SYSTEM, METHOD, APPARATUS AND DIAGNOSTIC TEST FOR PLASMODIUM VIVAX

Information

  • Patent Application
  • 20210132063
  • Publication Number
    20210132063
  • Date Filed
    December 21, 2017
    7 years ago
  • Date Published
    May 06, 2021
    3 years ago
Abstract
A system, method, apparatus and diagnostic test for Plasmodium vivax, to determine a likelihood of a specific timing of infection by P. vivax in a subject, and hence identify individuals with a high probability of being infected with otherwise undetectable liver-stage hypnozoites. The system, method, apparatus and diagnostic test relate to the identification of hypnozoites (“dormant” liver-stages), or at least of the likelihood of the subject being so infected. Optionally and preferably, the specific timing relates to recent infections, for example within the last 9 months.
Description
FIELD OF THE INVENTION

The present invention is of a system, method, apparatus and diagnostic test for relapsing Plasmodium species (i.e Plasmodium vivax and Plasmodium ovale), and in particular, to such a system, method, apparatus and diagnostic test for Plasmodium vivax for characterizing at least one aspect of infection in a subject or a population of subjects.


BACKGROUND OF THE INVENTION


Plasmodium vivax (P. vivax) is one of five species of parasites that cause malaria in humans. This disease is marked by severe fever and pain, and can be fatal. The symptoms are caused by the parasite's infection, and destruction, of red blood cells in the subject. Infection of new subjects occurs when infectious mosquitoes take a blood meal from humans and inoculate parasites with their saliva.


Like one other species that infects humans, P. ovale, P. vivax has the ability to “hide” in the liver of a subject and remain dormant—and asymptomatic—before (re-)emerging to cause renewed bloodstage infections and malarial symptoms. Transmission from humans to mosquitoes can only occur when the sexual stages of the parasite (gametocytes) are circulating in the blood. Liver-stage infection with hypnozoites is completely undetectable and asymptomatic, and transmission to mosquitoes is not possible. P. falciparum and P. knowlesi do not have this ability. P. malariae can cause recurrent infections but it remains unclear if these infections persist in the bloodstream, the liver or another organ. This ability to hide from the immune system in the liver for prolonged periods makes P. vivax and P. ovale particularly difficult to detect and treat.



FIG. 1 shows the overall life cycle of the P. vivax parasite (see Mueller, I. et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infectious Diseases 9, 555-566 (2009)). During a blood meal, a malaria-infected female Anopheles mosquito inoculates sporozoites into the human host (1). Sporozoites infect liver cells (2) and either enter a dormant hypnozoite state or mature into schizonts (3), which rupture and release merozoites (4). After this initial replication in the liver (exo-erythrocytic schizogony A), the parasites undergo asexual multiplication in the erythrocytes (erythrocytic schizogony B). Merozoites infect red blood cells (5). The ring stage trophozoites mature into schizonts, which rupture releasing further merozoites into the blood stream (6). Some parasites differentiate into sexual erythrocytic stages (gametocytes) (7). Blood stage parasites are responsible for the clinical manifestations of the disease.


The gametocytes, male (microgametocytes) and female (macrogametocytes), are ingested by an Anopheles mosquito during a blood meal (8). The parasites' multiplication in the mosquito is known as the sporogonic cycle (C). While in the mosquito's stomach, the microgametes penetrate the macrogametes generating zygotes (9). The zygotes in turn become motile and elongated (ookinetes) (10) which invade the midgut wall of the mosquito where they develop into oocysts (11). The oocysts grow, rupture, and release sporozoites (12), which make their way to the mosquito's salivary glands. Inoculation of the sporozoites (1) into a new human host perpetuates the malaria life cycle.


Diagnosis of subjects with P. vivax infections is of paramount importance to reducing or even eliminating transmission in a population. Such diagnosis would also significantly help individual subjects to receive proper treatment, including those that have only silent liverstage infections. Given the high degree of population mobility today, particularly in response to natural disasters or human conflicts, accurate and rapid diagnosis of all P. vivax infections has become even more important to controlling the disease. In addition, as transmission in countries decreases (as each population approaches elimination of the disease), population-level surveillance becomes increasingly important. This surveillance will aid in determining residual areas of transmission within a country, and can also be used to provide evidence for the absence of transmission indicating that elimination has been achieved.


Some proteins have been very well studied and characterized for diagnostic purposes. For example, merozoite surface protein 1 (MSP1), in particular certain C-terminal MSP1-19 fragments and the N-terminal Pv200L fragments have been described as suitable diagnostic antigens. Some examples of prior publications related to this protein include U.S. Pat. No. 6,958,235, which focuses on a fragment of this protein for diagnostic purposes; WO9208795A1, which focuses on this protein for diagnosis; and US20100119539. Merozoite surface protein 3 (MSP3) is described with regard to a diagnostic tool in U.S. Pat. No. 7,488,489. MSP3.10 [merozoite surface protein 3 alpha (MSP3a)] is described as part of the family of merozoite surface protein 3 like proteins for diagnostic and other purposes in US20070098738. Rhoptry associated membrane antigen is described with regard to a diagnostic tool in EP0372019 B1. Many other proteins were described in relation to their immunogenicity and hence their therapeutic utility as part of a vaccine. Some non-limiting examples are given below.














UniProt
Annotation1
Patent information







A5K3N8
rhoptry neck protein 2,
Vaccine including this protein (US20160158332);



putative (RON2)
specifically described and claimed for diagnosis in




EP2520585, no family members, abandoned in 2013


A5KBS6
hypothetical protein,
WO2015091734 (vaccine)



conserved (PvLSA3d)


A5K4Z2
apical merozoite
U.S. Pat. No. 9,364,525 (one of a list of antigens



antigen 1 (PvAMA1)
for a vaccine, downloaded as US20100150998);




WO2006037807 - structure of this antigen; U.S. Pat.




No. 7,150,875 - vaccine specifically directed




at this antigen


A5K0N7
translocon component
US20140348870 - Especially preferred antigens are



PTEX150, putative
post-challenge immunity associated antigens that



(PTEX150)
are identified via pre-infection suppressive




treatment, controlled sub-symptomatic infection to




develop immunity, and comparative proteomic




differential analysis. WO2010127398 - more focused




on treatment


A5KBL6
merozoite surface
WO2014186798 - immune stimulation (1 of a long



protein 5
list of diseases and antigens); U.S. Pat. No.




8,350,019 (focuses on this protein for diagnostic




use); WO2015031904 - use of this protein to




determine if an individual is protected against




malaria; WO2016030292 - focused on treatment;




US20110020387 - malaria vaccine


A5K800
MSP7 [merozoite surface
EP2990059 - therapeutic but mentions MSP7



protein 7 (MSP7)]
specifically


A5K736
reticulocyte binding
U.S. Pat. No. 8,703,147 - treatment and prevention



protein 2b (RBP2b)
of malaria


A5KAV2
merozoite surface
EP2223937 - prevention and treatment of malaria;



protein 3 (MSP3.3)
describes the gene family that includes this protein




for diagnosis and treatment - EP1689866


A5KAU1
merozoite surface
US20140348870 - identified this protein as



protein 8, putative
immunogenic


A5K806
thrombospondin-related
Immunogenic, part of a vaccine: US20100272745,



anonymous protein
U.S. Pat. No. 7,790,186, U.S. Pat. No. 7,150,875,



(PvTRAP/SSP2)
WO2013142278, WO2015091734


A5KDR7
Duffy receptor
mentioned as immunogenic protein, part of a



precursor (DBP)
vaccine: U.S. Pat. No. 7,790,186


A5KAW0
MSP3.10 [merozoite
US20070098738 - describes entire protein family;



surface protein
US707129 - describes various members of this



3 alpha (MSP3a)]
family as being immunogenic









Still other proteins have barely been described or characterized in the literature. In some cases, these proteins have not yet been described with regard to their stage in the P. vivax life cycle. In other cases, an initial determination of the stage has been made but their diagnostic or therapeutic utility is not known. A non-limiting list of some of these proteins is provided below. A further list is provided with regard to Appendix I, although optionally any annotated proteins from P. vivax in Uniprot (http://www.uniprot.org/uniprot/) or another suitable protein database could be included.
















Uniprot
Protein name









A5K7E7
hypothetical protein, conserved



A5K482
hypothetical protein, conserved



A5K0Q6
hypothetical protein, conserved



A5K4N0
hypothetical protein, conserved



A5KAP7
hypothetical protein, conserved



A5K4I6
hypothetical protein, conserved



A5K659
hypothetical protein, conserved



A5KB45
hypothetical protein, conserved










Very few attempts have been made to characterize the life cycle of the parasite within the body for diagnostic purposes, in terms of the dynamics of the proteins or antibody responses to specific proteins present in the blood. For example, an assay for determining a state of protective immunity is described in US20160216276. However, the disclosure relates to diagnostic assays for identifying individuals that are protected against Plasmodium falciparum caused malaria. As noted above, P. falciparum does not have a dormant liver stage with long-latency giving rise to relapses. This patent application does not mention P. vivax.


Other prior art disclosures for diagnostics focus only on the blood stage of P. vivax, which again prevents a complete picture of the dynamics of the infection in the subject from being determined. U.S. Pat. No. 6,231,861 and US20090117602 both suffer from this deficiency.


In other cases, where a plurality of antigens were examined for malarial diagnostics of P. vivax, the results still did not provide a complete picture of the dynamics of the infection in the subject. For example, “Genome-Scale Protein Microarray Comparison of Human Antibody Responses in Plasmodium vivax Relapse and Reinfection” (Chuquiyauri et al; Am. J. Trop. Med. Hyg., 93(4), 2015, pp. 801-809) suffered from the following drawbacks:


i) It only features antibody signatures that differentiate between blood-stage infections that are thought to stem either from direct infections or relapsing infections;


ii) The phenotypes are of poor quality because they are focused on genotyping with only one gene, so may overestimate the number of new infections vs relapses;


iii) They are only looking at the presence and titer of antigens at one timepoint (i.e. at the time of infection).


In another example, “Serological markers to measure recent changes in malaria at population level in Cambodia” (Kerkhof et al; Malaria Journal, 15 (1), 2016, pp. 529, the authors calculated estimated antibody half-lives to 19 Plasmodium proteins, including 5 P. vivax proteins. These 5 proteins are well-known vaccine candidates (CSP, AMA1, EBP, DBP and MSP1), and the work included no formal antigen down-selection. A major limitation of this study is that individuals were only assessed for malaria prevalence every 6 months, and hence the estimated half-lives are not a true biological reflection of what occurs in the absence of re-infection. The authors only identified one P. vivax antigen, EBP, that had an estimated antibody half-life of less than 2 years.


BRIEF SUMMARY OF THE INVENTION

The present invention, in at least some embodiments, is of a system, method, apparatus and diagnostic test for Plasmodium vivax, to determine a likelihood of a specific timing of infection by P. vivax in a subject, and hence identify individuals with a high probability of being infected with otherwise undetectable liver-stage hypnozoites. According to at least some embodiments, the system, method, apparatus and diagnostic test relate to the identification of hypnozoites (“dormant” liver-stages), or at least of the likelihood of the subject being so infected. Optionally and preferably, the specific timing relates to recent infections, for example within the last 9 months. Without wishing to be limited by a closed list, the present invention is able to identify such recent infections, and not just current infections.


Non-limiting examples of elapsed time periods since an infection include time since infection ranging from 0 to 12 months, and each time period in between, by month, by week, and/or by day. Optionally and preferably a particular time period is determined as a binary decision of a more recent or an older infection, with each time point as a cut-off. As a non-limiting example, one such cut off could determine whether an infection in a subject was within the past 9 months or later than the past 9 months.


Optionally the timing of such an infection may also be determined, such that one or more of the following parameters may be determined. One such parameter is optionally whether the infection is a first infection in the patient, of P. vivax generally or of a particular strain of P. vivax. As there is no sterilizing immunity in malaria, immunity to one strain does not necessarily confer immunity to another, different strain. However, as described in greater detail below with regard to the examples, the present invention was tested by using samples from three different regions (including Brazil, Thailand and the Solomon Islands). These three populations are genetically highly diverse and represent the major part of the global genetic variation in P. vivax. Consequently, the present inventors believe, without wishing to be limited by a single hypothesis, that it will work anywhere in the world. Other parameters relate to time elapsed from the previous infection.


According to at least some embodiments, the antibody measurements may optionally be used to provide an estimation of elapsed time since last infection. An estimate of the time since last P. vivax blood-stage infection—depending on the available calibration data—can be defined either as the time since last PCR-detectable blood-stage parasitemia, or as the time since last infective mosquito bite. Time since last infection can be estimated continuously or categorically. Concurrent estimation of uncertainty will be important.


According to at least some embodiments, the antibody measurements may optionally be used to provide a determination of medium-term serological exposure, for example a frequency of infections during a particular time period and/or time since last infection.


According to at least some embodiments, there is provided a system, method, apparatus and diagnostic test for detection of a “silent” (asymptomatic or presymptomatic) infection by P. vivax.


According to at least some embodiments, there is provided a system, method, apparatus and diagnostic test for detection of a dormant infection, in which P. vivax is present in the liver but is not present at detectable levels in the blood. As described herein, detection of a dormant infection optionally comprises prediction from an indirect measurement of an antibody level.


During the life cycle of P. vivax, blood-stage forms of the parasite can initially be present at the same time as arrested liver forms, as described in the Background of the Invention. Even after the blood-stage infection has cleared, hypnozoites can still be present in the liver, and the parasite may still be indirectly detected via persisting antibody responses against the primary blood-stage infection. According to at least some embodiments, there is provided a system, method, apparatus and diagnostic test for detection of antibodies to malarial proteins that are present in the blood that indicate a high degree of probability of liver-stage infection.


According to at least some embodiments, there is provided a system, method, apparatus and diagnostic test for determination of the progression of infection by P. vivax in a population of a plurality of subjects. Optionally, it is possible to determine the rate of propagation of a particular Plasmodium species in a population not previously exposed to that species.


With regard to the diagnostic test, in at least some embodiments, there is provided a plurality of antibodies that bind to a plurality of antigens in a blood sample taken from the subject. Optionally any suitable tissue biological sample from a subject may be used for detecting a presence and/or level of a plurality of antibodies.


According to at least some embodiments, the dynamics of the measured antibodies preferably include a combination of short-lived and long-lived antibodies. Without wishing to be limited by a single hypothesis or a closed list, such a combination is useful to reduce measurement error.


Optionally the level of antibodies is measured at one time point or a plurality of time points.


Optionally, the presence of the actual antibodies in the blood of the subject is measured at a plurality of time points to determine decay in the level of the antibody in the blood. Such a decay in the level is then optionally and preferably fitted to a suitable model as described herein, in order to determine at least one of the infection parameters as described above. More preferably, decay of the level of a plurality of different antibodies is measured. Optionally and more preferably, the different antibodies are selected to have a range of different half-lives. Optionally, a maximum number of different antibodies is measured, which is optionally up to 20 or as few as two, or any integral number in between. According to at least some embodiments, the number of antibodies is preferably 4 or 8.


According to at least some e rtbodiments, the level is measured of at least one antibody to a protein selected from the group consisting of: PVX_099980, PVX_112670, PVX_087885, PVX_082650, PVX_088860, PVX_112680, PVX_112675, PVX_092990, PVX_091710, PVX_117385, PVX_098915, PVX_088820, PVX_117880, PVX_121897, PVX_125728, PVX_001000, PVX_084340, PVX_090330, PVX_125738, PVX_096995, PVX_097715, PVX_094830, PVX_101530, PVX_090970, PVX_084720, PVX_003770, PVX_112690, PVX_003555, PVX_094255, PVX_090265, PVX_099930, PVX_123685, PVX_002550, PVX_082700, PVX_097680, PVX_097625, PVX_082670, PVX_082735, PVX_082645, PVX_097720, PVX_000930, PVX_094350, PVX_099930, PVX_114330, PVX_088820, PVX_080665, PVX_092995, PVX_087885, PVX_003795, PVX_087110, PVX_087670, PVX_081330, PVX_122805, RBP1b (P7), RBP2a (P9), RBP2b (P25), RBP2cNB (M5), RBP2-P2 (P55), PvDBP R3-5, PvGAMA, PvRipr, PvCYRPA, Pv DBPII (AU), PvEBP, RBP1a (P5) and Pv DBP (SacI).


Preferably, the level is measured of at least one antibody to a protein selected from the group consisting of PVX_099980, PVX_112670, PVX_087885, PVX_082650, PVX_088860, PVX_112680, PVX_112675, PVX_092990, PVX_091710, PVX_117385, PVX_098915, PVX_088820, PVX_117880, PVX_121897, PVX_125728, PVX_001000, PVX_084340, PVX_090330, PVX_125738, PVX_096995, PVX_097715, PVX_094830, PVX_101530, PVX_090970, PVX_984720, PVX_003770, PVX_112690, PVX_003555, PVX_094255, PVX_090265, PVX_099930 and PVX_123685.


