System, method and storage medium for providing a serialized memory interface with a bus repeater

Information

  • Patent Grant
  • 7765368
  • Patent Number
    7,765,368
  • Date Filed
    Thursday, July 5, 2007
    17 years ago
  • Date Issued
    Tuesday, July 27, 2010
    13 years ago
Abstract
A packetized cascade memory system including a plurality of memory assemblies, a memory bus including multiple segments, a bus repeater module and a segment level sparing module. The bus repeater module is in communication with two or more of the memory assemblies via the memory bus. The segment level sparing module provides segment level sparing for the communication bus upon segment failure.
Description
BACKGROUND OF THE INVENTION

The invention relates to memory subsystems and in particular, to providing a serialized memory interface with a bus repeater.


Computer memory subsystems have evolved over the years, but continue to retain many consistent attributes. Computer memory subsystems from the early 1980's, such as the one disclosed in U.S. Pat. No. 4,475,194 to LeVallee et al., of common assignment herewith, included a memory controller, a memory assembly (contemporarily called a basic storage module (BSM) by the inventors) with array devices, buffers, terminators and ancillary timing and control functions, as well as several point-to-point busses to permit each memory assembly to communicate with the memory controller via its own point-to-point address and data bus. FIG. 1 depicts an example of this early 1980 computer memory subsystem with two BSMs, a memory controller, a maintenance console, and point-to-point address and data busses connecting the BSMs and the memory controller.



FIG. 2, from U.S. Pat. No. 5,513,135 to Dell et al., of common assignment herewith, depicts an early synchronous memory module, which includes synchronous dynamic random access memories (DRAMs) 8, buffer devices 12, an optimized pinout, an interconnect and a capacitive decoupling method to facilitate operation. The patent also describes the use of clock re-drive on the module, using such devices as phase lock loops (PLLs).



FIG. 3, from U.S. Pat. No. 6,510,100 to Grundon et al., of common assignment herewith, depicts a simplified diagram and description of a memory subsystem 10 that includes up to four registered dual inline memory modules (DIMMs) 40 on a traditional multi-drop stub bus channel. The subsystem includes a memory controller 20, an external clock buffer 30, registered DIMMs 40, address bus 50, control bus 60 and a data bus 70 with terminators 95 on the address bus 50 and data bus 70.



FIG. 4 depicts a 1990's memory subsystem which evolved from the structure in FIG. 1 and includes a memory controller 402, one or more high speed point-to-point channels 404, each connected to a bus-to-bus converter chip 406, and each having a synchronous memory interface 408 that enables connection to one or more registered DIMMs 410. In this implementation, the high speed, point-to-point channel 404 operated at twice the DRAM data rate, allowing the bus-to-bus converter chip 406 to operate one or two registered DIMM memory channels at the full DRAM data rate. Each registered DIMM included a PLL, registers, DRAMs, an electrically erasable programmable read-only memory (EEPROM) and terminators, in addition to other passive components.


As shown in FIG. 5, memory subsystems were often constructed with a memory controller connected either to a single memory module, or to two or more memory modules interconnected on a ‘stub’ bus. FIG. 5 is a simplified example of a multi-drop stub bus memory structure, similar to the one shown in FIG. 3. This structure offers a reasonable tradeoff between cost, performance, reliability and upgrade capability, but has inherent limits on the number of modules that may be attached to the stub bus. The limit on the number of modules that may be attached to the stub bus is directly related to the data rate of the information transferred over the bus. As data rates increase, the number and length of the stubs must be reduced to ensure robust memory operation. Increasing the speed of the bus generally results in a reduction in modules on the bus, with the optimal electrical interface being one in which a single module is directly connected to a single controller, or a point-to-point interface with few, if any, stubs that will result in reflections and impedance discontinuities. As most memory modules are sixty-four or seventy-two bits in data width, this structure also requires a large number of pins to transfer address, command, and data. One hundred and twenty pins are identified in FIG. 5 as being a representative pincount.



FIG. 6, from U.S. Pat. No. 4,723,120 to Petty, of common assignment herewith, is related to the application of a daisy chain structure in a multipoint communication structure that would otherwise require multiple ports, each connected via point-to-point interfaces to separate devices. By adopting a daisy chain structure, the controlling station can be produced with fewer ports (or channels), and each device on the channel can utilize standard upstream and downstream protocols, independent of their location in the daisy chain structure.



FIG. 7 represents a daisy chained memory bus, implemented consistent with the teachings in U.S. Pat. No. 4,723,120. The memory controller 111 is connected to a memory bus 315, which further connects to module 310a. The information on bus 315 is re-driven by the buffer on module 310a to the next module, 310b, which further re-drives the bus 315 to module positions denoted as 31 On. Each module 310a includes a DRAM 311 a and a buffer 320a. The bus 315 may be described as having a daisy chain structure, with each bus being point-to-point in nature.


One drawback to the use of a daisy chain bus is that it increases the probability of a failure causing multiple memory modules to be affected along the bus. For example, if the first module is non-functional, then the second and subsequent modules on the bus will also be non-functional. Another drawback to the use of a daisy chain bus is that the memory latency of each memory module on the daisy chain varies based on the placement of the memory module in the daisy chain.


BRIEF SUMMARY OF THE INVENTION

Exemplary embodiments of the present invention include a packetized cascade memory system including a plurality of memory assemblies, a memory bus including multiple segments, a bus repeater module and a segment level sparing module. The bus repeater module is in communication with two or more of the memory assemblies via the memory bus. The segment level sparing module provides segment level sparing for the communication bus upon segment failure.


Additional exemplary embodiments include a method for providing a memory interface. The method includes receiving an input signal at a bus repeater module, the input signal from a memory bus including a plurality of segments. A mode associated with the bus repeater module is determined. Bits in the input signal are repositioned in response to one of the bits being associated with a failing segment. The input signal is then transmitted, via the memory bus, to one or more memory assemblies in response to the mode.


Further exemplary embodiments include a storage medium for providing a memory interface. The storage medium is encoded with machine readable computer program code and includes instructions for causing a computer to implement a method. The method includes receiving an input signal at a bus repeater module, the input signal from a memory bus including a plurality of segments. A mode associated with the bus repeater module is determined. Bits in the input signal are repositioned in response to one of the bits being associated with a failing segment. The input signal is then transmitted, via the memory bus, to one or more memory assemblies in response to the mode.


Still further exemplary embodiments include a packetized cascade communication system. The system includes a plurality of communication assemblies, a communication bus, a bus repeater module and a segment level sparing module. The communication bus includes multiple segments. The bus repeater module is in communication with two or more of the communication assemblies via the communication bus and the segment level sparing module provides segment level sparing for the communication bus upon segment failure.


