korea); “Architecture to be Deployed on Strategies of Next-Generation Networks”; 0/7803-7802-4/03 2003 IEEE; pp. 819-822. |
Wolfgang Kellerer, Christian Bettstetter, Christian Schwingenschlögl & Peter Sties (Technische Universität München) Karl-Ernst Steinberg (BMW) & Hans-Jörg Vögel (the Fantastic Corp); “(Auto) Mobile Communication in a Heterogeneous and Converged World”; IEEE Personal Communications; Dec. 2001; 1070-9916/01; 2001 IEEE pp. 41-47. |
Nilanjan Banerjee & Sajal K. Das (University of Texas, Arlington) & Arup Acharya (IBM T.J. Watson Research Center) “Peer-to-peer SIP-based Services over Wireless Ad Hoc Networks”; BROADWIM: Broadband Wireless Multimedia Workshop; Oct. 29, 2004—broadnets.org; *This work was supported by NSF under the ORBIT testbed project, grant # NSF NRT Project #ANI-0335244 and by NSF ITR grant IIS-0326505; 8 pages. |
Hung-Yu Wei (Columbia University) & Richard D. Gitlin (NEC Laboratories America); “Two-Hop-Relay Architecture for Next-Generation WWAN/WLAN Integration”; 4G Mobile Communications: Toward Open Wireless Architecture; 1536-1284/04 2004 IEEE; IEEE Wireless Communications; Apr. 2004; pp. 2-9. |
Wolfgang Kellerer (LKN, Munich University of Technology), Hans-Jörg Vögel (the Fantastic Corp.) & Karl-Ernst Steinberg (BMW); “A Communication Gateway for Infrastructure Independent Wireless Access”; IEEE Communications Magazine; Mar. 2002; vol. 9; No. 3; 6 pages. |
Willie W. Lu & Jenny Hu (U.S. Center for Wireless Communications, Stanford University, CA); “Open Wireless Architecture—The Core to 4G Mobile Communications”; China Communications; Apr. 2006; pp. 32-39. |
Ralf Pabst, Bernard H. Welke & Daniel C. Schultz (RWTH Aachen University) Patrick Herhold & Gerhard P. Fettweis (Technical University of Dresden) Halim Yanikomeroglu & David D. Falconer (Carleton University) Sayandev Mukherjee & Harish Viswanathan (Lucent Technologies) Matthias Lott & Wolfgang Zirwas (Siemens ICM) Mischa Dohler & Hamid Aghvami (Kings College); “Relay-Based Deployment Concepts for Wireless and Mobile Broadband Radio”; 0163-6804/04; 2004 IEEE; IEEE Communications Magazine; Sep. 2004; pp. 80-89. |
Simone Frattasi, Hanane Fathi, Frank H.P. Fitzek & Ramjee Prasad (Aalborg University) Marcos D. Katz (Samsung Electronics); “Defining 4G Technology from the User's Perspective”; IEEE Network; Jan./Feb. 2006; 0890-8044/06; 2006 IEEE; pp. 35-41. |
Ian F. Akyildiz (Broadband and Wireless Networking BWN Lab, Georgia Institute of Technology) Xudong Wang & Weilin Wang (Kiyon, Inc. La Jolla, CA); “Wireless Mesh Networks: A Survey”; Computer Networks 47; Jan. 1, 2005; pp. 445-487; 1389-1286 2004 Elsevier B.V. |
Brian Woerner (Virginia Tech, Blacksburg, VA) & Mostofa Howlader (University of Tennessee, Knoxville, TN); “Research Directions for Fourth Generation Wireless”; Proceedings of the 10th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2001); Jun. 20-22, 2001; Cambridge, MA, USA; IEEE Computer Society 2001; ISBN 0-7695-1269-0; 2 pages. |
“Framework and Overall Objectives of the Future Development of IMT-2000 and Systems Beyond IMT-2000”; International Telecommunication Union; ITU-R Radiocommunication Sector of ITU; Recommendation ITU-R M.1645 (Jun. 2003); M Series; Mobile, Radiodetermination, Amateur and Related Satellite Services; 26 pages. |
Number | Date | Country | |
---|---|---|---|
20110059740 A1 | Mar 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11393993 | Mar 2006 | US |
Child | 12946012 | US |