More preferably, the level is measured of at least one antibody to a protein selected from the group consisting of PVX_099980, PVX_112670, PVX_087885, PVX_082650, PVX_096995, PVX_097715, PVX_094830, PVX_101530, PVX_090970, PVX_084720, PVX_003770, PVX_112690, PVX_003555, PVX_094255, PVX_090265, PVX_099930 and PVX_123685.


Most preferably, the level is measured of at least one antibody to a protein selected from the group consisting of PVX_099980, PVX_112670, PVX_087885 and PVX_082650.


According to at least some embodiments, preferably the level is measured of at least one antibody to a protein selected from the group consisting of RBP2b, L01, L31, X087885, PvEBP, L55, PvRipr, L54, L07, L30, PvDBPII, L34, X092995, L12, RBP1b, L23, L02, L32, L28, L19, L36, L41, X088820 and PvDBP . . . SacI.


More preferably the level is measured of at least one antibody to a protein selected from the group consisting of RBP2b, L01, L31, X087885, PvEBP, L55, PvRipr, L54, L07, L30, PvDBPII, L34, X092995, L12 and RBP1b.


Also more preferably the level is measured of at least one antibody to a protein selected from the group consisting of RBP2b, L01, L31, X087885, PvEBP, L55, PvRipr and L54.


Most preferably the level is measured of at least one antibody to a protein selected from the group consisting of RBP2b and L01.


A table containing additional proteins against which antibodies may optionally be measured is provided herein in Appendix I, as described in greater detail below, such that the level of one or more of these antibodies may optionally be measured.


Appendix II gives a list of preferred proteins against which antibodies may be measured, while Appendix III shows a complete set of data for antibodies against the proteins in Appendix II. Appendix III is given in two parts, due to the size of the table: Appendix IIIA and Appendix IIIB. The references to gene identifiers in Appendix II are the common ones used for Plasmodium—from PlasmoDB website: http://plasmodb.org.plasmo/.


For any protein described herein, optionally a fragment and/or variant may be used for detecting the presence and/or level of one or more antibodies in a biological sample taken from a subject.


According to at least some embodiments, a biologically-motivated model of the decay of antibody titers over time is used to determine a statistical inference of the time since last infection. The model preferably uses previously determined decay rates of a plurality of different antibodies to determine a likelihood that infection in the subject occurred within a particular time period. Optionally such previously determined decay rates may be achieved through estimation of antibody decay rates from longitudinal data, or estimation of decay rates from cross-sectional antibody measurements.


With regard to estimation of antibody decay rates from longitudinal data, preferably such an estimation is performed as described in equation (1), which is a mixed-effects linear regression model:





log(Aijk)˜(αk0ik)+(rk0+rik)tjk





αik˜N(0, σα,k)





rik˜N(0, σr,k)





εk˜N(0, σm,k)   Equation 1


For the above equation to be true, the following assumptions were made. We assume that for individual i we have measurements of antibody titer Aijk at time j to antigen k. We assume that at time 0, antibody titers are Normally distributed5 with mean αk0 and standard deviation σα,k on a log-scale. We assume that an individual's rate of antibody decay is drawn from a Normal distribution with mean rk0 and standard deviation σr,k.


According to at least some embodiments, the plurality of different antibodies selected maximizes probability of determining at least one of the infection parameters as described above. A method for such a selection process is described below in Example 3, Optionally the plurality of antibodies is selected for determining an answer to a binary determinant, such as for example, whether an individual was infected before x months ago or after as previously described.


According to at least some embodiments, the model for determining at least one parameter about the infection in the subject may optionally comprise one or more of the following algorithms: linear discriminant analysis (LDA), quadratic discriminant analysis (ODA), combined antibody dynamics (CAD), decision trees, random forests, boosted trees and modified decision trees.


According to at least some embodiments, the levels of antibody in a blood-sample can be measured and summarized in a variety of ways, for input to the above described model.


a) Continuous Measurement


A continuous measurement that has a monotonic relationship with antibody titer. It can be compared with a titration curve to produce an estimate of antibody titer.


b) Binary Classification


Assesses whether antibody levels are greater or less than some threshold


c) Categorical Classification


Assigns antibody levels to one of a set of pre-defined categories, e.g. low, medium, high. A categorical classification can be generated via a series of binary classifications.


According to at least some embodiments, antibody levels may optionally he measured in a subject in a number of different ways, including but not limited to, bead-based assays (e.g. AlphaScreen® or Luminex® technology), the enzyme linked immuosorbent assay (ELISA), protein microarrays and the luminescence immunoprecipitation system (LIPS). All the aforementioned methods generate a continuous measurement of antibody.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a background art description of the lifecycle of P. vivax (see Mueller, I. et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infectious Diseases 9, 555-566 (2009)).



FIG. 2 shows a method for data processing and down-selection of candidate serological markers.



FIG. 3 shows an example of two differing antibody kinetic profiles. Antibody responses at the four time-points measured in the AlphaScreen® assay are shown for two proteins, PVX_099980 and PVX_122680. An arbitrary positivity cut-off is marked at 0.94 (the average of the wheat germ extract control well+6×standard deviation). Data is generated from 32 individuals in Thailand.



FIG. 4 shows characteristics of the top 55 protein constructs. (A) Length of the estimated antibody half-lives, note for 4 proteins the classification was different between Thailand and Brazil. (B)-(F) Details of protein characteristics as determined by PlasmoDB release 25 or published literature: (B) predicted expression stage, (C) presence of a signal peptide sequence, (D) presence of transmembrane domain/s, (E) presence of a GPI anchor, (F) annotation. TM=transmembrane domains, MSPs=merozoite surface proteins, RBPs reticulocyte binding proteins.



FIG. 5 shows correlation between antibody measurements in Thailand and Brazil. Correlation of data from the antigen discovery study generated using the Alpha Screen® assay. Correlations are shown for the 55 down-selected candidate serological markers. (A) Comparison of the proportion of individuals defined as positive at time of P. vivax infection (antibody value above the lower point of the standard curve, i.e. 0). (B) Comparison of the geometric mean antibody titers (GMT). (C) Comparison of the estimated antibody half-lives. Spearman correlation coefficients, r, are shown. Data was generated from 32 individuals in Thailand and 33 in Brazil.



FIG. 6A shows optimization of Luminex® bead-array assay for the first 17 proteins. Log-linear standard curves were achieved for all proteins, using the amounts of protein shown for one bulk reaction of 500 μl beads.



FIGS. 6B-6D show additional development and optimization of the Luminex bead-array assay for all 65 proteins assessed in the validation study as follows. FIG. 6B shows 40 down-selected proteins. FIG. 6C shows the remaining 25 proteins. Log-linear standard curves were achieved for all proteins. The amount of protein for one bulk reaction of 500 ul beads is shown in FIG. 6D, with the line indicating the median (1 and 1.08 ug, respectively).



FIG. 7 shows the association of antibody levels with current P. vivax infections in the Thai validation cohort. Antibody responses were measured at the last time-point of the Thai cohort against the first 17 proteins assessed, using the Luminex® bead-array assay. The association between antibody responses and current infection was assessed using a logistic regression model, adjusting for age, sex and occupation. Odds ratios are shown, with 95% confidence intervals. Associations for all antibodies were significant (p<0.05). The estimate of antibody half-life shown is based on the antigen discovery dataset (AlphaScreen®).



FIG. 8 shows association of antibody levels with past P. vivax exposure in the Thai validation cohort. Antibody responses were measured at the last time-point of the Thai cohort against the first 17 proteins assessed, using the Luminex® bead-array assay. The association between antibody responses and total exposure over the past year was assessed using a generalised linear model, adjusting for age, sex, occupation and current infection status. Exponentiated coefficients are shown, with 95% confidence intervals. Associations for all antibodies, except PVX_09070, were significant (p<0.05). The estimate of antibody half-life shown is based on the antigen discovery dataset (AlphaScreen®).



FIG. 9 shows the association of antibody levels with current P. vivax infections in the Brazilian validation cohort. Antibody responses were measured at the last time-point of the Brazilian cohort against the first 17 proteins assessed, using the Luminex® bead-array assay. The association between antibody responses and current infection was assessed using a logistic regression model, adjusting for age, sex and occupation. Odds ratios are shown, with 95% confidence intervals. Associations for all antibodies, except PVX_088860, were significant (p<0.05). The estimate of antibody half-life shown is based on the antigen discovery dataset (AlphaScreen®).



FIG. 10 shows the association of antibody levels with past P. vivax exposure in the Brazilian validation cohort. Antibody responses were measured at the last time-point of the Brazilian cohort against the first 17 proteins assessed, using the Luminex® bead-array assay. The association between antibody responses and total exposure over the past year was assessed using a generalised linear model, adjusting for age, sex, occupation and current infection status. Exponentiated coefficients are shown, with 95% confidence intervals. Associations for 10 of the 17 antibodies were significant p<0.05). The estimate of antibody half-life shown is based on the antigen discovery dataset (AlphaScreen®).



FIG. 11 shows longitudinal antibody dynamics of 4 antigens from 8 Thai participants in the antigen discovery cohort. For each blood sample antibody titers were measured in triplicate, using the AlphaScreen® assay. Each colour corresponds to antibodies to a different antigen. The lines represent the fit of the mixed-effects regression model described below.



FIG. 12 shows the relationship between antibody titers to 8 P. vivax antigens and time since last PCR-detectable in individuals from a malaria-endemic region of Thailand (validation study, antibodies measured via Luminex® bead-array assay). The grey bars denote individuals with current infection (n=25); infection within the last 9 months (n=47); infection 9-14 months ago (n=25); and no infection detected within the last 14 months (n=732). The orange bars show the antibody titers from three different panels of negative controls.



FIG. 13 presents the association between measured antibody titer xik and time since infection t. (a) There are three sources of variation in the antibody titer xik measured at time t since last infection: (i) variation in initial antibody titer; (ii) between individual variation in antibody decay rate; and (iii) measurement error. (b) Given estimates of the sources of variation, we can estimate the distribution of the time since last infection. The maximum likelihood estimate and the 95% confidence intervals of our estimate are indicated in blue.



FIG. 14 shows the dynamics of multiple antibodies. The variance in initial antibody titer, antibody decay rates and measurement error are now described by covariance matrices, which account for the correlations between antibodies.



FIG. 15 shows an example of QDA classification for participants from the Thai validation cohort. Antibody measurements were made using the Luminex® bead-array assay. Each point corresponds to a measurement from a single individual with log(anti-L01 antibody titer) on the x-axis and log(anti-L22 antibody titer) on the y-axis. The blue ellipse represents the multivariate Gaussian fitted to data from individuals with ‘old’ infections and the red ellipse represents the multivariate Gaussion fitted to data from individuals with ‘new’ infections. The dashed lack line represents the boundary for classifying individuals according to whether or not they have had a recent infection.



FIG. 16 shows receiver operator characteristic (ROC) curves estimated via cross-validation for LDA (blue) and QDA (black) classification algorithms, using the Thai validation data measured via the Luminex® bead-array assay.



FIG. 17 shows an example of a decision tree for classifying old versus new infections using measurements of antibodies to 6 P. vivax antigens, using the Thai validation data measured via the Luminex® bead-array assay.



FIG. 18 shows ROC curve demonstrating the association between sensitivity and specificity for a decision tree algorithm, using the Thai validation data measured via the Luminex® bead-array assay. These curves have been generated through cross-validation by splitting the data into training and testing sets. The algorithm is formulated using the training data set and the sensitivity and specificity evaluated on the testing data set. The colours correspond to different subsets of antigens. Notably, we can obtain nearly 80% sensitivity with specificity >95%.



FIG. 19 shows a random forest variable importance plot of the contribution of antibodies to 17 antigens towards correct classification of infections into ‘new’ versus ‘old’, using the Thai validation data measured via the Luminex® bead-array assay. Antigens with greater values of ‘MeanDecreaseAccuracy’ are considered the most informative. Therefore L01 provides the most information for classification purposes.



FIG. 20 shows an example of antigen down-selection using the simulated annealing algorithm. Data comes from the antigen discovery study using the AlphaScreen® assay. (A) Including additional antigens increases the likelihood that infection times will be correctly classified, but with diminishing returns. (B) Each column of the heatmap denotes one of K=98 antigens. The y-axis denotes the maximum number of antigens that can be included in a panel. Red antigens are more likely to be included in a panel of a given size. (C) Example of predicting time since last infection in 4 individuals using a panel of 15 antigens. The vertical dashed line at 6 months represents an infection occurring 6 months ago. The solid black curve denotes the estimated distribution of the time since last infection. The green point denotes the maximum likelihood estimate of the model, and the vertical green bars denote the 95% confidence intervals. The red, shaded area denotes infection within the last 9 months. If more than 50% of the probability mass of the distribution is in this region, then the infection will be classified as having occurred within the last 9 months.



FIG. 21 shows comparison of age-stratified prevalence of PCR detectable blood-stage infection within the last 9 months;



FIG. 22 shows measured antibody titers to four P. vivax antigens from Thailand, Brazil and the Solomon Islands, and from three panels of negative controls. The box plots show the median, interquartile range and 95% range of measured antibody titers. The horizontal dashed lines represent the lower and upper limits of detection;



FIGS. 23A-23C show an overview of cross-validated random forests classification algorithms. The classifiers were trained on data from either Thailand, Brazil or The Solomon Islands; and



FIG. 24 shows an exemplary network visualization of combinations of 4 antigens. The size of the node represents the probability that an antigen appears in the best performing combinations. The width and darkness of the edges represents the probability that two antigens are selected together in the best performing combinations. Red denotes proteins purified at high yield by CellFree Sciences (the 40 down selected proteins, the results for which are shown in FIG. 6B). Blue denotes vaccine candidate antigens. Green denotes proteins expressed in wheat-germ by Ehime University. Blue and green proteins are the 25 additional proteins, the results for which are shown in FIG. 6C.



FIG. 25 shows cross-validated Receiver Operating Characteristic (ROC) curves from linear discriminant analysis (LDA) classifiers trained and tested using combinations of four antigens from Thailand, Brazil and The Solomon Islands.


Description of at Least Some Embodiments

The present invention, in at least some embodiments, is of a system, method, apparatus and diagnostic test for at least Plasmodium vivax, and optionally other species such as P. ovale, to determine a likelihood of a concurrent or the specific timing of a recent past infection by P. vivax in a subject, and hence identify individuals with a high probability of being infected with otherwise undetectable liver-stage hypnozoites. According to at least some embodiments, the system, method, apparatus and diagnostic test relate to the identification of hypnozoites (“dormant” fiver-stages), or at least of the likelihood of the subject being so infected. Optionally and preferably, the specific timing relates to recent infections, for example within the last 9 months. Without wishing to be limited by a closed list, the present invention is able to identify such recent infections, and not just current infections.


According to at least some embodiments, the antibody measurements may optionally be used to provide an estimation of elapsed time since last infection. An estimate of the time since last P. vivax blood-stage infection—depending on the available calibration data, the time since last infection can be defined either as the time since last PCR-detectable blood-stage parasiternia, or as the time since last infected mosquito bite. Time since last infection can be estimated continuously or categorically. Concurrent estimation of uncertainty will be important.


According to at least some embodiments, the antibody measurements may optionally be used to provide a determination of medium-term serological exposure, for example a frequency of infections during a particular time period and/or time since last infection.


According to at least some embodiments, there is provided a system, method, apparatus and diagnostic test for detection of a “silent” (asymptomatic or presymptomatic) infection by P. vivax.


Protein Nomenclature

Throughout the below experiments, simplified names have been used for the proteins assessed. In the antigen discovery experiments using the AlphaScreen® assay, 342 proteins were assessed. These proteins were given codes consisting of single letters followed by 2 numbers in most instances, and on occasion 3 numbers.


In the validation experiments using the multiplexed assay (Luminex® technology), 40 proteins (out of the 53 potential candidates down-selected) were assessed. These proteins have been given codes beginning with ‘L’ followed by 2 numbers. These proteins were supplemented by an additional 25 proteins expressed in a variety of systems. These proteins have been given codes beginning with ‘V’ or ‘X’ followed by 2 numbers. The codes used for the tested candidates are outlined below, as well as in Appendix II, in reference to their PlasmoDB gene ID (plasmodb.org).

















PlasmoDB ID
AlphaScreen
Luminex









PVX_099980
D10
L01



PVX_096995
J12
L02



PVX_088860
L19
L03



PVX_097715
N17
L07



PVX_112680
K21
L06



PVX_094830
N13
L10



PVX_112675
B19
L11



PVX_112670
G21
L12



PVX_101530
D21
L05



PVX_090970
E10
L14



PVX_084720
B8
L18



PVX_003770
P17
L19



PVX_092990
H14
L20



PVX_112690
K10
L21



PVX_091710
F13
L22



PVX_087885
N9
L23



PVX_003555
O21
L24










A complete list of all sequences considered, plus the sequences themselves, may be found in Appendices I and II combined. These sequences include the reference to the amino acid and nucleic acid sequence records of the relevant antigens, plus actual sequences generated for testing. The actual amino acid sequences generated for testing include a methionine at the start (N-terminus) and a His-tag at the end (C-terminus) as non-limiting examples only. The nucleic acid sequences so generated correspond to these amino acid sequences. It should be noted that the sequences listed are intended as non-limiting examples only, as different sequences and/or different antigens may optionally be used with the present invention, additionally or alternatively. The amino acid sequences for the specific proteins referred to herein may optionally be obtained from Uniprot or another suitable protein database.