Additional exemplary embodiments include a method for providing a communication interface. The method includes receiving an input signal at a bus repeater module, the input signal from a communication bus including a plurality of segments. A mode associated with the bus repeater module is determined. Bits in the input signal are repositioned in response to one of the bits being associated with a failing segment. The input signal is then transmitted, via the communication bus, to one or more communication assemblies in response to the mode.


Further exemplary embodiments include a storage medium for providing a communication interface. The storage medium is encoded with machine readable computer program code and includes instructions for causing a computer to implement a method. The method includes receiving an input signal at a bus repeater module, the input signal from a communication bus including a plurality of segments. A mode associated with the bus repeater module is determined. Bits in the input signal are repositioned in response to one of the bits being associated with a failing segment. The input signal is then transmitted, via the communication bus, to one or more communication assemblies in response to the mode.





BRIEF DESCRIPTION OF THE DRAWINGS

Referring now to the drawings wherein like elements are numbered alike in the several FIGURES:



FIG. 1 depicts a prior art memory controller connected to two buffered memory assemblies via separate point-to-point links;



FIG. 2 depicts a prior art synchronous memory module with a buffer device;



FIG. 3 depicts a prior art memory subsystem using registered DIMMs;



FIG. 4 depicts a prior art memory subsystem with point-to-point channels, registered DIMMs, and a 2:1 bus speed multiplier



FIG. 5 depicts a prior art memory structure that utilizes a multidrop memory ‘stub’ bus;



FIG. 6 depicts a prior art daisy chain structure in a multipoint communication structure that would otherwise require multiple ports;



FIG. 7 depicts a prior art daisy chain connection between a memory controller and memory modules;



FIG. 8 depicts a cascaded memory structure that may be utilized by exemplary embodiments of the present invention;



FIG. 9 depicts a memory structure with cascaded memory modules and unidirectional busses and a bus repeater that is utilized by exemplary embodiments of the present invention;



FIG. 10 is block diagram of a one to four repower mode and a four to one multiplexing mode that may be implemented by a bus repeater module in exemplary embodiments of the present invention;



FIG. 11 is a block diagram of a one to two repower mode and a two to one multiplexing mode that may be implemented by a bus repeater module in exemplary embodiments of the present invention; and



FIG. 12 is a block diagram of a bus repeater module high level logic flow as utilized by exemplary embodiments of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Exemplary embodiments of the present invention provide a flexible, high speed and high reliability memory system architecture and interconnect structure that includes a single-ended, point-to-point interconnection between any two high speed interconnection interfaces. The memory subsystem may be implemented in one of several structures depending on desired attributes such as reliability, performance, density, space, cost, component reuse and other elements. Exemplary embodiments of the present invention include a memory controller, memory modules and a bus repeater situated between the memory controller and the memory modules (or between two or more memory modules). The use of a bus repeater module (also referred to as a bus repeater chip) permits an increase in the maximum operating length between the memory controller and the memory modules while reducing average memory latency by having a direct point-to-point connection to and from the memory modules. By utilizing a point-to-point bus structure, an error within a single memory module will not affect the functionality of other memory modules in the memory subsystem. The bus repeater module includes several switching modes and may be adapted to either buffered memory modules and/or directly connected to a memory controller via a packetized, multi-transfer interface with enhanced reliability features. In addition, the bus repeater module may be utilized with unbuffered and/or registered memory modules in conjunction with the identical buffer device, or an equivalent bus, programmed to operate in a manner consistent with the memory interface defined for those module types.



FIG. 8 depicts a cascaded memory structure that may be utilized when buffered memory modules 806 (e.g., the buffer device is included within the memory module 806) are in communication with the memory controller 802. This memory structure includes a memory controller 802 in communication with one or more memory modules 806 via a high speed point-to-point bus 804. Each bus 804 in the exemplary embodiment depicted in FIG. 8 includes approximately fifty high speed wires for the transfer of address, command, data and clocks. By using point-to-point busses as described in the aforementioned prior art, it is possible to optimize the bus design to permit significantly increased data rates, as well as to reduce the bus pincount by transferring data over multiple cycles. Whereas FIG. 4 depicts a memory subsystem with a two to one ratio between the data rate on any one of the busses connecting the memory controller to one of the bus converters (e.g., to 1,066 Mb/s per pin) versus any one of the busses between the bus converter and one or more memory modules (e.g., to 533 Mb/s per pin), an exemplary embodiment of the present invention, as depicted in FIG. 8, provides a four to one bus speed ratio to maximize bus efficiency and minimize pincount.


Although point-to-point interconnects permit higher data rates, overall memory subsystem efficiency must be achieved by maintaining a reasonable number of memory modules 806 and memory devices per channel (historically four memory modules with four to thirty-six chips per memory module, but as high as eight memory modules per channel and as few as one memory module per channel). Using a point-to-point bus necessitates a bus re-drive function on each memory module, to permit memory modules to be cascaded such that each memory module is interconnected to other memory modules as well as to the memory controller 802.



FIG. 9 depicts a memory structure with memory modules, unidirectional busses and a bus repeater module that is utilized by exemplary embodiments of the present invention. FIG. 9 includes a bus repeater module 906 that is connected to a memory controller 802. The bus repeater module 906 is utilized to transmit signals on the memory bus to/from memory modules 806 within the memory structure. Exemplary embodiments of operating modes that may be implemented by the bus repeater module 906 are depicted in FIGS. 10 and 11. FIG. 9 also includes four memory modules 806a, 806b, 806c and 806d, on each of two memory busses (a downstream memory bus 904 and an upstream memory bus 902), connected to the bus repeater module 906 in a point to point manner.


An exemplary embodiment of the present invention includes two uni-directional busses between the memory controller 802 and the bus repeater module 906. The bus repeater module 906, in turn is directly connected to the memory modules 806a-d (“DIMM #1”, “DIMM #2”, “DIMM #3” and “DIMM #4”) memory structure. The downstream memory bus 904 is comprised of twenty-two single-ended signals (including a signal for a spare bit) and a differential clock pair. The downstream memory bus 904 is used to transfer address, control, data and error code correction (ECC) bits downstream from the memory controller 802 to the bus repeater 906 (over several clock cycles) and then to one or more of the memory modules 806 installed on the cascaded memory channel. The upstream memory bus 902 is comprised of twenty-three single-ended signals (including a signal for a spare bit) and a differential clock pair, and is used to transfer bus-level data and ECC bits upstream from the sourcing memory module 806 to the memory controller 802, via the bus repeater 906. The memory busses include a plurality of segments (e.g., each wire, or signal, between the bus repeater module 906 and the memory modules 806a-d; and each wire, or signal, between the memory controller 802 and the bus repeater module 906). Using this memory structure, and a four to one data rate multiplier between the DRAM data rate (e.g., 400 to 800 Mb/s per pin) and the unidirectional memory bus data rate (e.g., 1.6 to 3.2 Gb/s per pin), the memory controller 802 signal pincount, per memory channel, is reduced from approximately one hundred and twenty pins to about fifty pins.