EXAMPLE 1
Testing of Antigens

This non-limiting Example relates to testing of antibody responses to various P. vivax proteins, present in the blood, as potential antigens for a diagnostic test.


Materials and Methods
Ethics Statement.

The relevant local ethics committees approved all field studies and all patients gave informed consent or assent. The Ethics Committee of the Faculty of Tropical Medicine, Mahidol University, Thailand approved the Thai antigen discovery and validation studies (MUTM 2014-025-01 and 02, and MUTM 2013-027-01, respectively). The Ethics Review Board of the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD) (957.875/2014) approved the Brazilian antigen discovery study. The samples used from Brazil for the validation study were approved by the FMT-HVD (51536/2012), by the Brazilian National Committee of Ethics (CONEP) (349.211/2013) and by the Ethics Committee of the Hospital Clinic, Barcelona, Spain (2012/7306). The National Health Research and Ethics Committee of the Solomon Islands Ministry of Health and Medical Services (HRC12/022) approved collection of the samples used from the Solomon Islands for the validation study. The Human Research Ethics Committee at WEHI approved samples for use in Melbourne (#14/02),


Field Sites and Sample Collection: Antigen Discovery Study.

Samples from two longitudinal cohorts, located in Thailand and Brazil, were used for the antigen discovery studies. The longitudinal study in Thailand was conducted from April 2014 to September 2015, as previously described (Longley et al., Am J Trop Med Hyg. 2016 Nov. 2; 95(5):1086-1089). Briefly, 57 symptomatic P. vivax patients were enrolled from either the Tha Song Yang malaria clinic or hospital. Patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency and those aged younger than 7 years or more than 80 years were excluded. Patients were treated with chloroquine (25 mg base/kg body weight, administered over 3 days) and primaquine (15 mg daily, for 14 days) according to the standard Thai treatment regimen. Anti-malarial drugs were given under directly-observed treatment in order to reduce the likelihood of treatment failure and the presence of recurrent infections during follow-up. Volunteers were followed for 9-months following enrolment, with finger-prick blood samples collected at enrolment and week 1, then every 2 weeks for 6 months, then every month until the end of the study. Blood was separated into packed red cells and plasma at the field site. All blood samples were analysed by both light microscopy and quantitative PCR (qPCR) for the presence of blood-stage parasites. A sub-set of volunteers, n=32, were selected for use in the antigen discovery project. These volunteers had no detectable recurrent infections during 9-months follow-up, and were the first to complete follow-up.


The longitudinal study in Brazil followed the same format as in Thailand. The study was conducted from May 2014 to May 2015. 91 malaria patients at Fundação de Medicina Tropical Doutor Heitor Vieira Dourado in Manaus aged between 7 and 70 years were enrolled. Individuals with G6PD deficiency or chronic diseases were not enrolled. Patients were treated according to the guidelines of the Brazilian Ministry of Health (3 days chloroquine, 7 days primaquine). Follow-up intervals with finger-prick blood sample collection were as in the Thai study. A sub-set of volunteers, n=33, whom had no detectable recurrent infections during 9-months follow-up, were selected for use in the antigen discovery project.


Field Sites and Sample Collection: Validation Study.

For the validation studies, samples collected from four observational longitudinal cohort studies, conducted in Thailand, Brazil and the Solomon Islands, were used (data from the Solomon Islands not shown). Samples were collected from a cohort of volunteers every month for 1 year. Plasma samples from the final cohort time-point were used in the validation study, n=829 Thailand, n=925 Brazil, and n=751 Solomon Islands.


The Thailand observational cohort was conducted from May 2013 to June 2014 in the Kanchanaburi and Ratchaburi provinces of western Thailand. The design of this study has been published (Longley et al, Clin Vaccine Immunol. 2015 Dec. 9; 23(2):117-24). Briefly, a total of 999 volunteers were enrolled (aged 1-82 years, median 23 years). Volunteers were sampled every month over the yearlong cohort, with 14 active case detection visits performed in total. A total of 609 volunteers attended all visits, with 829 attending the final visit. At each visit, volunteers completed a brief survey outlining their health over the past month (to determine the possibility of missed malarial infections), in addition to travel history and bed net usage. A finger-prick blood sample was also taken and axillary temperature recorded. Blood samples were separated into packed red blood cells, for detection of malaria parasites, and plasma, for antibody measurements, at the field sites. In addition to the monthly active case detection visits, passive case detection was also performed routinely by local malaria clinics.


The Brazilian observational cohort was conducted from April 2013 to April 2014 in three neighbouring communities located on the outskirts of Manaus, Amazonas State. Briefly, a total of 1274 residents of all age groups were enrolled (range 0-102 years, median 25 years). Volunteers were sampled every month over the yearlong period, with 13 active case detection visits performed in total. At each visit a finger-prick blood sample was collected, with the exception of children aged less than one in which blood was collected from the heel or big toe. As per the Thai cohort study, at each visit body temperature was also recorded and a questionnaire undertaken outlining the participants' health, bed net usage and travel history. Passive case detection was performed routinely by local health services. Blood samples were processed as per the Thai cohort. Plasma samples from 925 volunteers were available from the final visit.


The Solomon islands observational cohort was conducted from May 2013 to May 2014 in 20 villages on the island of Ngella, Solomon Islands. 1111 children were initially enrolled, and after exclusion of children who withdrew, had inconsistent attendance or failed to meet other inclusion criteria, 860 remained (Quah Waltmann, in preparation). The age of the children ranged from 6 months to 12 years, with a median age of 5.6 years. Over the yearlong cohort, children were visited approximately monthly, with 11 active case detection visits in total. Of the 860 children, 751 attended the final visit. At each visit, a brief survey was conducted as per the Thai cohort, temperature recorded and a finger-prick blood sample taken. Blood was separated into packed red cells for qPCR and plasma for antibody measurements. In addition to the monthly active case detection visits, local health clinics and centres also performed passive case detection routinely.


Negative Control samples: Melbourne and Thai Red Cross, Melbourne Blood Donors


Three panels of control samples were collected from individuals with no known previous exposure to malaria. The first panel was collected from the Volunteer Blood Donor Registry (VBDR) at the Walter and Eliza Hall of Medical Research in Melbourne, Australia. These individuals are not screened for diseases but a record of their past travel, medical history and current drug use is recorded. 102 volunteers from the VBDR were utilized (median age 39 years, range 19-68). The second panel was collected from the Australian Red Cross (Melbourne, Australia). 100 samples were utilized (median age 52 years, range 18-77), and these individuals were screened as per the standard conditions of the Australian Red Cross. Finally, another control panel was collected from the Thai Red Cross (Bangkok, Thailand). Samples from 72 individuals were utilized, but no demographic data was available (hence the age range is unknown). Standard Thai Red Cross screening procedures exclude individuals from donating blood if they had a past malaria infection with symptoms within the last three years, and individuals who have travelled to malaria-endemic regions within the past year.


All studies (antigen discovery and validation) detected malaria parasites by quantitative PCR as previously described (2, 3).


Protein Expression.

Proteins were preferably expressed as full-length proteins, to ensure that any possible antibody recognition site was covered. For very large proteins, fragments were expressed that together cover the entire protein. These were treated as individual constructs in the down-selection process. The proteins were first produced at a small-scale with a biotin tag for the antigen discovery study, at Ehime University. A panel of 342 P. vivax proteins were assessed, including well-known P. vivax proteins such as potential vaccine candidates (i.e. MSP1, AMA1, CSP), orthologs of immunogenic P. falciparum proteins and proteins with a predicted signal peptide (SP) and/or 1-3 transmembrane domains (TM) (4). The genes were amplified by PCR and cloned into the pEU_E01 vector with N-terminal His-bis tag (CellFree Sciences, Matsuyama, Japan). P. vivax genes were obtained either from parent clones (4), using SAL-1 cDNA, or commercially synthesized from Genscript (Japan). The recombinant proteins were expressed without codon optimization using the wheat germ cell-free (WGCF) system as previously described (5). WGCF synthesis of the P. vivax protein library was based on the previously described bilayer diffusion system (6). For biotinylation of proteins, 500 nM D-biotin (Nacalai Tesque, Kyoto, Japan) was added to both the translation and substrate layers. Crude WGCF expressed BirA (1 μl) was added to the translation layer. In vitro transcription and cell-free protein synthesis for the P. vivax protein library were carried out using the GenDecoder 1000 robotic synthesizer (CellFree Sciences) as previously described (7, 8). Expression of the proteins was confirmed by western blot using HRP-conjugated streptavidin.


Large-scale protein expression for the down-selected candidates was then performed (CellFree Sciences Tokyo, Japan). Genes were synthesized by GenScript (Japan) and the products cloned into the pEU-E01-MCS expression vector. The sequence of all gene synthesis products and their correct insertion into the expression vector was confirmed by full-length sequencing of the vector inserts. Transcription was performed utilizing SP6 RNA polymerase (80 U/μl) and the SP6 promoter in the pEU-E01-MCS expression vector. For large-scale expression, a dialysis-based refeeding assay was used, with protein expression and solubility first tested on a 50 scale. The test results then enabled production on a 3 ml scale (maintained for up to 72 hours, 15° C.) to produce at least 300 μg of each target protein, using the wheat germ extract WEPRO7240H. The proteins were manually purified one-time on an affinity matrix (Ni Sepharose 6 Fast Flow from GE Healthcare, Chalfont, United Kingdom) using a batch method (all proteins were expressed with a His-tag at the C terminus). The purified proteins were stored and shipped in the following buffer: 20 mM Na-phosphate pH 7.5, 0.3 M NaCl, 500 mM imidazole and 10% (v/v) glycerol. Protein yields and purity were determined using 15% SDS page followed by Coomassie Brilliant Blue staining using standard laboratory methods. In addition, proteins were also analyzed by Western Blot using an anti-His-tag antibody.


An additional 25 proteins were also used in the validation study. 12 proteins were produced using the wheat-germ cell free system described above at Ehime University, and were selected based on associations with past exposure in preliminary work conducted in a PNG cohort. The remaining 13 proteins were produced using standard E. coli methods, and were selected based on their predicted high immunogenicity (due to their status as potential vaccine candidates). References can be found in Appendix II.


AlphaScreen® Assay for the Antigen Discovery Study.

The AlphaScreen® assay was used to measure antibody responses in the antigen discovery study. Plasma samples from the sub-set of volunteers (n=32 Thailand, n=33 Brazil) were used from four time-points, enrollment (week 0) and weeks 12, 24 and 36. Responses were measured against 342 P. vivax proteins. The assay was conducted as previously reported (9), with slight modifications. The protocol was automated by use of the JANUS Automated Workstation (PerkinElmer Life and Analytical Science, Boston, Mass.). Reactions were carried out in 25 μl of reaction volume per well in 384-well OptiPlate microtiter plates (PerkinElmer). First, 0.1 μl of the translation mixture containing a recombinant P. vivax biotinylated protein was diluted 50-fold (5 μl), mixed with 10 μl of 4000-fold diluted plasma in reaction buffer (100 mM Tris-HCL [pH 8.0], 0.01% [v/v] Tween-20 and 0.1% [w/v] bovine serum albumin), and incubated for 30 min at 26° C. to form an antigen-antibody complex. Subsequently, a 10 μl suspension of streptavidin-coated donor-beads and acceptor-beads (PerkinElmer) conjugated with protein G (Thermo Scientific, Waltham, Mass.) in the reaction buffer was added to a final concentration of 12 μg/ml of both beads. The mixture was incubated at 26° C. for one hour in the dark to allow the donor and acceptor-beads to optimally bind to biotin and human IgG, respectively. Upon illumination of this complex, a luminescence signal at 620 rim was detected by the EnVision plate reader (PerkinElmer) and the result was expressed as AlphaScreen counts. A translation mixture of WGCF without template mRNA was used as a negative control. Each assay plate contained a standard curve of total biotinylated rabbit IgG. This enabled standardisation between plates using a 5-parameter logistic standard curve. All samples were run in triplicate. Reading the plates was conducted in a randomized manner to avoid biases.


Multiplexed Bead-Based Assay for the Validation Study.

For validation of the down-selected candidate serological markers, IgG levels were measured in plasma collected from the last time-point of the longitudinal observation studies. IgG measurements were performed using a multiplexed bead-based assay as previously described (10). In brief, 2.5×106 COOH microspheres (Bio-Rad, USA) were prepared for protein coupling by incubation for 20 minutes at room temperature in 100 mM monobasic sodium phosphate (pH 6.2), 50 mg/ml N-Hydroxysulfosuccinimide sodium salt and 50 mg/ml N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride. Proteins were then added and incubated overnight at 4° C. Optimal amounts of protein were determined experimentally, in order to achieve a log-linear standard curve when using a positive control plasma pool generated from hyper-immune PNG donors. Each assay plate subsequently included this 2-fold serial dilution standard curve ( 1/50 to 1/25600), to enable standardisation between plates.


The assay was run by incubating 50 μl of the protein-coupled microspheres (500 microspheres/well) with 50 μl test plasma (at 1/100 dilution) in 96-well multiscreen filter plates (Millipore, USA) for 30 minutes at room temperature, on a plate shaker. Plates were washed 3 times and then incubated for a further 15 minutes with the detector antibody, PE-conjugated anti-human IgG ( 1/100 dilution, Jackson ImmunoResearch, USA). The plates were once again washed and then assayed on a Luminex 200™ instrument. All median fluorescent intensity (MFI) values were converted to relative antibody unites using the plate-specific standard curve (five-parameter logistic function, as previously described in detail (10)).


Statistical Modelling.

The models are described in greater detail below (see Example 3).


Statistical Analysis.

All data manipulation and statistical analyses were performed in either R version 3.2.3 (11), Prism version 6 (GraphPad, USA) or Stata version 12.1 (StataCorp, USA).


Results
Down-Selection of Candidate Serological Markers.

The data were processed and candidate serological markers down-selected following the pipeline shown in FIG. 2. The raw AlphaScreen data was converted based on the plate-specific standard curve, resulting in relative antibody units ranging from 0-400. Using the converted data, seropositivity was defined as a relative antibody unit greater than 0. For proteins that were defined as immunoreactive (more than 10% individuals seropositive at baseline, time of P. vivax infection), an estimated antibody half-life was determined using a mixed-effects linear regression model, described in detail below (see Statistical modelling). Using the metadata on immunoreactivity and half-life, an initial round of antigen down-selection was performed, with prioritisation of antigens that had similar estimated half-lives in both the Thai and Brazilian datasets (neither site more than double the other), high levels of seropositivity at baseline (more than 50% individuals seropositive, i.e. relative antibody units above 0), and low levels of error estimated in the model. Three rounds of initial down-selection were performed, resulting in approximately 100 antigens for the next round of model-based down-selection.


The model-based down-selection was performed in two stages: first, by calculating the estimated time since last infection based on antibody levels at 0, 3, 6 and 9 months (and comparing this with the known time since infection), and second, by determining the best combination of antigens for accurately detecting the time since last infection.


In more detail, FIG. 2 shows a pipeline for down-selection of candidate serological markers. As shown in the process of FIG. 2A, antigens were first down-selected based on prioritization of metadata characteristics such as similar levels of estimated antibody longevity in Thailand and Brazil, high levels of immunogenicity at the time of infection and low levels of error estimated in the model. As shown in the process of FIG. 2B, using the initial down-selected antigens, further modelling was performed to identify the optimal combination of antigens able to accurately estimate the time since last infection. A final decision on candidate serological markers was made using output from this modelling and other protein characteristics, as detailed above.


As expected, different antibody kinetic profiles over 9-months were observed for different proteins (see FIG. 3 for an example). Antigen down-selection was performed as described in detail in the Materials and Methods, essentially by prioritizing antigens with high levels of immunogenicity, similar estimated half-lives between Thailand and Brazil and low levels of error estimated in the model. The initial down-selection was followed by further model-based down selection. The model-based down-selection was used to determine the ability of various proteins to predict the time since last infection, utilizing the same datasets from Thailand and Brazil, and to determine the best combination of proteins to do so successfully (see for example FIG. 20 and its accompanying description). Antigens were excluded from selection if they had less than a 40% probability of inclusion in a 40-antigen panel that was able to accurately determine the time since last infection. Remaining antigens were then ranked according to a high probability of inclusion in a successful 20-antigen panel. When required, ranking in 30 and 40-antigen panels was also considered. Antigens were excluded if they had unfavorable protein production characteristics, such as low-yield in the small-scale WGCF expression or presence of aggregates. Three rounds of selection were performed: the first resulted in 12 proteins, the second in a further 12, and the third in an additional 31 candidates. A final list of 55 protein constructs (53 unique proteins) representing candidate serological markers of recent exposure to P. vivax infection was generated (two fragments were included from two different antigens). Characteristics of these proteins are highlighted in FIG. 4.


Validation of Candidate Serological Markers.

Geographical validation (that is validation across different regions) was performed as follows.


The down-selected markers were chosen based on antibody data from individuals in Thailand, Brazil and the Solomon Islands, three discrete geographical areas. Despite this, there was a strong correlation between the antibody responses measured, in terms of both immunogenicity (seropositivity rates) and antibody level at time of P. vivax infection, as well as the estimated antibody half-lives calculated from consecutive time-points. This is shown in FIG. 5.


Validation in association with recent and past infection was performed as well.


The Luminex® bead-array assay has been successfully established for 40 of the 55 proteins identified in the antigen discovery study (FIG. 6) as well as for the additional 25 proteins (65 total). Plasma samples from three observational cohorts (final time-point) have been screened against these 65 proteins, Thai (n=829), Brazilian (n=925) and Solomon Islands (n=751), in addition to 3 sets of non-exposed (malaria) controls (two panels from Australia and one panel from Thailand). An example of the responses in these cohorts, with relation to time since last infection, to 4 of 65 proteins is shown in FIG. 22, described with regard to Example 4 below.


In the Thai cohort, antibody levels measured to all 17 proteins, selected for performing the first set of tests, were strongly associated with the presence of current P. vivax infections (logistic regression model, odds ratios of 2.8-5.4, p<0.05) (FIG. 7). In addition, antibody levels to 16 of 17 proteins at the last visit of the cohort study were positively and significantly associated with past exposure to P. vivax infections based on PCR results during the yearlong assessment period (measured as the molecular force of blood-stage infection, (molFOI) (generalised linear model, exponentiated coefficients of 1.03-1.18, p<0.05) (FIG. 8). The exception was for PVX_090970, exponentiated coefficient 1.03, p=0.073.


In the Brazilian cohort, the effect size, overall, was not as great as for Thailand. Nevertheless, antibody levels to 16 of 17 proteins were strongly associated with the presence of current P. vivax infections (logistic regression model, odds ratios of 1.59-3.04, p<0.05) (FIG. 9). The exception was for PVX_088860, with an odds ratio of 1.33 (p=0.21). Antibody levels to 10 of 17 proteins at the last visit of the cohort were positively and significantly associated with past exposure to P. vivax (molFOI) (generalised linear model, exponentiated coefficients of 1.04-1.18, p<0.05) (FIG. 10). Of the antibodies with estimated ‘short’ half-lives (less than 6 months), there was one exception, PVX_088860, with an exponentiated coefficient of 1.03 (p=0.24). Of the antibodies with estimated ‘long’ half-lives (more than 6 months), 6 of 10 were not associated with past exposure (exponentiated coefficients of 1.02-1.04, p>0.05).


Various statistical methods can be used to test the association between antibody level to certain proteins and past (recent) or current exposure to P. vivax infections. For most proteins, there was a clear significant association with both past and current P. vivax infections, which is promising for the use of these antigens as serological markers. For others, there was a trend towards an association, which did not reach significance. In a final test, it will be an antibody signature that is used for classification of recent infection, made up of antibody responses to a multitude of proteins. Therefore the lack of significance for some individual proteins does not imply that they will not be useful in the final classification algorithm.


These analyses show that 16 of 17 proteins generate antibodies that are strongly associated with both current infections and 10 of 17 with past P. vivax exposure in both Thailand and Brazil, demonstrating that a majority of these antigens have the potential to detect both concurrent and recent past P. vivax infections.


REFERENCES



  • 1. Longley R J, Reyes-Sandoval A, Montoya-Diaz E, Dunachie S, Kumpitak C, Nguitragool W, Mueller I, Sattabongkot J. 2015. Acquisition and longevity of antibodies to Plasmodium vivax pre-erythrocytic antigens in western Thailand. Clin Vaccine Immunol doi:10.1128/cvi.00501-15.

  • 2. Wampfler R, Mwingira F, Javati S, Robinson L, Betuela I, Siba P, Beck HP, Mueller I, Felger I. 2013. Strategies for detection of Plasmodium species gametocytes. PLoS One 8:e76316.

  • 3. Rosanas-Urgell A, Mueller D, Betuela I, Barnadas C, Iga J, Zimmerman P A, del Portillo H A, Siba P, Mueller I, Felger I. 2010. Comparison of diagnostic methods for the detection and quantification of the four sympatric Plasmodium species in field samples from Papua New Guinea. Malar J 9:361.

  • 4. Lu F, Li J, Wang B, Cheng V, Kong D H, Cui L, Ha K S, Sattabongkot J, Tsuboi T, Han E T. 2014. Profiling the humoral immune responses to Plasmodium vivax infection and identification of candidate immunogenic rhoptry-associated membrane antigen (RAMA). J Proteomics 102:66-82.

  • 5. Sawasaki T, Ogasawara T, Morishita R, Endo Y. 2002. A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci USA 99:14652-14657.

  • 6. Sawasaki T, Hasegawa Y, Tsuchimochi M, Kamura N, Ogasawara T, Kuroita T, Endo Y. 2002. A bilayer cell-free protein synthesis system for high-throughput screening of gene products. FEBS Lett 514:102-105.

  • 7. Sawasaki T, Morishita R, Gouda M D, Endo Y. 2007. Methods for high-throughput materialization of genetic information based on wheat germ cell-free expression system. Methods Mol Biol 375:95-106.

  • 8. Sawasaki T, Gouda M D, Kawasaki T, Tsuboi T, Tozawa Y, Takai K, Endo Y. 2005. The wheat germ cell-free expression system: methods for high-throughput materialization of genetic information. Methods Mol Biol 310:131-144.

  • 9. Matsuoka K, Komori H, Nose M, Endo Y, Sawasaki T. 2010, Simple screening method for autoantigen proteins using the N-terminal biotinylated protein library produced by wheat cell-free synthesis. J Proteome Res 9:4264-4273.

  • 10. Franca C T, Hostetler J B, Sharma S, White M T, Lin E, Kiniboro B, Waltmann A, Darcy A W, Li Wai Shen C S, Siba P, King C L, Rayner J C, Fairhurst R M, Mueller I. 2016. An Antibody Screen of a Plasmodium vivax Antigen Library Identifies Novel Merozoite Proteins Associated with Clinical Protection. PLoS Negl Trop Dis 10:e0004639.

  • 11. Team R C. 2015. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria. https://www/R-project.org/.



EXAMPLE 2
Illustrative Diagnostic Test

A diagnostic test according to at least some embodiments of the present invention could optionally include any of bead-based assays previously described (AlphaScreen® assay and multiplexed assay using Luminex® technology).


In addition to the ability to measure antibody responses using the bead-based assays previously described, other methods could also be used, including, but not limited to, the enzyme linked immunosorbent assay (ELISA) (1). protein microarray (2) and the luminescence immunoprecipitation system (LIPs) (3).


Antibody measurements via ELISA rely on coating of specialised plates with the required antigen, followed by incubation with the plasma sample of interest. IgG levels are detected by incubation with a conjugated secondary antibody followed by substrate, for example a horseradish peroxidase-conjugated anti-IgG and ABTS [2,2=-azinobis(3-ethylbenzothiazo-line-6-sulfonic acid)-diammonium salt].


Protein microarray platforms offer a high-throughput system for measuring antibody responses. Proteins of interest are spotted onto microarray chips then probed with plasma samples. The arrays are then further incubated with a labeled anti-immunoglobulin and analysed using a microarray scanner.


The LIPs assay utilizes cell lysate containing the expressed antigen fused to a Renilla luciferase reporter protein. Plasma samples are incubated with a defined amount of this lysate, with protein A/G beads used to capture the antibody. The amount of antibody-bound antigen-luciferase is measured by the addition of a coelenterazine substrate, and the light emitted measured using a luminometer.


Any of these assays may optionally be combined with a reader and if necessary, an analyzer device, to form an apparatus according to at least some embodiments of the present invention. The reader would read the test results and the analyzer would then analyze them according to any of the previously described algorithms and software.


REFERENCES



  • 1. Longley R J, Reyes-Sandoval A, Montoya-Diaz E, Dunachie S, Kumpitak C, Nguitragool W, Mueller I, Sattabongkot J. 2015. Acquisition and longevity of antibodies to Plasmodium vivax pre-erythrocytic antigens in western Thailand. Clin Vaccine Immunol doi:10.1128/cvi.00501-15.

  • 2. Finney O C, Dauziger S A, Molina D M, Vignali M, Takagi A, Ji M, Stanisic D I, Siba P M, Liang X, Aitchison J D, Mueller I, Gardner M J, Wang R. 2014. Predicting anti-disease immunity using proteome arrays and sera from children naturally exposed to malaria. Mol Cell Proteomics doi:10.1074/mcp.M113.036632.

  • 3. Longley R J, Salman A M, Cottingham M G, Ewer K, Janse C J, Khan S M, Spencer A J, Hill A V, 2015. Comparative assessment of vaccine vectors encoding ten malaria antigens identifies two protective liver-stage candidates. Sci Rep 5:11820.



EXAMPLE 3
Illustrative Software Process for Diagnosis

This Examples relates to processes for estimation of time since last P. vivax infection using measurements of antibody titers, which may optionally be provided through software.


Section 1 relates to calibration and validation of the input data, as well as non-limiting examples of models and algorithms which may optionally be used to analyze the data. Section 2 provides additional information on the algorithms utilized.


Section 1—Overview of Calibration Data and Algorithms
Calibration and Validation Data

Both the down-selection of antigens for incorporation into a diagnostic test, and the calibration and validation of algorithms for providing classifications of recent P. vivax infection given blood samples, will depend on the available epidemiological data. Data will be required on the demography of the populations under investigation, serological measurements, and monitoring for parasitemia and clinical episodes. Table 1 provides an overview of the data sets that are used.


Algorithm Inputs and Outputs

A diagnostic test will take a blood sample as input and provide data to inform a decision making process as output. The type of data generated will depend on the technological specifications of the diagnostic platform. The outputted data can then be used as input for some algorithm to inform a decision making process. The following factors need to be taken into consideration when defining the inputs and outputs of a decision making algorithm:


1) Number of Antigens

The number of antigens to which antibodies can be measured will be restricted by the technological specifications of the diagnostic platform under consideration. Measurement of antigens to a greater number of antibodies will in theory provide more data as input for an algorithm, potentially increasing predictive power.









TABLE 1







Overview of data sets used for antigen down-selection and algorithm calibration and validation.









demographic data
serological data
parasitological data


















number of
samples

samples
PCR



region
number
age
antigens
per person
platform
per person
positive
clinical










Antigen down-selection















Thailand
32
 29 (7, 71)
342
4
AlphaScreen
17
enrolment
enrolment


Brazil
33

342
4
AlphaScreen
17
enrolment
enrolment








Algorithm calibration and validation
















Thailand
829
 25 (2, 79)
 65
1
Luminex
14
 97/829
25/829


Brazil
928
 25 (0, 102)
 65
1
Luminex
13
236/928
80/928


Solomon
860
5.5 (0.5, 12.7)
 65
1
Luminex
11
294/860
35/860


Islands















Negative controls















Australian
100
 52 (18, 77)
 65
1
Luminex
 1
no
no


Red Cross










Thai Red
72

 65
1
Luminex
 1
no
no


Cross










Australian
102
 39 (19, 68)
 65
1
Luminex
 1
no
no


donors

















2) Measurement of Antibody Levels

The levels of antibody in a blood-sample can be measured and summarised in a variety of ways.


a) Continuous Measurement

    • A continuous measurement that has a monotonic relationship with antibody titer. It can be compared with a titration curve to produce an estimate of antibody titer,


b) Binary Classification

    • Assesses whether antibody levels are greater or less than some threshold.


c) Categorical Classification

    • Assigns antibody levels to one of a set of pre-defined categories, e.g. low, medium, high. A categorical classification can be generated via a series of binary classifications.


3) Decision Making Requirements

The result of a diagnostic test and accompanying algorithm can be used to inform a decision on whether or not to treat, as well as to inform surveillance systems.


a) Classification of Recent Infection

    • A binary output corresponding to whether or not there was an infection with P. vivax blood-stage parasites in the past 9 months. This can be presented as a binary classification, or as a probabilistic classification. This can be adjusted for a range of different temporal thresholds: 3 months, 6 months, 12 months, 18 months.


b) Estimation of Time Since Last Injection

    • An estimate of the time since last P. vivax blood-stage infection—depending on the available calibration data the time since last infection can be defined either as the time since last PCR-detectable blood-stage parasitemia, or as the time since last mosquito bite. Time since last infection can be estimated continuously or categorically. Concurrent estimation of uncertainty will be important.)


c) Medium-Term Serological Exposure


Given sufficient calibration data, the algorithms described here can be modified to provide extended measurements of an individual's recent to medium term P. vivax exposure, e.g. how many infections in the last 2 years?


4) Computational and Analytic Capabilities

An algorithm's complexity will be restricted by the analytic resources accompanying the diagnostic platform. In a low resource setting, we may require a decision to be made given a sequence of binary outputs from a rapid diagnostic test (sero-negative or sero-positive) without any access to computational devices. At the other extreme, in a high resource setting we may have continuous measurements of antibodies to multiple antigens accompanied with algorithms encoded in computational software.

    • a) No access to computational devices. Algorithms implemented via ‘easy to follow’ instructions on paper charts.
    • b) Algorithm implemented in software that can be installed on a portable computation device such as a smartphone or tablet. May require the manual entry of output from the diagnostic platform.
    • c) Computational software with encoded algorithms integrated within the diagnostic platform.


Algorithms

There is a wide range of algorithms for classification and regression in the statistical inference and machine learning literature (Hastie, Tibshirani & Friedman). A classification algorithm can take a diverse range of input data and provide some binary or categorical classification as output. A regression algorithm can take similar input, but provides a continuous prediction as output. Table 2 provides an overview of some algorithms that can be used for classification problems. Four of these have been regularly described in the statistical learning literature: linear discriminant analysis (LDA); quadratic discriminant analysis (QDA); decision trees; and random forests. One of these has been specifically developed for the application at hand: combined antibody dynamics (CAD). The candidate algorithms are classified according to a number of factors. The degree of transparency describes the straightforwardness and reproducibility of an algorithm. A decision tree is considered very transparent as it can be followed by a moderately well-informed individual, as it requires answering a sequence of questions in response to measured data. This simple, logical structure makes decision trees particularly popular with doctors. Because of the transparency and ease of use, decision trees are sometimes referred to as glass box algorithms. At the other extreme, algorithms such as random forests are considered to be black box algorithms where there may be no obvious association between the inputs and outputs.









TABLE 2







Overview of algorithms suitable for classification of recent P. vivax


infection or estimation of time since last P. vivax infection.












algorithm
data needs
transparent
stochastic
time predicted
comments





linear
continuous
+
no
no
The assumption of


discriminant




common covariance for


analysis




each category may be too


(LDA)




restrictive.


quadratic
continuous
+
no
no; categorical
There is an approximate


discriminant



estimation
equivalence between the


analysis



possible,
QDA classification space


(QDA)



incorporation of
and that predicted by the






uncertainty
CAD algorithm.






challenging


decision
binary
+++
no
no; possible via
Very transparent and


trees



regression trees or
simple to implement in






categorical
low technology settings.






estimation


random
continuous
−−
yes
no; possible via
Potentially very powerful


forests



regression trees or
but requires considerable






categorical
computational resources.






estimation


combined
continuous
++
no
yes; with
A biologically motivated


antibody



uncertainty
representation of


dynamics




antibodies following


(CAD)




infection; prior







information on decay







rates can be incorporated.









Section 2—Expanded Details of Algorithms

Here we provide an overview of classification algorithms such as LDA, CODA, decision trees and random forests which have already been described extensively elsewhere (Hastie, Tibshirani & Friedman3). We also provide an extended description of the combined antibody dynamics (CAD) algorithm.


Linear and Quadratic Discriminant Analysis

The theory of linear discriminant analysis (LDA) and quadratic discriminant analysis (QUA) is described in detail in “The Elements of Statistical Learning: Data Mining, Inference and Prediction” by Hastie, Tibshirani &. Friedman6. We provide a brief overview of how these methods may be applied. A key assumption for LDA and QDA classification algorithms is that individuals who have similar antibody titers are likely to have the same classification. It is convenient to compare individuals with different antibody profiles via Euclidean distance of log antibody titers. An LDA or QDA classifier can be implemented by fitting multivariate Gaussian distributions to the clusters of data points representing ‘old’ and ‘new’ infections. Assume we have measurements of p antibodies. Denote k ∈ {new,old} to represent the classes of training individuals with new and old infections. These can be modelled as multivariate Gaussians:








f
k



(
x
)


=


1



(

2





π

)


p
/
2







Σ
k




1
/
2






e


-

1
2





(

x
-

μ
k


)

τ




Σ
k

-
1




(

x
-

μ
k


)









where μk and Σk are the mean and p*p covariance matrix of the training data of each class. In the case of LDA, all classes are assumed to have the same covariance matrix (Σnewold=Σ), and the classification between new and old infections can be evaluated via the log ratio:







log
(


P


(


new


|


X

=
x

)



P


(


old


|


X

=
x

)



)

=



-

1
2





(


μ
new

+

μ
old


)

T




Σ

-
1




(


μ
new

-

μ
old


)



+


x
T




Σ

-
1




(


μ
new

-

μ
old


)








which is linear in x. The two categories are therefore separated by a hyperplane in p-dimensional space.