Utilizing the memory structure depicted in FIG. 9, the latency for each memory module 806 is symmetrical because each memory module 806 is connected to the bus repeater 906 in a point-to-point manner. In contrast, the latency in the cascaded memory structure depicted in FIG. 8 provides an increased latency, as compared to the structure in FIG. 9, for any memory modules 806 placed more than two drops away from the memory controller 802. In the event of an uncorrectable memory module 806 failure, any communication downstream from the failing module may not be possible due to the cascaded bus structure depicted in FIG. 8. In contrast, the memory structure depicted in FIG. 9, that includes the bus repeater module 906, prevents a faulty memory module 806 from impacting the continued operation of the remaining memory modules 806.


Further, the memory structure depicted in FIG. 9 allows for memory mirroring (parallel write and read operations to two memory modules 806 instead of one and completing read operations from the second memory module 806 if the first memory module 806 if found to have uncorrectable errors) to be supported without having to utilize non-symmetrical memory latency between the two memory modules 806. This is possible because the bus repeater module 906 has direct connections to each memory module 806. Still further, the memory structure depicted in FIG. 9, with the bus repeater 906 inserted between the memory controller 802 and the memory modules 806, increases the maximum bus length to permit support for memory module 806 that are a greater distance from the memory controller 802. This increase may be permitted because each channel segment could be at the maximum length allowed by the channel design, and multiple segments could be combined, via bus repeater modules 906, to achieve the required total length.


The bus repeater module 906 does not have to be in communication with the memory controller 802. In alternate exemplary embodiments of the present invention, the bus repeater module(s) 906 may be positioned between two memory modules in a cascaded memory structure (e.g., 806a and 806b, 806b and 806c, and 806c and 806d) and not between the memory controller 802 and each memory module 806a-d. In addition, a bus repeater module 906 may be positioned between one memory module 806 (e.g., 806a) and a plurality of other memory modules 806 (e.g., 806b-d). Further, the bus repeater module 906 may be implemented as a single unit as depicted in FIG. 9 or as a plurality of physical units. Other configurations are possible when implementing the bus repeater module 906 in conjunction with memory systems. For example, a memory system may include the downstream bus 904 depicted in FIG. 9 with a bus repeater module 906 and an upstream bus 902 implemented using the cascaded memory bus 804 depicted in FIG. 8 (i.e., no bus repeater module 906). In another example, a memory system includes the upstream bus 902 depicted in FIG. 9 with a bus repeater module 906 and a downstream bus 904 implemented using the cascaded memory bus 804 depicted in FIG. 8 (i.e., no bus repeater module 906).


In alternate exemplary embodiments of the present invention, the memory controller 802 in FIG. 9 may be replaced with a communication assembly (e.g., a communication controller), the upstream bus 902 and downstream bus 904 bus may be replaced with a communication medium (e.g., one or more communication busses) and the memory modules 806a-d replaced with communication assemblies. The memory controller 802 may be replaced with a communication assembly such as a transmitter (implemented, for example, by a communication controller). The transmitter may be utilized to encode and transmit a message via the communication medium. The communication medium may be implemented by cable, wire, voice, and/or any other method of transport. The memory modules 806a-d may be replaced with receivers (implemented, or example, by communication controllers). The receiver may be utilized to receive messages from the communication medium and then to decode the messages. In alternate exemplary embodiments the transmitter also performs receiver functions and the receiver also performs transmitter functions.



FIG. 10 is block diagram of a one to four repower mode 1002 and a four to one multiplexing mode 1004 that may be implemented by a bus repeater module 906 in exemplary embodiments of the present invention. Referring to the one to four repower mode 1002, the memory controller 802 initiates an operation to one or more memory modules 806 located downstream from the memory controller 802 via the downstream bus 904. The downstream bus 904 is then repowered by the bus repeater 906 to four identical copies of the downstream data bus 904 (datao0, datao1, datao2 and datao3). All downstream memory modules 806 will monitor the downstream data bus 904 to see if the data are targeted for them. The targeted memory module 806 will receive and act on the received information, while the rest of the memory modules 806 will ignore the data once the error checking and command decoding indicates that the access is not intended for them. This mode provides uniform memory latency among all memory modules 806 since all of the memory modules 806 have a direct point-to-point connection to the bus repeater (s) 906. In the event of an uncorrectable error on one or more of the memory modules 806, the rest of the memory modules 806 will still be in operational mode because of the point to point connections.


Referring to the four to one multiplexing mode 1004, the memory modules 806 are supplying the data (datai0, datai1, datai2 and datai3) and the bus repeater 906 multiplexes the data onto one upstream bus 902 (datao0) toward the memory controller 802. Again, memory latency is uniform among all memory modules 806. In the event of an uncorrectable error on one or more of the memory modules 806, given that there are point-to-point connections to all memory modules 806 from the bus repeater 906, the rest of the memory modules 806 will still be operational. The use of the one to four repower mode and the four to one multiplexing mode are complimentary, in that a system would generally use both operating modes to create a memory system with read and write capability.



FIG. 11 is a block diagram of a one to two repower mode and a two to one multiplexing mode that may be implemented by a bus repeater module 906 in exemplary embodiments of the present invention. Referring to the one to two repower mode 1102, there are physically two separate one to two repowering functions. This structure allows the memory controller 802 to operate twice as many downstream busses 904 (datai0 and datai1) as compared to only one downstream bus 904 (datai0) in a conventional mode, while keeping uniform memory latency. This mode may also serve as a memory mirroring solution by having the memory controller 802 supply the same data source (datai0 and datai1 respectively) to two memory modules 806, thereby replicating the data across datao0, datao1, datao2 and datao3. In another embodiment, the memory controller 802 may supply two separate data sources (where datai0 and datai1 are not the same) which are repowered onto datao0, datao1 for datai0 and onto datao2 and datao3 for dataa1. In the event of an uncorrectable error on one or more of the memory modules 806, given that there are point-to-point connections to all memory modules 806 from the bus repeater 906, the rest of the memory modules 806 will still be operational.