In QDA, the restriction that Σnewold=Σ is relaxed and it can be shown that the classification boundary is described by a conic section in p-dimensional space.


LDA and QDA have consistently been shown to provide robust classification for a wide range of problems. The predictive power of these algorithms can be assessed through cross-validation whereby the data is split into training and testing data sets. The algorithm is calibrated using the training data set and subsequently validated using the test data set. An important method for assessing an algorithm's predictive power is to evaluate the sensitivity and specificity. In this context, we define sensitivity to be the proportion of recent infections correctly classified as recent infections, and we define specificity to be the proportion of old infections correctly classified as old infections.


A receiver operating characteristic (ROC) curve allows for detailed investigation of the association between sensitivity and specificity. At one extreme, we could obtain 100% sensitivity and 0% specificity by simply classifying all blood samples as new infections. At the other extreme, we could obtain 100% specificity and 0% sensitivity by classifying all blood samples as old infections. FIG. 25 shows ROC curves describing the classification performance of IDA algorithms for combinations of 4 antigens in Thailand, Brazil and the Solomon Islands.


Decision Trees and Random Forests

Tree-based algorithms partition the space spanned by the data into a set of rectangles with a unique classification applied to each rectangle. Similarly to the LDA and QDA classification algorithms, a great deal of theoretical information is supplied in the book “The Elements of Statistical Learning: Data Mining, Inference and Prediction”.


There are several powerful methods for extending decision tree classifiers including bagging (bootstrapp aggregating), boosting and random forests3. These methods can lead to substantially improved classifiers but typically require more computation and more data. In addition to providing powerful classifiers, these algorithms can provide important diagnostics for investigating the association between the signal in the input and the output.



FIG. 23 A-C shows the ROC curves for cross-validated random forests classifiers applied to data sets from Thailand, Brazil and Solomon Islands. Notably, when the training and testing data sets are from the same region, there are many combinations of four antigens that allow sensitivity >80% and specificity >80%. When training and testing data sets are from different regions, it was still possible to obtain combinations of four antigens with sensitivity >80% and specificity >80%.


Modelling of Antibody Dynamics

A key premise of the proposed diagnostic test is that following infection with P. vivax blood-stage parasites, an antibody response will be generated that will change predictably over time (FIG. 13). Here we present a subset of the data that demonstrates how antibodies to P. vivax antigens change over time.


Longitudinal Antibody Titers Following Clinical P. vivax


We have data from longitudinal cohorts in Thailand and Brazil where participants were followed for up to 36 weeks after a symptomatic clinical episode of P. vivax (see also Table 1/Materials and Methods in Example 1, antigen discovery cohorts). Participants were treated with primaquine, and blood samples were frequently tested to ensure they remained free from re-infection. Antibody levels to a wide range of antigens were measured at 12 week intervals to investigate the changing antibody dynamics. The sample data in FIG. 11 illustrates that antibodies exhibit a range of different half-lives—a pattern consistent with the rest of the data (see also FIG. 3). Another important general feature of the data is exhibited here: rapidly decaying antibodies (short half-life) exhibit much more measurement error than slowly decaying antibodies (long-lived half-life).


The decay of anti-malaria antibodies following infection can be described by an exponential or a bi-phasic exponential distribution4. Because of the sampling frequency (every 12 weeks) we assume that antibodies decay exponentially. Exponential decay equates to linear decay on a log scale. Therefore we utilise linear regression models. In particular, we utilise a mixed-effects linear regression framework so that we can estimate both the mean rate of antibody decay as well as the standard deviation.


We assume that for individual i we have measurements of antibody titer Aijk at time j to antigen k. We assume that at time 0, antibody titers are Normally distributed5 with mean αk0 and standard deviation σα,k on a log-scale. We assume that an individual's rate of antibody decay is drawn from a Normal distribution with mean rk0 and standard deviation σr,k. The antibody dynamics in the population can therefore be described by the following mixed-effects linear regression model:





log(Aijk)˜(αk0ik)+(rk0+rik)tjk





αik˜N(0, σα,k)





rik˜N(0, σr,k)





εk˜N(0, σm,k)   (1)


This model can be fitted to data using the liner package in R. FIG. 11 shows a sample of the fitted profiles of antibody dynamics.


Estimation Using Antibodies to a Single Antigen

Here we describe an algorithm that uses a biologically-motivated model of the decay of antibody titers over time to facilitate statistical inference of the time since last infection. A key requirement of this algorithm is that it requires some prior knowledge of the decay rates of antibodies. This can be achieved either through estimation of antibody decay rates from longitudinal data as described in equation (1), or estimation of decay rates from cross-sectional antibody measurements as presented in FIG. 12.


The linear regression model for the decay of antibody titers described in equation (1) has three sources of variation: (i) variation in initial antibody titer following infection; (ii) between individual variation in antibody decay rate; and (iii) measurement error. Notably, all these sources of variations are described by Normal distributions (FIG. 13a) so their combined variation will also be described by a Normal distribution. Therefore, the expected log antibody titer to antigen k in individual i at timet can be described by the following distribution.





xik˜N(αk0+rkt, σα,k2+t2σr,k2m,k2)   (2)


The probability distribution of the expected antibody titer to antigen k in individual i at time t is given by the following distribution:










P


(


x
ik



|


t

)


=


1


2






π


(


σ

α
,
k

2

+


t
2



σ

r
,
k

2


+

σ

m
,
k

2


)







e

-



(


x
ik

-

α
k
0

-


r
k
0


t


)

2


2


(


σ

α
,
k

2

+


t
2



σ

r
,
k

2


+

σ

m
,
k

2


)










(
3
)







Note that we have xik ∈ (−∞, +∞), as xik denotes the log antibody titer and measurements of antibody titer are assumed to be positive. The probability distribution for the time since infection t given measured antibody titer xik can be calculated by inverting equation (3) using Bayes rule3.










P


(

t


|



x
ik


)


=



P


(


x
ik



|


t

)




P


(
t
)




P


(

x
ik

)







(
4
)







The time since last infection will have a lower bound of zero. We can choose to impose an upper bound of either the individual's age ‘a’ or positive infinity. Choosing positive infinity allows us to better handle the case where an individual was never infected—the low measured antibody titers will be consistent with a very large time since last infection, possibly greater than the age of the individual. Therefore we should only restrict t to the interval (0, a) if we know for certain that the individual has been infected. In practice, we choose some large time tmax for our upper bound. We assume P(t) denotes a uniform distribution on the interval (0, tmax). P(xik) is a normalising constant which is calculated via numerical integration to ensure that P(t|xik) denotes a probability distribution.


Equation (4) provides a probability distribution for the time since last infection. For the purposes of a diagnostic test we may be more interested in obtaining a binary classification, e.g. was the individual infected within the last 9 months. It is usually not possible to definitively make such a categorisation, but we can instead calculate their probabilities as follows:






P
0-9m(xik)=∫09P(t|xik)dt






P
9m+(xik)=∫9tmaxP(t|xik)dt   (5)


Combined Antibody Dynamics: Estimation Using Antibodies to Multiple Antigens

Previously, we described how the antibody titer to a single antigen can be used to estimate the time since last infection. However, in practice there is too much noise to make an accurate estimate of time since last infection with a single antigen. Increasing the number of measured antibodies can increase the information content in our data allowing us to obtain more accurate estimates of time since last infection. In particular, selecting antibodies with a range of half-lives may increase our power to resolve infection times more accurately.



FIG. 14 shows a schematic of the dynamics of antibodies to two antigens. We have rapidly decaying antibody 1 and slowly decaying antibody 2. At baseline, antibody titers are likely to be correlated, so we assume that initial titer following infection is described by a multivariate Normal distribution with covariance matrix Σα. The between individual rates of antibody decay may also be correlated (i.e. all antibody titers may decay particularly quickly in some individuals) so we also assume that decay rates are described by a multivariate Normal distribution with covariance matrix Σr. Finally, there will be measurement error associated with each antibody. In particular, we assume the measurement errors between different antibodies are independent so that the total measurement error can be described by a multivariate Norma distribution with diagonal covariance matrix Σm.










P


(


x
i



|


t

)


=




(

2





π

)


-

k
2









Σ
α


+


t
2



Σ
r


+


Σ
m







-

1
2





e


-

1
2





(


x
i

-

α
0

-


r
0


t


)

T




(


Σ
α

+


t
2



Σ
r


+

Σ
m


)


-
1




(


x
i

-

α
0

-


r
0


t


)









(
6
)







The method for estimating the time since last infection given the multivariate probability distribution for the measured vector of antibody titers xi is the same as described in equation (4).


Selecting Optimal Combinations of Antigens

Machine learning algorithms take data from a large number of streams and identify which data streams have the most signal for classifying output. Such methods typically involve a greedy algorithm which will provide a good but not necessarily optimal solution. Greedy algorithms take the next best step, i.e. including the next antigen that gives the biggest increase in predictive power. As such they may provide a locally optimal solution but not necessarily a globally optimal solution. Simulated annealing algorithms provide an alternative to greedy algorithms that provide a higher likelihood of obtaining a globally optimal solution7.


Here we describe how a simulated annealing algorithm can be applied to the combined antibody dynamics (CAD) classifier to select a combination of antigens that provides optimal predictive power. Assume that P measurements of antibodies are available. We want to select some subset of these that maximises predictive power. Denote y to be a vector of 0's and 1's indicating whether the pth antibody is included in our panel. Thus for example we may have






y=(0, 0, 1, 1, 0, 1, 0, 0, 1)   (7)


The vector of binary states depicted in equation (7) will correspond to a vector of antibody measurements as follows:






x
i=(xi,1, xi,2, xi,3, xi,4)   (8)


Given data from I individuals on measured antibody responses, we can calculate the probability that the individual was infected within the last 9 months P0-9m(xi) or greater than 9 months ago P9m+(xi). Let zi be an indicator denoting whether individual I was infected in the last 9 months (zi=1) or not (zi=0). We can then write down the likelihood of the data as follows:










L


(
y
)


=




i
=
1

I










P

0
-

9





m





(

x
i

)



z
i






P


9





m

+




(

x
i

)



1
-

z
i









(
9
)







The challenge is to select a binary vector); corresponding to a combination of antigens that maximises the likelihood in equation (9) and thus has the highest likelihood of correctly classifying infections according to whether they occurred in the last 9 months.


If we have P antigens, there are 2P combinations of antigens. For P>15 it is not computationally feasible to test all possible combinations. We therefore utilise a simulated annealing algorithm for exploring the state space of combinations and identifying the optimal combinations subject to various constraints (e.g. enforcing a ma.ximum of 10 antigens to a panel). FIG. 20 shows the results, and this contributed to the initial down-selected of antigens as described in Example 1.


REFERENCES



  • 1 White, N. J. Determinants of relapse periodicity in Plasmodium vivax malaria. Malaria Journal 10, doi:29710.1186/1475-2875-10-297 (2011).

  • 2 Mueller, I. et al. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infectious Diseases 9, 555-566 (2009).

  • 3 Hastie, T., Tibshirani, R. & Friedman, J. The elements of statistical learning: Data mining, inference, and prediction. Second edn, (Springer, 2009).

  • 4 White, M. T. et al. Dynamics of the Antibody Response to Plasmodium falciparum Infection in African Children. Journal of Infectious Diseases 210, 1115-1122, doi:10.1093/infdis/jiu219 (2014).

  • 5 Yman, V. et al. Antibody acquisition models: A new tool for serological surveillance of malaria transmission intensity. Scientific Reports 6, doi:10.1038/srep19472 (2016).

  • 6 The Elements of Statistical Learning: Data Mining, Inference and Prediction” by Hastie, Tibshirani & Friedman; 2001, Springer.

  • 7 Kirkpatrick, S., Gelatt Jr, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671-680 (1983).



EXAMPLE 4
Additional Testing of Antigens

This non-limiting Example relates to additional testing of antibody responses to various P. vivax proteins, present in the blood, as potential antigens for a diagnostic test. It further relates to selection of Plasmodium vivax antigens for classification of samples with past blood-stage infections.


The blood collection and laboratory work was generally performed according to the materials and methods described in Example 1.


Overview of Epidemiological Cohorts

Data was obtained from longitudinal cohorts in three different regions of the P. vivax endemic world. In each cohort, approximately 1,000 individuals were followed over time for approximately 1 year, with active case detection samples taken every month. These samples were supplemented by passive case detection samples from individuals experiencing clinical episodes of P. vivax or P. falciparum. An overview of the data collected is shown in Table 3, and age-stratified prevalence of PCR detectable blood-stage infection within the last 9 months is shown in FIG. 21.


In addition data was obtained from three cohorts of negative controls who were highly to have ever been exposed to malaria. These cohorts consisted of 102 individuals from the Victorian Blood Donor Registry (VBDR), 100 individuals from the Australian Red Cross, and 72 individuals from the Thai Red Cross (residents of Bangkok with no reported history of malaria).









TABLE 3







Epidemiological overview of cohorts analysed for the association


between P. vivax antibody titers and time since last


PCR detectable infection. Number of samples per individual


and age are shown as median with range.













Solomon



Thailand
Brazil
Islands














number of
829
928
860


individuals













samples per
14
(4, 18)
13
(4, 16)
10
(6, 11)


individual


Female
454
(54.8%)
471
(50.7%)
416
(48.4%)


age (years)
24
(1, 78)
25
(0, 103)
5.5
(0.5, 12.7)


PCR infection
97
(11.7%)
236
(25.4%)
294
(34.2%)


during study


PCR infection in
72
(8.7%)
205
(22.1%)
265
(30.8%)


last 9 months


PCR infection in
44
(5.3%)
119
(12.8%)
156
(18.1%)


last 3 months


PCR infection at
25
(3.0%)
40
(4.3%)
93
(10.8%)


last final time


point









Measured Antibody Responses

In each of the three longitudinal cohorts, antibody responses were measured at the final time point to allow investigation of the association between antibody response and time since last infection. The antibody responses to 65 antigens were measured. 40 of these antigens were selected following a previously published down-selection procedure from a starting panel of 342 wheat-germ expressed proteins. These 40 proteins were supplemented by another 25 purified P. vivax proteins obtained from collaborators. These P. vivax antigens were coupled to COOH micro-beads, and a multiplexed Luminex assay was used to measure Mean Fluorescence Intensity (MFI) for each antigen in each sample. MFI measurements were converted to antibody titers by calibrated to measurements from a hyper-immune pool of Papua New Guinean adults. FIG. 22 shows the measured response from 4 of the 65 antigens, and the variation with time since last infection.


Selection of Optimal Combinations of Antigens for Classification
Initial Investigation of Combinations of Parameters

Of the 65 P. vivax proteins considered, 5 were excluded because of poor immunogenicity which resulted in missing data from a large proportion of samples. This resulted in a panel of 60 antigens for detailed investigation and further down-selection. The aim is to identify combinations of up to 5 antigens that can provide accurate classification within a single cohort, and identify combinations of 8-15 antigens that can accurately across multiple cohorts with a wide range of transmission intensities and age ranges.


Without wishing to he limited by a single hypothesis, selection optimized for three classification targets:


1. Surveillance target. Select combinations of antigens such that both sensitivity and specificity are given equal weight in optimisation. This is done by maximising the area under the curve (AUC) of a receiver operating characteristic (ROC) curve.


2. Serological Screen and Treat (SSAT) target. Select combinations of antigens that maximise sensitivity (e.g. >95%) while enforcing a lower bound on specificity (e.g. >50%).


3. Surveillance target. Select combinations of antigens that maximise specificity (e.g. >95%) while enforcing a lower bound on sensitivity (e.g. >50%).


The first step is to identify combinations of antigens for which there is a strong signal enabling classification. This was done by using a linear discriminant analysis (LDA) classifier to test all combinations of antigen of size up to 5. Above size 5, it was not computationally feasible to evaluate all possible combinations. Therefore for n>5, combinations of size n+1 were evaluated by identifying the optimal 500 combinations of size n antigens and including all positive individually.


Optimisation of Algorithms Given Most Likely Parameter Combinations

Given a subset of n antigens, a range of classification algorithms were considered: LDA, quadratic discriminant analysis (QDA), decision trees, and random forests. For a given algorithm and subset of antigens classification performance was assessed through cross-validation. The key to cross-validation is to use disjoint training and testing data sets to assess classification of performance. For each cohort, this is done by randomly selecting ⅔ of the data as the training set and testing the algorithm on the remaining ⅓. This is repeated 200 times and the average of the cross-validated ROC curves is calculated.



FIGS. 23A-23C show cross-validated ROC curves for assessing the classification performance of random forests algorithms (determined according to the randomForests library in R). In cases where algorithms were trained and tested on data from the same region, many different combinations of 4 antigens resulted in sensitivity and specificity greater than 80%. Even when an algorithm was trained on data from one region and then tested on data from another region of the world, it was still possible to obtain combinations of antigens with both sensitivity and specificity greater than 80%, with the exception of algorithms trained on data from Thailand and tested on data from the Solomon Islands.