Referring to the two to one multiplexing mode 1104 depicted in FIG. 11, the memory modules 806 are supplying the datai0 and datai1 which are multiplexed onto datao0 while the datai2 and datai3 are multiplexed onto datao1. This provides increased bandwidth as compared to the four to one multiplexor mode, with the same uniform memory latency toward the memory controller 802. Memory mirroring can be utilized in this structure whereas the memory controller 802 would choose from datao0 and datao1. In the event of an uncorrectable error on one or more of the memory modules 806, given that there are point-to-point connections to all memory modules 806 from the bus repeater module 906, the rest of the memory modules 806 will still be operational. All four switching modes depicted in FIGS. 10 and 11 may be utilized for data mirroring and/or for increasing memory bus bandwidth. The mirroring schemes and modes described herein intended to be examples and other mirroring schemes may be implemented with exemplary embodiments of the present invention. For example, referring to FIG. 10, memory mirroring may be implemented by replicating the single data source into four identical copies to provide quadruple redundancy for selected mission critical applications.



FIG. 12 is a block diagram of the high level logic flow of a bus repeater module 906 that may be implemented by exemplary embodiments of the present invention to provide segment level sparing and/or other enhanced functionality. The bus repeater module 906 may be located on a memory module 806 as described previously and/or located on a system board or card. The blocks in the lower left and right portions of the drawing (1224, 1228, 1230, 1234) are associated with receiving or driving the high speed bus 804. “Upstream” refers to the bus 902 passing information in the direction of the memory controller 802, and “downstream” refers to the bus 904 passing information away from the memory controller 802.


Referring to FIG. 12, data, command, address, ECC, and clock signals from an upstream memory assembly (i.e., a memory module 806), a memory controller 802 and/or a bus repeater module 906 are received from the downstream memory bus 904 into a receiver module 1224. The receiver functional block 1224 provides macros and support logic for the downstream memory bus 904 and, in an exemplary embodiment of the present invention includes support for a twenty-two bit, high speed, slave receiver bus. The receiver functional block 1224 transmits the clock signals to a clock logic and distribution functional block 1218 (e.g., to generate the four to one clock signals). The clock logic and distribution functional block 1218 also receives data input from the pervasive and miscellaneous signals 1210. These signals typically include control and setup information for the clock distribution PLL's, test inputs for BIST (built-in self-test) modes, programmable timing settings, etc. The receiver functional block 1224 transfers the data, command, ECC and address signals to a bus sparing logic block 1226 to reposition, when applicable, the bit placement of the data in the event that a spare wire utilized during the transmission from the previous memory assembly. In an exemplary embodiment of the present invention, the bus sparing logic block 1226 is implemented by a multiplexor to shift the signal positions, if needed. Next, the original or re-ordered signals are input to another bus sparing logic block 1236 to modify, or reorder if necessary, the signal placement to account for any defective interconnect that may exist between the current memory assembly and a downstream memory assembly. The original or re-ordered signals are then input to a driver functional block 1228 for transmission, via the downstream memory bus 904, to the next memory module 806 in the chain. In an exemplary embodiment of the present invention, the bus sparing logic 1236 is implemented using a multiplexor. The driver functional block 1228 provides macros and support logic for the downstream memory bus 904 and, in an exemplary embodiment of the present invention, includes support for the twenty-two bit, high speed, low latency cascade bus drivers.


In addition to inputting the original or re-ordered signals to the bus sparing logic 1236, the bus sparing logic 1226 also inputs the original or re-ordered signals into a downstream bus ECC functional block 1220 to perform error detection and correction for the frame. The downstream bus ECC functional block 1220 operates on any information received or passed through the bus repeater module 906 from the downstream memory bus 904 to determine if a bus error is present. The downstream bus ECC functional block 1220 analyzes the bus signals to determine if it they are valid. Next, the downstream bus ECC functional block 1220 transfers the corrected signals to a command state machine 1214. The command state machine 1214 inputs the error flags associated with command decodes or conflicts to a pervasive and miscellaneous functional block 1210. The downstream and upstream modules also present error flags and/or error data (if any) to the pervasive and miscellaneous functional block 1210 to enable reporting of these errors to the memory controller, processor, service processor or other error management unit.


Referring to FIG. 12, the pervasive and miscellaneous functional block 1210 transmits error flags and/or error data to the memory controller 802. By collecting error flags and/or error data from each memory module 806 in the structure, the memory controller 802 will be able to identify the failing segment(s), without having to initiate further diagnostics, though additional diagnostics may be completed in some embodiments of the design. In addition, once an installation selected threshold (e.g., one, two, ten, or twenty) for the number of failures or type of failures has been reached, the pervasive and miscellaneous functional block 1210, generally in response to inputs from the memory controller 802, may substitute the spare wire for the segment that is failing. In an exemplary embodiment of the present invention, error detection and correction is performed for every group of four transfers, thereby permitting operations to be decoded and initiated after half of the eight transfers, comprising a frame, are received. The error detection and correction is performed for all signals that pass through the memory module 806 from the downstream memory bus 904, regardless of whether the signals are to be processed by the particular memory module 806. The data bits from the corrected signals are input to the write data buffers 1212 by the downstream bus ECC functional block 1220.


The command state machine 1214 also determines if the corrected signals (including data, command and address signals) are directed to and should be processed by the memory module 806. If the corrected signals are directed to the memory module 806, then the command state machine 1214 determines what actions to take and may initiate DRAM action, write buffer actions, read buffer actions or a combination thereof. Depending on the type of memory module 806 (buffered, unbuffered, registered), the command state machine 1214 selects the appropriate drive characteristics, timings and timing relationships. The write data buffers 1212 transmit the data signals to a memory data interface 1206 and the command state machine 1214 transmits the associated addresses and command signals to a memory command interface 1208, consistent with the DRAM specification. The memory data interface 1206 reads from and writes memory data 1242 to a memory device. The data timing relationship to the command is different depending on the type of memory module 806. For example, when the memory data interface 1206 issues a command to a registered DIMM memory module 804, the command takes an extra clock cycle as compared to a command issued to an unbuffered DIMM memory module 806. In addition, the memory command interface 1208 outputs six differential clocks on twelve wires. To support the use of both unbuffered and registered memory modules 806, the memory a outputs 1204 and the memory b outputs 1202 from the memory command interface 1208 can be logically configured based on the type of memory module 806. For example, when the multi-mode memory device is in communication with two unbuffered DIMM memory modules 806, the memory a outputs 1204 may be directed to the first unbuffered DIMM memory module 806 and the memory b outputs 1202 may be directed to the second unbuffered DIMM memory module 806.