Ranking of Antigens

Multiple factors determine whether or not an antigen will contribute to classification of recent infection. These include but are not limited to: antibody dynamics; immunogenicity of recent infections compared to old infections and measurements from control samples; area under the ROC curve when considering one antigen at a time; frequency of selection in top combinations of antigens. FIG. 24 shows a network visualisation of how combinations of 4 antigens are selected. The size of each node represents the likelihood that an antigen is selected, and the width and colour of an edge represents the probability that a pair of antigens are selected in combination. Therefore, the most commonly selected antigens are biggest and cluster in the centre of the network. There was a high degree of consistency in the antigens that were selected in each of the three cohorts, with the most strongly identified antigens being RBP2b (V3), L01, L31, X087885 (X7), PvEBP (V11), L55, PvRipr (V8) and L54.


Table 4 shows a ranking of antigens according to a range of criteria. The top two antigens, RBP2b and L01, are preferred candidates. The next six antigens are likely candidates. The next seven antigens are possible candidates. Also included are an additional nine antigens worth further consideration.









TABLE 4







List of antigens ranked according to their contribution to classification of


individuals with PCR detectable blood-stage P. vivax in the last 9 months. The area under the


curve (AUC) is based on using antibody titers to a single antigen for classification. Combinations


of antigens were investigated by assessing classification performance of linear discriminant


analysis (LDA) for all combination of 4 antigens from the initial panel of 60 antigens. Recent


infection sero-positivity shows the proportion of individuals with PCR detectable P. vivax in the


last 9 months, with the threshold of sero-positivity defined as the geometric mean titer (GMT)


plus two standard deviations of the negative controls.











Area Under Curve
Top 1% of combination
Recent infection



(1 antigen)
(4 antigens)
sero-positivity
















antigen
Thailand
Brazil
Solomons
Thailand
Brazil
Solomons
Thailand
Brazil
Solomons





RBP2b
0.849
0.818
0.868
89.7%
98.5%
100.0%
70.8%
64.4%
45.7%


(V3)











L01
0.812
0.787
0.697
43.5%
23.9%
 4.3%
51.4%
56.6%
14.3%


L31
0.805
0.762
0.766
 5.0%
 2.7%
 3.7%
25.0%
38.0%
 7.4%


X087885
0.807
0.748
0.697
20.3%
 9.2%
 14.6%
41.7%
81.0%
50.9%


(X7)











PvEBP
0.794
0.739
0.707
 5.0%
 2.4%
 3.1%
55.6%
41.0%
 7.8%


(V11)











L55
0.79
0.781
0.643
17.2%
20.9%
 2.6%
38.9%
29.8%
 3.5%


PvRipr
0.754
0.772
0.646
 3.0%
 9.1%
 3.1%
31.9%
29.3%
 4.8%


(V8)











L54
0.79
0.727
0.654
 5.6%
 4.4%
 3.1%
26.4%
19.0%
 2.2%


L07
0.747
0.765
0.599
 3.1%
 5.3%
 2.8%
27.8%
41.5%
 3.9%


L30
0.732
0.61
0.609
 2.3%
 3.8%
 5.4%
47.2%
11.7%
 9.6%


PvDBPII
0.74
0.773
0.639
 1.7%
 2.6%
 4.0%
20.8%
47.3%
 3.5%


(V10)











L34
0.767
0.746
0.67
 4.5%
16.6%
 2.2%
12.5%
19.0%
 3.9%


X092995
0.792
0.703
0.642
11.5%
 1.9%
 5.6%
15.3%
34.1%
10.0%


(X6)











L12
0.755
0.731
0.637
 3.5%
 6.1%
 2.9%
16.7%
15.1%
 3.0%


RBP1b
0.533
0.578
0.525
24.1%
 4.7%
 2.5%
 0.0%
 0.0%
 0.0%


(V1)











L23
0.759
0.753
0.658
 4.0%
14.8%
 2.9%
12.5%
19.5%
 5.7%


L02
0.746
0.724
0.677
 2.7%
 3.7%
 3.9%
15.3%
13.7%
 2.6%


L32
0.705
0.651
0.493
 3.7%
 1.9%
 30.2%
 4.2%
 3.9%
 0.4%


L28
0.759
0.744
0.667
 3.8%
 2.5%
 2.4%
45.8%
33.2%
 9.1%


L19
0.753
0.67
0.664
 2.6%
 2.3%
 6.5%
33.3%
19.5%
10.9%


L36
0.727
0.698
0.662
 3.2%
 1.8%
 2.8%
36.1%
22.0%
10.4%


L41
0.702
0.66
0.636
 2.55
 1.7%
 3.3%
29.2%
17.6%
 8.3%


X088820
0.723
0.666
0.638
 4.0%
 1.8%
 6.7%
15.3%
35.6%
14.8%


(X4)











PvDBP..
0.716
0.761
0.616
 1.7%
 2.6%
 7.2%
16.7%
36.6%
 1.3%


Sacl (V13)










FIG. 25 shows Receiver Operating Characteristic (ROC) curves for assessing the trade-off between sensitivity and specificity for a cross-validated linear discriminant analysis (LDA) classifier applied to data from Thailand, Brazil and the Solomon Islands.













APPENDIX I







Protein
Insert aa sequence (add M as
Insert DNA sequence (Start from


No.
Protein Name
Reference
start/His-tag at C-term)
ATG to His-tag stop codon)



















1
merozote surface
PVX_099980
MNESKEILSQLLNVQTQLLTMSSEHT
ATGAACGAGTCCAAGGAGATCCTCAGCCAACT



protein 1 (MSP1),

CIDTNVPDNAACYRYLDGTEEWRCLL
CCTGAACGTGCAAACCCAGCTCCTGACCATGT



MSP1-19

TFKEEGGKCVPASNVTCKDNNGGCA
CCAGCGAGCACACCTGCATCGACACCAACGTC





PEAECKMTDSNKIVCKCTKEGSEPLF
CCAGACAACGCCGCCTGCTACAGGTACCTGGA





EGVFCSHHHHHH
CGGCACCGAGGAGTGGCGCTGCCTCCTGACCT






TCAAGGAAGAGGGCGGCAAGTGCGTGCCAGC






CTCCAACGTCACCTGCAAGGACAACAACGGCG






GCTGCGCTCCAGAGGCTGAGTGCAAGATGAC






CGACAGCAACAAGATCGTGTGCAAGTGCACC






AAGGAAGGCTCCGAGCCACTCTTCGAGGGCG






TCTTCTGCAGCCACCACCACCACCACCACTGA





2
tryptophan-rich antigen
PVX_096995
MKTETVTSRSNPHQAIEYANQGPSR
ACCCACACCAAGCCATCGAGTACGCCAACCAG



(Pv-fam-a)

DKVEEWKRNAWTDWMVQLDDDWK
GGCCCATCCAGGGACAAGGTGGAGGAGTGG





DFNAQIEEEKKAWIEEKEGDWVILLK
AAGCGCAACGCCTGGACCGACTGGATGGTCC





HLQNKWLHFNPNLDAEYQTDMLAKS
AACTCGACGACGACTGGAAGGACTTCAACGCC





ETWDERQWKMWISTEGKQLLEMDL
CAGATCGAGGAAGAGAAGAAGGCCTGGATTG





KKWFTNNEMIYCKWTMDEWNEWKN
AGGAGAAGGAAGGCGACTGGGTCATCCTCCT





EKIKEWVTSEWKESEDQYWSKYDDA
GAAGCACCTCCAAAACAAGTGGCTGCACTTCA





TIQTLTVAERNQWFKWKERIYREGIE
ACCCAAACCTCGACGCCGAGTACCAGACCGAC





WKNWIAIKESKFVNANWNSWSEWK
ATGCTGGCCAAGTCCGAGACGTGGGACGAGA





NEKRLEFNDWIEAFVEKWIRQKQWLI
GGCAGTGGAAGATGTGGATCAGCACCGAGGG





WTDERKNFANRQKAAPGGVAAAPG
CAAGCAGCTCCTGGAGATGGACCTCAAGAAG





VFAPRPAFGAPSGFAPRPGFAAPSQ
TGGTTCACCAACAACGAGATGATCTACTGCAA





PPRYSFAAASGYVAPSATSEAAPATS
GTGGACCATGGACGAGTGGAACGAGTGGAA





EAPASAEATTALSSETTTPVNPEETA
GAACGAGAAGATCAAGGAGTGGGTGACCTCC





ASPEAATPVNPEETAASSETTTVNPE
GAGTGGAAGGAGAGCGAGGACCAATACTGGT





ATPVNPEAPVAEPEKKEEEPAAEPLL
CCAAGTACGACGACGCCACCATCCAAACCCTG





AIEPAQTEPAALEAAPSTSAHHHHHH
ACCGTCGCCGAGCGCAACCAGTGGTTCAAGT






GGAAGGAGAGGATCTACCGCGAGGGCATCGA






GTGGAAGAACTGGATCGCCATCAAGGAGAGC






AAGTTCGTGAACGCCAACTGGAACTCCTGGTC






TGAGTGGAAGAACGAGAAAAGGCTGGAGTTC






AACGACTGGATCGAGGCCTTCGTCGAGAAGT






GGATCCGCCAAAAGCAGTGGCTGATCTGGAC






CGACGAGAGGAAGAACTTCGCCAACCGCCAA






AAGGCTGCTCCAGGCGGCGTGGCTGCCGCCC






CAGGCGTCTTCGCCCCACGCCCAGCCTTCGGC






GCCCCATCCGGCTTCGCCCCAAGGCCAGGCTT






CGCTGCTCCAAGCCAGCCACCACGCTACTCCTT





3
sporozoite invasion-
PVX_088860
MQLELEPAPDYESTSPTVPVRLLLHD
ATGAGTCCATCAGCCCAATCGTGCCAGTCAGG



associated protein 2,

DYAPNAEDMFGPEASQVMTNLYETID
CTCCTGCTCCATGATGATTACGCCCCAAACGC



putative (SIAP2)

EDGTTTDGYQNGSDDDQSNQSDSN
CGAGGACATGTTCGGCCCAGAGGCCTCCCAA





DDAVMLNYLSNETDSFDELIDEIDNHK
GTGATGACCAACCTCTACGAGACGATCGACGA





KKKKIYSPLRKPVLKRSDSSDSLSDY
GGACGGCACCACCACCGACGGCTACCAAAAC





ELDEVLRQTENEPEEDEDLDLSLEDS
GGCTCCGACGACGACCAAAGCAACCAGTCCG





FEVINYPWKDILESSPYSTDHTNEED
ACAGCAACGACGACGCCGTCATGCTCAACTAC





FSSLEELELEDPVQEMNFGKLKFFEI
CTGTCCAACGAGACGGACAGCTTCGACGAGCT





GDPDLLIRKTPITPNTKTKSGLEKNGN
CATCGACGAGATCGACAATCACAAGAAGAAG





NTEASNINQHEKEKMDKRKRRTHKQ
AAGAAGATCTACTCCCCACTCAGGAAGCCAGT





FKNPIENFSVTTTYDDFLKQNGLRDH
GCTGAAGCGCAGCGACTCCAGCGACTCCCTGA





PSKHQKDSSEPFVLDQYNYRNAKFK
GCGACTACGAGCTCGACGAGGTCCTGCGCCA





NVRFYILRMLYDNIKDIGLKEFQYLKS
GACCGAGAACGAGCCAGAGGAAGACGAGGA





HKYEVEEFIKNILRNNLICLTFSQEDHL
CCTGGACCTCTCCCTGGAGGACAGCTTCGAGG





FNDAHLLIEKASIKSEHHHHHH
TCATCAACTACCCATGGAAGGACATCCTGGAG






TCCAGCCCATACAGCACCGACCACACCAACGA






GGAAGACTTCTCCAGCCTGGAGGAGCTGGAG






CTGGAGGACCCAGTCCAAGAGATGAATTTCG






GCAAGCTGAAGTTCTTCGAGATCGGCGACCCA






GACCTGCTCATCAGGAAGACCCCAATCACCCC






AAACACCAAGACCAAGTCCGGCCTGGAGAAG






AATGGCAACAACACCGAGGCCAGCAACATCA






ACCAGCACGAGAAGGAGAAGATGGACAAGC






GCAAGAGGCGCACCCACAAGCAATTCAAGAA






CCCAATCGAGAACTTCTCCGTGACCACCACCT






ACGACGACTTCCTCAAGCAAAACGGCCTGAGG






GACCACCCAAGCAAGCACCAGAAGGACTCCA






GCGAGCCATTCGTGCTCGACCAATACAACTAC





4
rhoptry neck protein 2,
PVX_117880
MNAGDGQGVYGGNGINNPLVYHVQ
GCGGAAACGGCATCAACAACCCACTCGTGTAC



putative (RON2)