Data signals to be transmitted to the memory controller 802 may be temporarily stored in the read data buffers 1216 after a command, such as a read command, has been executed by the memory module 806, consistent with the memory device ‘read’ timings. The read data buffers 1216 transfer the read data into an upstream bus ECC functional block 1222. The upstream bus ECC functional block 1222 generates check bits for the signals in the read data buffers 1216. The check bits and signals from the read data buffers 1216 are input to the upstream data multiplexing functional block 1232. The upstream data multiplexing functional block 1232 merges the data on to the upstream memory bus 902 via the bus sparing logic 1238 and the driver functional block 1230. If needed, the bus sparing logic 1238 may re-direct the signals to account for a defective segment between the current memory module 806 and the upstream receiving module (or memory controller). The driver functional block 1230 transmits the original or re-ordered signals, via the upstream memory bus 902, to the next memory assembly (i.e., memory module 806) or memory controller 802 in the chain. In an exemplary embodiment of the present invention, the bus sparing logic 1238 is implemented using a multiplexor to shift the signals. The driver functional block 1230 provides macros and support logic for the upstream memory bus 902 and, in an exemplary embodiment of the present invention, includes support for a twenty-three bit, high speed, low latency cascade driver bus.


Data, clock and ECC signals from the upstream memory bus 902 are also received by any upstream bus repeater module 906 in any upstream memory module 806. These signals need to be passed upstream to the next memory module 806 or to the memory controller 802. Referring to FIG. 12, data, ECC and clock signals from a downstream memory assembly (i.e., a memory module 806) are received on the upstream memory bus 902 into a receiver functional block 1234. The receiver functional block 1234 provides macros and support logic for the upstream memory bus 902 and, in an exemplary embodiment of the present invention includes support for a twenty-three bit, high speed, slave receiver bus. The receiver functional block 1234 passes the data and ECC signals, through the bus sparing functional block 1240, to the upstream data multiplexing functional block 1232 and then to the bus sparing logic block 1238. The signals are transmitted to the upstream memory bus 902 via the driver functional block 1230.


In addition to passing the data and ECC signals to the upstream data multiplexing functional block 1232, the bus sparing functional block 1240 also inputs the original or re-ordered data and ECC signals to the upstream bus ECC functional block 1222 to perform error detection and correction for the frame. The upstream bus ECC functional block 1222 operates on any information received or passed through the bus repeater module 906 from the upstream memory bus 902 to determine if a bus error is present. The upstream bus ECC functional block 1222 analyzes the data and ECC signals to determine if they are valid. Next, the upstream bus ECC functional block 1222 transfers any error flags and/or error data to the pervasive and miscellaneous functional block 1210 for transmission to the memory controller 802. In addition, once a pre-defined threshold for the number or type of failures has been reached, the pervasive and miscellaneous functional block 1210, generally in response to direction of the memory controller 802, may substitute the spare segment for a failing segment.


The block diagram in FIG. 12 is one implementation of a bus repeater module 906 that may be utilized by exemplary embodiments of the present invention. The bus repeater module 906 depicted in FIG. 12 provides segment level sparing and bus level ECC. Other implementations are possible without departing from the scope of the present invention.


As described above, the embodiments of the invention may be embodied in the form of computer-implemented processes and apparatuses for practicing those processes. Embodiments of the invention may also be embodied in the form of computer program code containing instructions embodied in tangible media, such as floppy diskettes, CD-ROMs, hard drives, or any other computer-readable storage medium, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. The present invention can also be embodied in the form of computer program code, for example, whether stored in a storage medium, loaded into and/or executed by a computer, or transmitted over some transmission medium, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the computer program code is loaded into and executed by a computer, the computer becomes an apparatus for practicing the invention. When implemented on a general-purpose microprocessor, the computer program code segments configure the microprocessor to create specific logic circuits.


While the invention has been described with reference to exemplary embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.

Claims
  • 1. A method for providing a memory interface, the method comprising: receiving an input signal at a bus repeater module, the input signal from a cascaded memory bus including a plurality of segments and a spare segment in parallel with the plurality of segments;determining a mode associated with the bus repeater module;repositioning bits in the input signal in response to one of the bits being associated with a failing segment in the plurality of segments, the repositioning including substituting the spare segment for the failing segment; andoutputting the input signal to a memory controller or to one or more memory assemblies in response to the mode, the outputting performed via the memory bus.
  • 2. The method of claim 1 wherein the mode is a one to four repower mode and the bus repeater module outputs four identical copies of the input signal to four of the memory assemblies.
  • 3. The method of claim 1 wherein the mode is a four to one multiplexor mode and the bus repeater module multiplexes four input signals into a single signal for output to a memory assembly or to the memory controller.
  • 4. The method of claim 1 wherein the mode is a one to two repower mode and the bus repeater module outputs two identical copies of the input signal to two of the memory assemblies.
  • 5. The method of claim 4 wherein the one to two repower mode performs mirroring functions.
  • 6. The method of claim 1 wherein the mode is a two to one multiplexor mode and the bus repeater module multiplexes two input signals into a single signal for output to a memory assembly or to the memory controller.
  • 7. The method of claim 6 wherein the two to one multiplexor mode performs mirroring functions.
  • 8. The method of claim 1 further comprising performing bus level error detection and correction functions.
  • 9. The method of claim 1 wherein the segments each carry a single signal and the input signal comprises a plurality of single signals each received via a different one of the segments.
  • 10. A storage medium encoded with machine readable computer program code for providing a memory interface, the storage medium including instructions for causing a computer to implement a method comprising: receiving an input signal at a bus repeater module, the input signal from a cascaded memory bus including a plurality of segments and a spare segment in parallel with the plurality of segments;determining a mode associated with the bus repeater module;repositioning bits in the input signal in response to one of the bits being associated with a failing segment in the plurality of segments, the repositioning including substituting the spare segment for the failing segment; andoutputting the input signal to a memory controller or to one or more memory assemblies in response to the mode, the outputting performed via the memory bus.
  • 11. A method for providing a communication interface, the method comprising: receiving an input signal at a bus repeater module, the input signal from a cascaded communication bus including a plurality of segments and a spare segment in parallel with the plurality of segments;determining a mode associated with the bus repeater module;repositioning bits in the input signal in response to one of the bits being associated with a failing segment in the plurality of segments, the repositioning including substituting the spare segment for the failing segment; andoutputting the input signal to one or more communication assemblies in response to the mode, the outputting performed via the communication bus.
  • 12. The method of claim 11 wherein the mode is a one to four repower mode and the bus repeater module outputs four identical copies of the input signal to four of the communication assemblies.
  • 13. The method of claim 11 wherein the mode is a four to one multiplexor mode and the bus repeater module multiplexes four input signals into a single signal for output to a communication assembly.
  • 14. The method of claim 11 wherein the mode is a one to two repower mode and the bus repeater module outputs two identical copies of the input signal to two of the communication assemblies.
  • 15. The method of claim 14 wherein the one to two repower mode performs mirroring functions.
  • 16. The method of claim 11 wherein the mode is a two to one multiplexor mode and the bus repeater module multiplexes two input signals into a single signal for output to a communication assembly.
  • 17. The method of claim 16 wherein the two to one multiplexor mode performs mirroring functions.
  • 18. The method of claim 11 further comprising performing bus level error detection and correction functions.
  • 19. The method of claim 11 wherein the segments each carry a single signal and the input signal comprises a plurality of single signals each received via a different one of the segments.
  • 20. A storage medium encoded with machine readable computer program code for providing a storage interface, the storage medium including instructions for causing a computer to implement a method comprising: receiving an input signal at a bus repeater module, the input signal from a cascaded communication bus including a plurality of segments and a spare segment in parallel with the plurality of segments;determining a mode associated with the bus repeater module;repositioning bits in the input signal in response to one of the bits being associated with a failing segment in the plurality of segments, the repositioning including substituting the spare segment for the failing segment; andoutputting the input signal to one or more communication assemblies in response to the mode, the outputting performed via the communication bus.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation application of U.S. Ser. No. 10/903,178, filed Jul. 30, 2004, now U.S. Pat. No. 7,296,129, the contents of which are incorporated by reference herein in their entirety.