HGVNIPNSNSDKKASDHTPDEDEDTY
CACGTCCAGCACGGCGTCAACATCCCAAACTC





GRTRNKRYMHRNPGEKYKGSNSPH
CAACAGCGACAAGAAGGCCAGCGACCACACC





DSNDDSGDTEYELNEGDVKRLTPKN
CCAGACGAGGACGAGGACACCTACGGCAGGA





KKGATTEEVDTYPYGKKTNGSEFPR
CCCGCAACAAGAGGTACATGCACCGCAACCCA





MNGSETGHYGYNNTGSGGHNDENG
GGCGAGAAGTACAAGGGCTCCAACAGCCCAC





YTPIIVKYDNTHAKNRANEIEENLNKG
ACGACTCCAACGACGACAGCGGCGACACCGA





EYSRIKMAKGKKGQKSGGYESDGED
GTACGAGCTGAACGAGGGCGACGTGAAGAG





SDVDSSNVFYVDNGQDMLIKEKMSR
GCTCACCCCAAAGAACAAGAAGGGCGCCACC





SEGPDEMSEEGLNVKYKAQRGPVNY
ACCGAGGAAGTGGACACCTACCCATACGGCA





HFSNYMNLDKRNTLSSNEIELQKMIG
AGAAGACCAACGGCAGCGAGTTCCCACGCAT





PKFSEEVNKYCRLNEPSSKKGEFLNV
GAACGGCTCCGAGACGGGCCACTACGGCTAC





SFEYSRALEELRSEMINELQKRKAVG
AACAACACCGGCAGCGGCGGCCACAACGACG





SNYYNNILNAIYTSMNRKNANFGRDA
AGAACGGCTACACCCCAATCATCGTGAAGTAC





YEDKSFISEANSFRNEEMQPLSAKYN
GACAACACCCACGCCAAGAACAGGGCCAACG





KILRQYLCHVFVGNPGVNQLERLYFH
AGATCGAGGAGAACCTCAACAAGGGCGAGTA





NLALGELIEPIRRKYNKLASSSVGLNY
CTCCCGCATCAAGATGGCCAAGGGCAAGAAG





EIYIASSSNIYLMGHLLMLSLAYLSYNS
GGCCAAAAGTCCGGCGGCTACGAGAGCGACG





YFVQGLKPFYSLETMLMANSDYSFF
GCGAGGACTCCGACGTCGACTCCAGCAACGT





MYNEVCNVYYHPKGTFNKDITFIPIES
GTTCTACGTCGACAACGGCCAGGACATGCTGA





RPGRHSTYVGERKVTCDLLELILNAY
TCAAGGAGAAGATGTCCAGGAGCGAGGGCCC





TLINVHEIQKVFNTSEAYGYENSISFG
AGACGAGATGAGCGAGGAAGGCCTCAACGTG





HNAVRIFSQVCPRDDAKNTFGCDFEK
AAGTACAAGGCCCAAAGGGGCCCAGTCAACT





STLYNSKVLKMDEGDKENQRSLKRA
ACCACTTCTCCAACTACATGAACCTGGACAAG





FDMLRTFAEIESTSHLGDPSPNYISLIF
CGCAACACCCTCTCCAGCAACGAGATCGAGCT





EQNLYTDFYKYLFWYDNRELINVQIR
CCAGAAGATGATCGGCCCAAAGTTCAGCGAG





NAGRRKKGKKVKFVYDEFVKRGKQL
GAAGTGAACAAGTACTGCAGGCTGAACGAGC





KDKLIKIDAKYNARSKALLVFYALVDK
CATCCAGCAAGAAGGGCGAGTTCCTCAACGTC





5
Plasmodium exported
PVX_101530
MNVNKKSSGEENNTKQALGLRVSRT
AGAACAACACCAAGCAAGCTCTGGGCCTGAG



protein, unknown

LAKDGANENAEEGLSEEEEEAVEEG
GGTGTCCCGCACCCTCGCTAAGGACGGCGCCA



function

EEEAVEEGEEEVVEEEGEEVVEGEE
ACGAGAACGCCGAGGAAGGCCTCAGCGAGGA





EEVVEGEEEVVEDEEVVEGEEYAEG
AGAGGAAGAGGCCGTCGAGGAAGGCGAGGA





EEPVEGEEYAEGEEPVEGEEPVEVE
AGAGGCCGTGGAGGAAGGCGAGGAAGAGGT





EYAEGEEPVEGEEYAEGEEPVEGEE
GGTCGAGGAAGAGGGCGAGGAAGTGGTCGA





VVEGEEVVEGEEVAEGEEVAEGEEV
GGGCGAGGAAGAGGAAGTGGTGGAGGGGG





AEGEEAVEGEEVAEGEEVAEGEEVA
AGGAAGAGGTGGTGGAGGATGAGGAAGTGG





EGEEAAEEGAAEEGATEEGATEEGA
TGGAGGGCGAGGAGTACGCTGAGGGCGAGG





TKEEATEKAAEGEETAESEKPAEEQP
AGCCGGTGGAGGGGGAGGAGTACGCCGAGG





TTFVETVEKKVEPVSKPPFKPLFPVD
GGGAGGAGCCAGTGGAGGGCGAGGAGCCAG





EKYLETLEDIAQSFLKEFQEAEGKRK
TGGAGGTGGAGGAGTACGCGGAGGGGGAGG





QKKVKKRAKKITKKLAKEYAKKFKSK
AGCCGGTGGAAGGTGAGGAGTACGCCGAGG





KKHHHHHH
GCGAGGAGCCTGTCGAGGGGGAGGAAGTGG






TGGAAGGCGAGGAAGTGGTGGAAGGTGAGG






AAGTGGCTGAGGGCGAGGAAGTGGCCGAGG






GGGAGGAAGTGGCCGAGGGCGAGGAAGCCG






TGGAGGGCGAGGAAGTGGCGGAGGGGGAG






GAAGTGGCGGAAGGCGAGGAAGTGGCCGAA






GGCGAGGAAGCCGCTGAGGAAGGCGCTGCC






GAGGAAGGCGCCACGGAGGAAGGCGCTACC






GAGGAAGGCGCCACCAAGGAAGAGGCCACC






GAGAAGGCTGCTGAGGGCGAGGAGACGGCT






GAGTCCGAGAAGCCAGCTGAGGAGCAACCAA






CCACCTTCGTGGAGACGGTCGAGAAGAAGGT






GGAGCCAGTCAGCAAGCCACCATTCAAGCCAC






TCTTCCCAGTCGACGAGAAGTACCTCGAAACC






CTGGAGGACATCGCCCAATCCTTCCTGAAGGA





6
tryptophan/threonine-
PVX_112680
MPKPDQKNLKGGVKNAPLQQRKGS
ATGCCAAAGCCAGACCAAAAGAACCTCAAGG



rich antigen

VPINPPKPVNDKLKDGSNKTETKNAK
GCGGCGTGAAGAACGCCCCACTGCAACAGAG





NTLSKPPMQVTDKSKDEAKKTPLQST
GAAGGGCTCCGTGCCAATCAACCCACCAAAGC





PKLTPKTKEVPKESNMEMWLKDTKD
CAGTCAACGACAAGCTCAAGGACGGCAGCAA





EYENLKCQYRTCLYDWFRKINDEYNE
CAAGACCGAGACGAAGAACGCCAAGAACACC





LLNKLEEKWAKFPNDPKNKDVFDNLK
CTGTCCAAGCCACCAATGCAAGTGACCGACAA





TSSLKNDEKKAQWMRKNLKDLMREQ
GAGCAAGGACGAGGCCAAGAAGACCCCACTC





VDEWLEGKKKIYEGMSPTYWDAWE
CAGTCCACCCCAAAGCTGACCCCAAAGACCAA





KKIAKGLMGAAWYKMNSSGRTKEW
GGAAGTGCCAAAGGAGAGCAACATGGAGATG





DKLRNELETRYNKKIKSLWGGFHRDV
TGGCTCAAGGACACCAAGGACGAGTACGAGA





YFRFKEWIEEVFNKWIENKQIDTWMN
ACCTCAAGTGCCAGTACAGGACCTGCCTGTAC





SGKKHHHHHH
GACTGGTTCCGCAAGATCAACGACGAGTACAA






CGAGCTCCTGAACAAGCTGGAGGAGAAGTGG






GCCAAGTTCCCAAACGACCCAAAGAACAAGG






ACGTGTTCGACAACCTCAAGACCTCCAGCCTG






AAGAACGACGAGAAGAAGGCCCAGTGGATGA






GGAAGAACCTCAAGGACCTGATGAGGGAGCA






GGTGGACGAGTGGCTGGAGGGCAAGAAGAA






GATCTACGAGGGCATGTCCCCAACCTACTGGG






ACGCCTGGGAGAAGAAGATCGCTAAGGGCCT






GATGGGCGCTGCTTGGTACAAGATGAACTCCT






CCGGCAGGACCAAGGAGTGGGACAAGCTCAG






GAACGAGCTCGAAACCCGCTACAACAAGAAG






ATCAAGTCCCTCTGGGGCGGCTTCCACAGGGA






CGTGTACTTCCGCTTCAAGGAGTGGATCGAGG






AAGTGTTCAACAAGTGGATCGAGAACAAGCA






AATCGACACCTGGATGAACAGCGGCAAGAAG






CACCACCACCACCACCACTGA





7
hypothetical protein
PVX_097715
MQYSIVKNEITKRRKPKIRNESPPDG
CAAGAGGCGCAAGCCAAAGATCAGGAACGAG





NSPGGGKNNAAGNNGGGDNNAKNK
TCCCCACCAGACGGCAACAGCCCAGGCGGCG





AANKAANNAANKAANNAANNAANNA
GCAAGAACAACGCTGCTGGCAACAACGGCGG





ANNAANNAANNAANNAANNAANNAA
CGGCGACAACAACGCCAAGAACAAGGCTGCT





NNAANNANEQNGNKKKKGKPKKEEA
AACAAGGCTGCTAACAACGCCGCCAACAAGG





DLPVQAQNENDRNKIEDIADEAELFA
CCGCCAACAACGCTGCTAACAACGCCGCGAAC





EEAKMLADLASKRSKEVEQILSSIPEN
AACGCCGCCAACAACGCCGCCAACAACGCAG





KFGSEPKEDAIFAAKDAVRASEDAMK
CTAACAACGCCGCTAACAACGCGGCCAACAAC





AAQKARAAETVTQANEEKDKAKTAK
GCCGCGAACAACGCGGCGAACAACGCTGCCA





ELAERSAQIVKKNAVEALKEFGKIAEA
ACAACGCCAACGAGCAAAACGGCAACAAGAA





AEMEAIKIPIPENLKPKKKVKQPRAAA
GAAGAAGGGCAAGCCAAAGAAGGAAGAGGC





QKVEPTQATAHKVVPPPAEPPRAPS
CGACCTCCCAGTGCAAGCCCAGAACGAGAAC





PPPPPAKPEAAPPAKEVAPAVTTPEA
GACAGGAACAAGATCGAGGACATCGCTGArG





PKEEAPKADAAPAAPQPAAESKVAK
AGGCTGAGCTGTTCGCTGAGGAAGCCAAGAT





EPTDQSAENQSDSLYKETNIKEGTEE
GCTCGCCGACCTGGCCTCCAAGCGCAGCAAG





AGTGQEQKQEPELQNLLEQQMNIFYI
GAAGTGGAGCAGATCCTCTCCAGCATCCCAGA





LVQFFKSKIKALIKFLLILVSHHHHHH
GAACAAGTTCGGCTCCGAGCCAAAGGAAGAC






GCCATCTTCGCTGCTAAGGACGCCGTGAGGGC






TAGCGAGGACGCCATGAAGGCTGCTCAAAAG






GCCAGGGCCGCTGAGACGGTCACCCAGGCCA






ACGAGGAGAAGGACAAGGCTAAGACCGCTAA






GGAGCTGGCTGAGAGGTCCGCTCAAATCGTG






AAGAAGAACGCCGTCGAGGCCCTGAAGGAGT






TCGGCAAGATCGCCGAGGCCGCCGAGATGGA






GGCCATCAAGATCCCAATCCCAGAGAACCTGA






AGCCAAAGAAGAAGGTGAAGCAACCAAGGGC






CGCCGCCCAAAAGGTGGAGCCAACCCAAGCT






ACCGCTCACAAGGTGGTGCCACCACCAGCTGA





8
41K blood stage antigen
PVX_084420
MDENTGWPIDYEFNSKTLPSIEVKLS
ACGAGTTCAACTCCAAGACCCTGCCAAGCATC



precursor 41-3, putative

PPENPLPQVAAEIKLLESARLKLEEG
GAGGTGAAGCTCTCCCCACCAGAGAACCCACT





MMQKLEDEYNKSLSSAKIKIQDTVEK
GCCACAAGTCGCCGCCGAGATCAAGGTCCTGG





SLSIFNDPNMLGSVISNSVKMLRSEN
AGAGCGCCCGCCTCAAGCTCGAAGAGGGCAT





VKKRTENVQAKHNLKKMQTVNQAKS
GATGCAGAAGCTGGAGGACGAGTACAACAAG





GPLPPPELRKHTSFLEQNYVNRVLPS
TCCCTGTCCAGCGCCAAGATCAAGATCCAAGA





VKISLSELTEPSVEIKEKIEEMEQYRT
CACCGTGGAGAAGTCCCTCAGCATCTTCAACG





DEEVAMFEMAISEFSILTDITILELEKQI
ACCCAAACATGCTGGGCTCCGTGATCTCCAAC





QLQLNPFLVDKKVVHRALTKELKELE
AGCGTCAAGATGCTCAGGAGCGAGAACGTGA





QREEKQKIKENFQRQSSFIEAGEDED
AGAAGCGCACCGAGAACGTCCAGGCCAAGCA





TGNILNVKISQTDYGYPTVDELVMQM
CAACCTCAAGAAGATGCAGACCGTCAACCAAG





QKRRDISEKLERQKILDLQMKLLKAQ
CCAAGAGCGGCCCACTCCCACCACCAGAGCTG





SEMIKDALHFALSKVIAQYSPLVETMK
CGCAAGCACACCTCCTTCCTGGAGCAAAACTA





LESMRMLHHHHHH
CGTGAACAGGGTCCTGCCATCCGTGAAGATCT






CCCTCAGCGAGCTGACCGAGCCAAGCGTCGA






GATCAAGGAGAAGATCGAGGAGATGGAGCA






GTACAGGACCGACGAGGAAGTGGCCATGTTC






GAGATGGCCATCTCCGAGTTCAGCATCCTCAC






CGACATCACCATCCTGGAGCTGGAGAAGCAA






ATCCAGCTCCAACTGAACCCATTCCTCGTCGAC






AAGAAGGTGGTCCACAGGGCCCTGACCAAGG






AGCTCAAGGAGCTGGAGCAGCGCGAGGAGA






AGCAAAAGATCAAGGAGAACTTCCAGAGGCA






ATCCAGCTTCATCGAGGCTGGCGAGGACGAG






GACACCGGCAACATCCTCAACGTGAAGATCTC






CCAGACCGACTACGGCTACCCAACCGTGGACG






AGCTCGTCATGCAGATGCAAAAGAGGCGCGA






CATCTCCGAGAAGCTGGAGCGCCAGAAGATC





9
rhoptry-associated
PVX_085930
MSSDGKSSASAKSGSKSGSKYGGSS
CTAAGTCCGGCAGCAAGTCCGGCAGCAAGTA



protein 1, putative

YSDYSAYDSGSASSVGSREFENEMY
CGGCGGCTCCAGCTACTCCGACTACAGCGCCT



(RAP1)

EFALQHPMEKLTKEMDILKNDYTKVK
ACGACTCCGGCAGCGCCTCCAGCGTGGGCAG





EEEGKILDEEHKEIEEKRKEERLKMLA
CCGCGAGTTCGAGAACGAGATGTACGAGTTC





EGDVEKNKGDEEINFIKHDYTDTRIRG
GCCCTGCAACACCCGATGGAGAAGCTCACCAA





GFTEFLSNLNPFKKEIKPMKKEISLITY
GGAGATGGACATCCTGAAGAACGACTACACC





IPDKIVNKEKIMRDLGISHKYEPYQQSI
AAGGTGAAGGAAGAGGAAGGCAAGATCCTCG





LYTCPNSVFFFDSMENLRKELDKNHE
ACGAGGAGCACAAGGAGATCGAGGAGAAGA





KEAITNKILDHNKECLKNFGLFDFELP
GGAAGGAAGAGCGCCTCAAGATGCTGGCCGA





DNKTKLGNVIGSIGEYHVRLYEIENDL
GGGCGACGTGGAGAAGAACAAGGGCGACGA





LKYQPSLDYMTLADDYKLVKNDVNTL
GGAGATCAACTTCATCAAGCACGACTACACCG





ENVNFCLLNPKTLEDFLKKKEIMELM
ACACCAGGATCCGCGGCGGCTTCACCGAGTTC





GEDPIAYEEKFTKYMEESINCHLESLI
CTCTCCAACCTGAACCCATTCAAGAAGGAGAT





YEDLDSSQDTKIVLKNVKSKLYLLQN
CAAGCCGATGAAGAAGGAGATCTCCCTCATCA





GLTYKSKKLINKLFNEIQKNPEPIFEKL
CCTACATCCCAGACAAGATCGTCAACAAGGAG





TWIYENMYHLKRDYTFLAFKTVCDKY
AAGATCATGCGCGACCTGGGCATCTCCCACAA





VSHNSIYTSLQGMTSYIIEYTRLYGAC
GTACGAGCCATACCAACAGAGCATCCTCTACA





FKNITIYNAVISGIHEQMKNLMKLMPR
CCTGCCCAAACTCCGTGTTCTTCTTCGACAGCA





SGLLSDVHFEALLHKENKKITRTDYVL
TGGAGAACCTCAGGAAGGAGCTGGACAAGAA





NDYDPSVKAYALTQVERLPMVSVINS
CCACGAGAAGGAAGCCATCACCAACAAGATC





FFEAKKKALSKMLAQMKLDLFTLTNE
CTCGACCACAACAAGGAGTGCCTCAAGAACTT





DLKIPNDKGANSKLTAKLISIYKAEIKK
CGGCCTGTTCGACTTCGAGCTCCCAGACAACA





YFKEMRDDYVFLIKARYKGHYKKNYL
AGACCAAGCTGGGCAACGTCATCGGCTCCATC





LYKRLEHHHHHH
GGCGAGTACCACGTGAGGCTCTACGAGATCG






AGAACGACCTCCTGAAGTACCAACCAAGCCTG






GACTACATGACCCTCGCCGACGACTACAAGCT






GGTGAAGAACGACGTCAACACCCTGGAGAAC






GTGAACTTCTGCCTCCTGAACCCAAAGACCCT





10
hypothetical protein,
PVX_094830
MNTRASKFANSKRKRNGNAMRENKL
ATGAACACCAGGGCCTCCAAGTTCGCCAACAG



conserved

NNDDVDHYSFLSLRTANEEKAATEND
CAAGAGGAAGCGCAACGGCAACGCCATGCGC





SNNAKKEGEENTNGNEKKNEENGSG
GAGAACAAGCTCAACAACGACGACGTGGACC





NEKRNEENNANEKKNEQTNDQSNG
ACTACTCCTTCCTCAGCCTGAGGACCGCTAAC





QSNSQTNIPKKNEAVPPEKKINKENLL
GAGGAGAAGGCTGCTACCGAGAACGACTCCA





EYGTHDKDGHFIPSYKTLTDEILSTNN
ACAACGCCAAGAAGGAAGGCGAGGAGAACA





SLERASSFLKIACSHIMKIVEFIPESKL
CCAACGGCAACGAGAAGAAGAACGAGGAGA





SSQYIKVESKNVYIKDITSECQNIFFSL
ACGGCAGCGGCAACGAGAAGCGCAACGAGG





EKLTMTMIVLNSKMNKLVYVQDKHHH
AGAACAACGCTAACGAGAAGAAGAACGAGCA





HHH
AACCAACGACCAGTCCAACGGCCAATCCAACA






GCCAGACCAACATCCCAAAGAAGAACGAGGC






CGTCCCACCAGAGAAGAAGATCAACAAGGAG






AACCTCCTGGAGTACGGCACCCACGACAAGG






ACGGCCACTTCATCCCAAGCTACAAGACCCTC






ACCGACGAGATCCTGTCCACCAACAACAGCCT






GGAGAGGGCCTCCAGCTTCCTGAAGATCGCCT






GCTCCCACATCATGAAGATCGTGGAGTTCATC






CCAGAGTCCAAGCTGTCCAGCCAATACATCAA






GGTGGAGAGCAAGAACGTCTACATCAAGGAC






ATCACCTCCGAGTGCCAGAACATCTTCTTCAGC






CTGGAGAAGCTGACCATGACCATGATCGTCCT






CAACAGCAAGATGAACAAGCTGGTCTACGTGC






AAGACAAGCACCACCACCACCACCACTGA





11
tryptophan-rich antigen
PVX_112675
MPKPAQNLKGGVKKPSLQQTKSPLP
ATGCCAAAGCCAGCCCAAAACCTCAAGGGCG