US Referenced Citations (358)
Number Name Date Kind
2842682 Clapper Jul 1958 A
3333253 Sahulka Jul 1967 A
3395400 De Witt Jul 1968 A
3825904 Burk et al. Jul 1974 A
3925904 Kelly Dec 1975 A
4028675 Frankenberg Jun 1977 A
4135240 Ritchie Jan 1979 A
4150428 Inrig et al. Apr 1979 A
4472780 Chenoweth et al. Sep 1984 A
4475194 LaVallee et al. Oct 1984 A
4479214 Ryan Oct 1984 A
4486739 Franaszek et al. Dec 1984 A
4641263 Perlman et al. Feb 1987 A
4654857 Samson et al. Mar 1987 A
4723120 Petty, Jr. Feb 1988 A
4740916 Martin Apr 1988 A
4782487 Smelser Nov 1988 A
4796231 Pinkham Jan 1989 A
4803485 Rypinski Feb 1989 A
4833605 Terada et al. May 1989 A
4839534 Clasen Jun 1989 A
4943984 Pechanek et al. Jul 1990 A
4964129 Bowden, III et al. Oct 1990 A
4964130 Bowden, III et al. Oct 1990 A
4985828 Shimizu et al. Jan 1991 A
5053947 Heibel et al. Oct 1991 A
5177375 Ogawa et al. Jan 1993 A
5206946 Brunk Apr 1993 A
5214747 Cok May 1993 A
5265212 Bruce, II Nov 1993 A
5287531 Rogers, Jr. et al. Feb 1994 A
5347270 Matsuda et al. Sep 1994 A
5357621 Cox Oct 1994 A
5375127 Leak Dec 1994 A
5387911 Gleichert et al. Feb 1995 A
5394535 Ohuchi Feb 1995 A
5410545 Porter et al. Apr 1995 A
5454091 Sites et al. Sep 1995 A
5475690 Burns et al. Dec 1995 A
5513135 Dell et al. Apr 1996 A
5517626 Archer et al. May 1996 A
5522064 Aldereguia et al. May 1996 A
5544309 Chang et al. Aug 1996 A
5546023 Borkar et al. Aug 1996 A
5561826 Davies et al. Oct 1996 A
5592632 Leung et al. Jan 1997 A
5594925 Harder et al. Jan 1997 A
5611055 Krishan et al. Mar 1997 A
5613077 Leung et al. Mar 1997 A
5627963 Gabillard et al. May 1997 A
5629685 Allen et al. May 1997 A
5661677 Rondeau, II et al. Aug 1997 A
5666480 Leung et al. Sep 1997 A
5684418 Yanagiuchi Nov 1997 A
5706346 Katta et al. Jan 1998 A
5737589 Doi et al. Apr 1998 A
5754804 Cheselka et al. May 1998 A
5764155 Kertesz et al. Jun 1998 A
5822749 Agarwal Oct 1998 A
5852617 Mote, Jr. Dec 1998 A
5870325 Nielsen et al. Feb 1999 A
5872996 Barth et al. Feb 1999 A
5881154 Nohara et al. Mar 1999 A
5917760 Millar Jun 1999 A
5917780 Millar Jun 1999 A
5926838 Jeddeloh Jul 1999 A
5928343 Farmwald et al. Jul 1999 A
5930273 Mukojima Jul 1999 A
5959914 Gates et al. Sep 1999 A
5973951 Bechtolsheim et al. Oct 1999 A
5974493 Okumura et al. Oct 1999 A
5995405 Trick Nov 1999 A
6003121 Wirt Dec 1999 A
6011732 Harrison et al. Jan 2000 A
6038132 Tokunaga et al. Mar 2000 A
6049476 Laudon et al. Apr 2000 A
6076158 Sites et al. Jun 2000 A
6078515 Nielsen et al. Jun 2000 A
6081868 Brooks Jun 2000 A
6085276 VanDoren et al. Jul 2000 A
6088817 Haulin Jul 2000 A
6096091 Hartmann Aug 2000 A
6128746 Clark et al. Oct 2000 A
6145028 Shank et al. Nov 2000 A
6158040 Ho Dec 2000 A
6170047 Dye Jan 2001 B1
6170059 Pruett et al. Jan 2001 B1
6173382 Dell et al. Jan 2001 B1
6185718 Dell et al. Feb 2001 B1
6198304 Sasaki Mar 2001 B1
6215686 Deneroff et al. Apr 2001 B1
6216247 Creta et al. Apr 2001 B1
6219288 Braceras et al. Apr 2001 B1
6219760 McMinn Apr 2001 B1
6233639 Dell et al. May 2001 B1
6260127 Olarig et al. Jul 2001 B1
6262493 Garnett Jul 2001 B1
6285172 Torbey Sep 2001 B1
6292903 Coteus et al. Sep 2001 B1
6301636 Schultz et al. Oct 2001 B1
6308247 Ackerman et al. Oct 2001 B1
6317352 Halbert et al. Nov 2001 B1
6321343 Toda Nov 2001 B1
6338113 Kubo et al. Jan 2002 B1
6349390 Dell et al. Feb 2002 B1
6357018 Stuewe et al. Mar 2002 B1
6370631 Dye Apr 2002 B1
6378018 Tsern et al. Apr 2002 B1
6381685 Dell et al. Apr 2002 B2
6393512 Chen et al. May 2002 B1
6393528 Arimilli et al. May 2002 B1
6408398 Frecker et al. Jun 2002 B1
6425044 Jeddeloh Jul 2002 B1
6446174 Dow Sep 2002 B1
6446224 Chang et al. Sep 2002 B1
6467013 Nizar Oct 2002 B1
6473836 Ikeda Oct 2002 B1
6477614 Leddige et al. Nov 2002 B1
6483755 Leung et al. Nov 2002 B2
6484271 Gray Nov 2002 B1
6487102 Halbert et al. Nov 2002 B1
6487627 Willke et al. Nov 2002 B1
6493250 Halbert et al. Dec 2002 B2
6496540 Widmer Dec 2002 B1
6496910 Baentsch et al. Dec 2002 B1
6499070 Whetsel Dec 2002 B1
6502161 Perego et al. Dec 2002 B1
6505305 Olarig Jan 2003 B1
6507888 Wu et al. Jan 2003 B2
6510100 Grundon et al. Jan 2003 B2
6513091 Blackmon et al. Jan 2003 B1
6530007 Olarig et al. Mar 2003 B2
6532525 Aleksic et al. Mar 2003 B1
6546359 Week Apr 2003 B1
6549971 Cecchi et al. Apr 2003 B1
6553450 Dodd et al. Apr 2003 B1
6557069 Drehmel et al. Apr 2003 B1
6564329 Cheung et al. May 2003 B1
6584576 Co Jun 2003 B1
6587912 Leddige et al. Jul 2003 B2
6590827 Chang et al. Jul 2003 B2
6594713 Fuocco et al. Jul 2003 B1
6594748 Lin Jul 2003 B1
6601121 Singh et al. Jul 2003 B2
6601149 Brock et al. Jul 2003 B1
6604180 Jeddeloh Aug 2003 B2
6611905 Grundon et al. Aug 2003 B1
6622217 Gharacorloo et al. Sep 2003 B2
6622227 Zumkehr et al. Sep 2003 B2
6625687 Halber et al. Sep 2003 B1
6625702 Rentschler et al. Sep 2003 B2
6628538 Funaba et al. Sep 2003 B2
6631439 Saulsbury et al. Oct 2003 B2
6636957 Stevens et al. Oct 2003 B2
6643745 Palanca et al. Nov 2003 B1
6671376 Koto et al. Dec 2003 B1
6678811 Rentschler et al. Jan 2004 B2
6681292 Creta et al. Jan 2004 B2
6684320 Mohamed et al. Jan 2004 B2
6697919 Gharachorloo et al. Feb 2004 B2
6704842 Janakiraman et al. Mar 2004 B1
6721185 Dong et al. Apr 2004 B2
6721944 Chaudhry et al. Apr 2004 B2
6738836 Kessler et al. May 2004 B1
6741096 Moss May 2004 B2
6748518 Guthrie et al. Jun 2004 B1
6754762 Curley Jun 2004 B1
6766389 Hayter et al. Jul 2004 B2
6775747 Venkatraman Aug 2004 B2
6791555 Radke et al. Sep 2004 B1
6792495 Garney et al. Sep 2004 B1
6799241 Kahn et al. Sep 2004 B2
6832329 Ahrens et al. Dec 2004 B2
6839393 Sidiropoulos Jan 2005 B1
6845472 Walker et al. Jan 2005 B2
6877076 Cho et al. Apr 2005 B1
6877078 Fujiwara et al. Apr 2005 B2
6882082 Greeff et al. Apr 2005 B2
6889284 Nizar et al. May 2005 B1
6898726 Lee May 2005 B1
6910146 Dow Jun 2005 B2
6918068 Vail et al. Jul 2005 B2
6925534 David Aug 2005 B2
6938119 Kohn et al. Aug 2005 B2
6944084 Wilcox Sep 2005 B2
6948091 Bartels et al. Sep 2005 B2
6949950 Takahashi et al. Sep 2005 B2
6965952 Echartea et al. Nov 2005 B2
6977536 Chin-Chieh et al. Dec 2005 B2
6977979 Hartwell et al. Dec 2005 B1
6993612 Porterfield Jan 2006 B2
6996639 Narad Feb 2006 B2
6996766 Cypher Feb 2006 B2
7039755 Helms May 2006 B1
7047370 Jeter, Jr. et al. May 2006 B1
7047371 Dortu May 2006 B2
7047373 Jeter, Jr. et al. May 2006 B2
7047384 Bodas et al. May 2006 B2
7076700 Rieger Jul 2006 B2
7091890 Sasaki et al. Aug 2006 B1
7103792 Moon Sep 2006 B2
7120743 Meyer et al. Oct 2006 B2
7133790 Liou Nov 2006 B2
7133972 Jeddeloh Nov 2006 B2
7155016 Betts et al. Dec 2006 B1
7177211 Zimmerman Feb 2007 B2
7194593 Schnepper Mar 2007 B2
7197594 Raz et al. Mar 2007 B2
7197670 Boatright et al. Mar 2007 B2
7203318 Collum et al. Apr 2007 B2
7206887 Jeddeloh Apr 2007 B2
7206962 Deegan et al. Apr 2007 B2
7210059 Jeddeloh Apr 2007 B2
7216196 Jeddeloh May 2007 B2
7216276 Azimi et al. May 2007 B1
7222213 James May 2007 B2
7227949 Heegard et al. Jun 2007 B2
7240145 Holman Jul 2007 B2
7260685 Lee et al. Aug 2007 B2
7266634 Ware et al. Sep 2007 B2
7269765 Charlton et al. Sep 2007 B1
7296129 Gower et al. Nov 2007 B2
7313583 Porten et al. Dec 2007 B2
7319340 Jeddeloh et al. Jan 2008 B2
7321979 Lee Jan 2008 B2
7334159 Callaghan Feb 2008 B1
7353316 Erdmann Apr 2008 B2
7363419 Cronin et al. Apr 2008 B2
7363436 Yeh et al. Apr 2008 B1
7370134 Jeddeloh May 2008 B2
7376146 Beverly et al. May 2008 B2
7386575 Bashant et al. Jun 2008 B2
7386771 Shuma Jun 2008 B2
7404118 Baguette et al. Jul 2008 B1
7418526 Jeddeloh Aug 2008 B2
7421525 Polzin et al. Sep 2008 B2
7430145 Weiss et al. Sep 2008 B2
7433258 Rao et al. Oct 2008 B2
20010003839 Kondo Jun 2001 A1
20010029566 Woo Oct 2001 A1
20010029592 Walker et al. Oct 2001 A1
20020019926 Huppenthal et al. Feb 2002 A1
20020059439 Arroyo et al. May 2002 A1
20020083255 Greeff et al. Jun 2002 A1
20020103988 Dornier Aug 2002 A1
20020112119 Halbert et al. Aug 2002 A1
20020112194 Uzelac Aug 2002 A1
20020124195 Nizar Sep 2002 A1
20020124201 Edwards et al. Sep 2002 A1
20020174274 Wu et al. Nov 2002 A1
20030009632 Arimilli et al. Jan 2003 A1
20030028701 Rao et al. Feb 2003 A1
20030033364 Garnett et al. Feb 2003 A1
20030051055 Parrella et al. Mar 2003 A1
20030056183 Kobayashi Mar 2003 A1
20030084309 Kohn May 2003 A1
20030090879 Doblar et al. May 2003 A1
20030105938 Cooksey et al. Jun 2003 A1
20030118044 Blanc et al. Jun 2003 A1
20030126354 Kahn et al. Jul 2003 A1
20030126363 David Jul 2003 A1
20030223303 Lamb et al. Dec 2003 A1
20030229770 Jeddeloh Dec 2003 A1
20030235222 Bridges et al. Dec 2003 A1
20030236959 Johnson et al. Dec 2003 A1
20040006674 Hargis et al. Jan 2004 A1
20040015650 Zumkehr et al. Jan 2004 A1
20040049723 Obara Mar 2004 A1
20040078615 Martin et al. Apr 2004 A1
20040098546 Bashant et al. May 2004 A1
20040098549 Dorst May 2004 A1
20040117588 Arimilli et al. Jun 2004 A1
20040123222 Widmer Jun 2004 A1
20040128474 Vorbach Jul 2004 A1
20040148482 Grundy et al. Jul 2004 A1
20040160832 Janzen et al. Aug 2004 A1
20040163028 Olarig Aug 2004 A1
20040165609 Herbst et al. Aug 2004 A1
20040199363 Bohizic et al. Oct 2004 A1
20040205433 Gower et al. Oct 2004 A1
20040230718 Polzin et al. Nov 2004 A1
20040246767 Vogt Dec 2004 A1
20040250153 Vogt Dec 2004 A1
20040260909 Lee et al. Dec 2004 A1
20040260957 Jeddeloh et al. Dec 2004 A1
20050022065 Dixon et al. Jan 2005 A1
20050023560 Ahn et al. Feb 2005 A1
20050027941 Wang et al. Feb 2005 A1
20050033906 Mastronarde et al. Feb 2005 A1
20050044305 Jakobs et al. Feb 2005 A1
20050050237 Jeddeloh et al Mar 2005 A1
20050050255 Jeddeloh Mar 2005 A1
20050060600 Jeddeloh Mar 2005 A1
20050066136 Schnepper Mar 2005 A1
20050071542 Weber et al. Mar 2005 A1
20050071707 Hampel Mar 2005 A1
20050078506 Rao et al. Apr 2005 A1
20050080581 Zimmerman et al. Apr 2005 A1
20050081085 Ellis et al. Apr 2005 A1
20050081114 Ackaret et al. Apr 2005 A1
20050081129 Shah et al. Apr 2005 A1
20050086424 Oh et al. Apr 2005 A1
20050086441 Myer et al. Apr 2005 A1
20050097249 Oberlin et al. May 2005 A1
20050105350 Zimmerman et al. May 2005 A1
20050120157 Chen et al. Jun 2005 A1
20050125702 Huang et al. Jun 2005 A1
20050125703 Lefurgy et al. Jun 2005 A1
20050138246 Chen et al. Jun 2005 A1
20050138267 Bains et al. Jun 2005 A1
20050144399 Hosomi Jun 2005 A1
20050149665 Wolrich et al. Jul 2005 A1
20050166006 Talbot et al. Jul 2005 A1
20050177677 Jeddeloh Aug 2005 A1
20050177690 LaBerge Aug 2005 A1
20050204216 Daily et al. Sep 2005 A1
20050216678 Jeddeloh Sep 2005 A1
20050220097 Swami et al. Oct 2005 A1
20050223196 Knowles Oct 2005 A1
20050229132 Butt et al. Oct 2005 A1
20050248997 Lee Nov 2005 A1
20050257005 Jeddeloh Nov 2005 A1
20050259496 Hsu et al. Nov 2005 A1
20050289292 Morrow et al. Dec 2005 A1
20050289377 Luong Dec 2005 A1
20060004953 Vogt Jan 2006 A1
20060010339 Klein Jan 2006 A1
20060036826 Dell et al. Feb 2006 A1
20060036827 Dell et al. Feb 2006 A1
20060080584 Hartnett et al. Apr 2006 A1
20060085602 Huggahalli et al. Apr 2006 A1
20060095592 Borkenhagen May 2006 A1
20060095679 Edirisooriya May 2006 A1
20060104371 Schuermans et al. May 2006 A1
20060107175 Dell et al. May 2006 A1
20060112238 Jamil et al. May 2006 A1
20060161733 Beckett et al. Jul 2006 A1
20060162882 Ohara et al. Jul 2006 A1
20060168407 Stern Jul 2006 A1
20060179208 Jeddeloh Aug 2006 A1
20060190674 Poechmueller Aug 2006 A1
20060195631 Rajamani Aug 2006 A1
20060206742 James Sep 2006 A1
20060212666 Jeddeloh Sep 2006 A1
20060224764 Shinohara et al. Oct 2006 A1
20060277365 Pong Dec 2006 A1
20060288172 Lee et al. Dec 2006 A1
20070005922 Swaminathan et al. Jan 2007 A1
20070025304 Leelahakriengkrai et al. Feb 2007 A1
20070038907 Jeddeloh et al. Feb 2007 A1
20070067382 Sun Mar 2007 A1
20070083701 Kapil Apr 2007 A1
20070160053 Coteus Jul 2007 A1
20080043808 Hsu et al. Feb 2008 A1
20080162807 Rothman et al. Jul 2008 A1
20080163014 Crawford et al. Jul 2008 A1
20080222379 Jeddeloh Sep 2008 A1
20090006900 Lastras-Montano et al. Jan 2009 A1
Foreign Referenced Citations (28)
Number Date Country
0229316 Sep 1986 EP
0229316 Jul 1987 EP
0470734 Feb 1992 EP
0470734 Feb 1992 EP
0899743 Jun 1998 EP
0899743 Mar 1999 EP
1429340 Jun 2004 EP
2396711 Jun 2004 GB
2396711 Jun 2004 GB
59153353 Sep 1984 JP
59153353 Sep 1984 JP
0114140 Jun 1989 JP
401144140 Jun 1989 JP
0432614 Nov 1992 JP
04326140 Nov 1992 JP
10011971 Jan 1998 JP
2004139552 May 2004 JP
2008003711 Jan 2008 JP
9621188 Jul 1996 WO
9621188 Jul 1996 WO
9812651 Mar 1998 WO
9812651 Mar 1998 WO
0004481 Jan 2000 WO
0223353 Mar 2002 WO
2005038660 Apr 2005 WO
WO2005038660 Apr 2005 WO
2007109888 Oct 2007 WO
2007109888 Oct 2007 WO
Related Publications (1)
Number Date Country
20070255902 A1 Nov 2007 US
Continuations (1)
Number Date Country
Parent 10903178 Jul 2004 US
Child 11773660 US