(Pv-fam-a)

SKPPKPVNDKLKDDSNKTETKDAKN
GCGTGAAGAAGCCATCCCTCCAACAGACCAAG





GLNKPPKNINDKVKDGENKTESQDLN
TCCCCACTGCCAAGCAAGCCACCAAAGCCAGT





EPSFKLPMRQKASSWDAWLKGTKK
CAACGACAAGCTCAAGGACGACAGCAACAAG





DYENLKCFAKGNLYDWLCSVRDSFE
ACCGAGACGAAGGACGCCAAGAACGGCCTGA





LYLQSLESKWTSCSDNTTTVFLCECL
ACAAGCCACCAAAGAACATCAACGACAAGGT





AESSGWGDPQWESWVKKELKEQLK
GAAGGACGGCGAGAACAAGACCCCATCCCAA





TEAQAWISTKKKDFDGLTSKYFSLWK
GACCTCAACGAGCCAAGCTTCAAGCTGCCAAT





DHRRKELEEEAWKTKASSGGLSEWE
GAGGCAAAAGGCCTCCAGCTGGGACGCTTGG





ELTDKMNTRYTNNLDNMWSNYSGDL
CTCAAGGGCACCAAGAAGGACTACGAGAACC





LFRFDEWSPEVLEKWIESKQWNQW
TGAAGTGCTTCGCCAAGGGCAACCTCTACGAC





VKKVRKHHHHHH
TGGCTGTGCTCCGTCCGCGACAGCTTCGAGCT






CTACCTGCAATCCCTGGAGAGCAAGTGGACCT






CCTGCAGCGACAACACCACCACCGTGTTCCTC






TGCGAGTGCCTCGCTGAGTCCAGCGGCTGGG






GCGACCCACAGTGGGAGTCCTGGGTCAAGAA






GGAGCTCAAGGAGCAACTGAAGACCGAGGCC






CAGGCCTGGATCAGCACCAAGAAGAAGGACT






TCGACGGCCTCACCTCCAAGTACTTCAGCCTGT






GGAAGGACCACAGGCGCAAGGAGCTGGAGG






AAGAGGCCTGGAAGACCAAGGCCTCCAGCGG






CGGCCTCTCCGAGTGGGAGGAGCTGACCGAC






AAGATGAACACCAGGTACACCAACAACCTCGA






CAACATGTGGTCCAACTACAGCGGCGACCTCC






TGTTCCGCTTCGACGAGTGGTCCCCAGAGGTG






CTGGAGAAGTGGATCGAGAGCAAGCAGTGGA






ACCAGTGGGTGAAGAAGGTCAGGAAGCACCA






CCACCACCACCACTGA





12
tryptophan-rich antigen
PVX_112670
MVTEGGDNLDDDLGGDLEGLLGDDA
ACGACCTCGGCGGCGACCTGGAGGGCCTCCT



(Pv-fam-a)

EGGAAGGEGAAAAASAEGLSGEVEN
GGGCGACGACGCTGAGGGCGGCGCCGCCGG





ELLYVKEDDDDAPAATPDEKPSTSGE
CGGCGAGGGCGCTGCCGCCGCCGCCTCCGCC





ETPAAFVDLVNETVPPPAKAPLPLQT
GAGGGCCTGAGCGGCGAGGTGGAGAACGAG





KAPQGPKIKDWNQWMKQAKKDFSG
CTCCTCTACGTGAAGGAAGACGACGACGACG





YKGTMHTQRHEWTKEKEDELQKFCK
CTCCAGCTGCTACCCCAGACGAGAAGCCATCC





YLEKRWMNYTGNIDRECRSDFLKST
ACCAGCGGCGAGGAGACGCCAGCTGCTTTCG





QNWNESQWNKWVKSEGKHHMNKQ
TGGACCTCGTCAACGAGACGGTGCCACCACCA





FQKWLDYNKYKLQDWTNTEWNKWK
GCTAAGGCCCCACTCCCACTGCAAACCAAGGC





TTVKEQLDDEEWKKKEAAGKTKEWI
CCCACAGGGCCCAAAGATCAAGGACTGGAAC





KCTDKMEKKCLKKTKKHCKNWEKKA
CAGTGGATGAAGCAGGCCAAGAAGGACTTCT





NSSFKKWEGDFTKKWTSNKQWNS
CCGGCTACAAGGGCACCATGCACACCCAAAG





WCKELEKHHHHHH
GCACGAGTGGACCAAGGAGAAGGAAGACGA






GCTGCAGAAGTTCTGCAAGTACCTGGAGAAG






CGCTGGATGAACTACACCGGCAACATCGACAG






GGAGTGCCGCTCCGACTTCCTGAAGAGCACCC






AAAACTGGAACGAGTCCCAGTGGAACAAGTG






GGTGAAGAGCGAGGGCAAGCACCACATGAAC






AAGCAATTCCAGAAGTGGCTGGACTACAACAA






GTACAAGCTCCAAGACTGGACCAACACCGAGT






GGAACAAGTGGAAGACCACCGTCAAGGAGCA






GCTGGACGACGAGGAGTGGAAGAAGAAGGA






AGCCGCCGGCAAGACCAAGGAGTGGATCAAG






TGCACCGACAAGATGGAGAAGAAGTGCCTCA






AGAAGACCAAGAAGCACTGCAAGAACTGGGA






GAAGAAGGCCAACTCCAGCTTCAAGAAGTGG






GAGGGCGACTTCACCAAGAAGTGGACCTCCA






ACAAGCAGTGGAACAGCTGGTGCAAGGAGCT





13
Hyp, huge list of
PVX_002550
MAVEVVQEAADEVLEEEKIEEPLEIVE
ACGAGGTGCTCGAAGAGGAGAAGATCGAGG



orthologs, paralogs,

EEPVQVAAEEPVEEVLEEVVQEAAD
AGCCACTGGAGATCGTGGAGGAAGAGCCAGT



synteny with Py LSA3

EVMEEEKIEEPLEIVAEEPLEIVAEEPV
GCAAGTCGCCGCCGAGGAGCCAGTCGAGGAA



(PyLSA3syn-2)

QVAAEEVLVEKEEVNENILNIVEEIKE
GTGCTCGAAGAGGTGGTGCAAGAGGCCGCCG





SIVDKLEANEEASEEGNEDLLESAEE
ACGAGGTCATGGAGGAAGAGAAGATCGAGG





AAEEVAEEAVDTTTEADVVETVEEEA
AGCCTCTGGAGATCGTCGCTGAAGAACCTCTG





ANATTEVSAEESLEVSTEAPEETTES
GAGATCGTGGCTGAGGAGCCTGTGCAGGTGG





ESHETFEEDILKNLEENKEANENALE
CTGCCGAGGAAGTGCTGGTCGAGAAGGAAGA





DIKEMKEEFLDYVEQRVEDNENVLVD
GGTGAACGAGAACATCCTCAACATCGTGGAG





LLQHLERNAHVNESVLEDLEEIKEDLL
GAGATCAAGGAGAGCATCGTCGACAAGCTGG





ANIQMAEETRKEVTDASAESAEEVEE
AGGCCAACGAGGAAGCCAGCGAGGAAGGCA





PVEVSAEVAAEEPVEVAAEEPVEVTA
ACGAGGACCTCCTGGAGTCCGCTGAGGAAGC





EEPVEVTAEEPVEIPTEENIFDVIEEIK
CGCTGAGGAAGTGGCTGAGGAAGCCGTGGAC





EKVLENLEETTAESVAESVGEGADEN
ACCACCACCGAGGCTGACGTGGTGGAGACGG





ALDVLKEMQESLLENFGQKIEANENIL
TGGAGGAAGAGGCCGCTAACGCTACCACCGA





ASVLENIQEKVELNKSVLVDVLAELKE
GGTGTCCGCTGAGGAGAGCCTGGAGGTGTCC





EAVSQRETAQEVAAELVEEAAEVPAV
ACCGAGGCTCCAGAGGAGACGACCGAGTCCG





EPVEEEVVEPAVEVVEEPVEEEVVEP
AGAGCCACGAGACGTTCGAGGAAGACATCCT





VVDVIEEPAVEVVEVPVEETVEEPVE
GAAGAACCTGGAGGAGAACAAGGAAGCCAAC





VTAEEPVEVTAEEPVEETVEEPVVEV
GAGAACGCCCTGGAGGACATCAAGGAGATGA





VEEPVEEPVVEAIEEPVVEPVVEPAV
AGGAAGAGTTCCTCGACTACGTGGAGCAAAG





EVIEDATEEPVEEAAEEPDVEVAEGS
GGTCGAGGACAACGAGAACGTGCTGGTCGAC





AIESVEEAFEQIIEDAAQVIAEESVEET
CTCCTGCAGCACCTGGAGCGCAACGCCCACGT





AEQILEQATQAVTEEAADAADVADAE
GAACGAGAGCGTCCTGGAGGACCTGGAGGA





EAVGTAQVVTEESVAEAIEDTVEEISA
GATCAAGGAAGACCTCCTGGCCAACATCCAAA





EPIQATIEGIVGEVVESVEENIEAVEEA
TGGCCGAGGAGACGAGGAAGGAAGTGACCG





IKDIVEGAVEGAPELSLEEMIEDVMVG
ACGCTTCCGCTGAGAGCGCTGAGGAAGTGGA





TVAEEDSAKEAAEETVEEVVQEDAAE
GGAGCCCGTCGAGGTGTCCGCTGAGGTGGCT





14
conserved Plasmodium
PVX_090970
mTYMLMKDDDSHDDKDDENEEKKKK
ATGACCTACATGCTCATGAAGGACGACGACTC



protein, unknown

EGKTNKDTNKIIKGESMTREDLLQLLN
CCACGACGACAAGGACGACGAGAACGAGGA



function

EMLKLQTDMKNIVKDLIVVAKKNSYDF
GAAGAAGAAGAAGGAAGGCAAGACCAACAA





MSVYNVAKTYNTVDPLGKYQIEMPEF
GGAGACCAACAAGATCATCAAGGGCGAGAGC





DKVVENYHFDPEVKETVSKLMSSQE
ATGACCAGGGAGGACCTCCTGCAACTCCTGAA





NYYANMSETATLNVDKIIEIHHFMLNE
CGAGATGCTCAAGCTGCAGACCGACATGAAG





LYKIDPEFKKIPNKHELDPKLIALVIQSI
AACATCGTCAAGGACCTCATCGTGGTCGCCAA





VSAKVEEEFNLTSEDVEASIANQQYA
GAAGAACTCCTACGACTTCATGAGCGTGTACA





LTSNMEFARVNIQMOTIMNKFMGDhh
ACGTCGCCAAGACCTACAACACCGTGGACCCA





hhhh
CTGGGCAAGTACCAAATCGAGATGCCAGAGT






TCGACAAGGTGGTCGAGAACTACCACTTCGAC






CCAGAGGTGAAGGAGACGGTGTCCAAGCTCA






TGTCCAGCCAGGAGAACTACTACGCCAACATG






AGCGAGACGGCCACCCTGAACGTCGACAAGA






TCATCGAGATCCACCACTTCATGCTCAACGAG






CTGTACAAGATCGACCCAGAGTTCAAGAAGAT






CCCAAACAAGCACGAGCTGGACCCAAAGCTCA






TCGCCCTCGTGATCCAATCCATCGTGAGCGCC






AAGGTCGAGGAAGAGTTCAACCTCACCTCCGA






GGACGTCGAGGCCAGCATCGCCAACCAACAG






TACGCCCTGACCTCCAACATGGAGTTCGCCCG






CGTGAACATCCAAATGCAGACCATCATGAACA






AGTTCATGGGCGACCACCACCACCACCACCAC






TGA





15
conserved Plasmodium
PVX_084815
mAGGVSEEAIKKLKEIKKLELDILKDF
ATGGCCGGCGGCGTCAGCGAGGAAGCCATCA



protein, unknown

MKQDAGHADLYKKYHCIASDYISGNP
AGAAGCTCAAGGAGATCAAGAAGCTGGAGCT



function

KGSSAEGPNLAKKGEKSKKGEKHQN
GGACATCCTGAAGGACTTCATGAAGCAAGAC





GEKPQNGEKPKKSFIEKIASFVSIFSY
GCCGGCCACGCCGACCTCTACAAGAAGTACCA





NNVSKIYSEHVQRIFPKARDHAGDGS
CTGCATCGCCAGCGACTACATCTCCGGCAACC





AGDAIYPDDKIETGKKQNQSSYVQLS
CAAAGGGCTCCAGCGCTGAGGGCCCAAACCT





ALNLMKRNMFLGGKDKSSEHFEVGN
GGCCAAGAAGGGCGAGAAGAGCAAGAAGGG





LGSFYMIFGARNTDYPWACSCDPLQ
CGAGAAGCACCAAAACGGCGAGAAGCCACAG





LIDYKEKKRNYVLCSNQVDMSIQNAD
AACGGCGAGAAGCCAAAGAAGTCCTTCATCG





LFCNPKhhhhhh
AGAAGATCGCCTCCTTCGTGAGCATCTTCTCCT






ACAACAACGTCAGCAAGATCTACTCCGAGCAC






GTGCAAAGGATCTTCCCAAAGGCCCGCGACCA






CGCTGGCGACGGCAGCGCCGGCGACGCCATC






TACCCAGACGACAAGATCGAGACGGGCAAGA






AGCAAAACCAGTCCAGCTACGTCCAGCTCTCC






GCCCTCAACCTGATGAAGCGCAACATGTTCCT






GGGCGGCAAGGACAAGTCCAGCGAGCACTTC






GAAGTGGGCAACCTCGGCAGCTTCTACATGAT






CTTCGGCGCCAGGAACACCGACTACCCATGGG






CCTGCTCCTGCGACCCACTCCAGCTGATCGACT






ACAAGGAGAAGAAGCGCAACTACGTGCTCTG






CAGCAACCAAGTCGACATGTCCATCCAGAACG






CCGACCTGTTCTGCAACCCAAAGCACCACCAC






CACCACCACTGA





16
tryptophan-rich antigen
PVX_090270
mVSCTSLCLYIIYSLFLLNNVSLSIQVK
ATCTACAGCCTCTTCCTCCTGAACAACGTGTCC



(Pv-fam-a)

TNEIKNGQNGSVQLKEKGGGVNLAP
CTGAGCATCCAAGTCAAGACCAACGAGATCAA





KVGTNITQKRDTKMAKKTVTKVAKKK
GAACGGCCAAAACGGCTCCGTCCAGCTCAAG





VTKVAEKTGTKVADKTGTKVADKTGT
GAGAAGGGCGGCGGCGTGAACCTGGCTCCAA





KVADKTGTKVAEKTGTKVADKTGTK
AGGTCGGCACCAACATCACCCAGAAGAGGGA





VAEKTGTNISQKEDEKGPPKEDTQGT
CACCAAGATGGCCAAGAAGACCGTGACCAAG





QKADAKAIQQADAQVSEKWKKKEWK
GTCGCCAAGAAGAAGGTCACGAAGGTCGCCG





EWIKKAESDLDIFNALMDNEKEKKWY
AGAAGACCGGCACCAAGGTGGCCGACAAGAC





SEKEKEWNKWIKGVEKKWMHYNKNI
CGGCACCAAGGTCGCTGATAAGACGGGGACG





YVEYRSLVFWVGLKWVESQWEKWIL
AAGGTCGCTGATAAGACCGGGACGAAGGTGG





SDGLEFLVMDWKKWIKENKSNFDEW
CTGAGAAGACGGGGACGAAGGTTGCTGATAA





LKSEWDTWTNSQMEEWKSSNWKLN
GACGGGGACCAAGGTGGCTGAGAAGACCGG





EDKRWEMWENDKKWIKWLYLKDWI
CACCAACATCAGCCAAAAGGAAGACGAGAAG





NCSKWKKRIQKESKEWLRWTKLKEE
GGCCCACCAAAGGAAGACACCCAAGGCACCC





MYhhhhhh
AGAAGGCCGACGCCAAGGCCATCCAACAGGC






CGACGCCCAGGTGAGCGAGAAGTGGAAGAA






GAAGGAGTGGAAGGAGTGGATCAAGAAGGC






CGAGTCCGACCTCGACATCTTCAACGCCCTGA






TGGACAACGAGAAGGAGAAGAAGTGGTACA






GCGAGAAGGAGAAGGAGTGGAACAAGTGGA






TCAAGGGCGTGGAGAAGAAGTGGATGCACTA






CAACAAGAACATCTACGTCGAGTACAGGTCCC






TCGTGTTCTGGGTCGGCCTGAAGTGGGTGGA






GTCCCAATGGGAGAAGTGGATCCTCAGCGAC






GGCCTGGAGTTCCTGGTCATGGACTGGAAGA






AGTGGATCAAGGAGAACAAGTCCAACTTCGA






CGAGTGGCTCAAGAGCGAGTGGGACACCTGG






ACCAACTCCCAGATGGAGGAGTGGAAGTCCA





17
apical membrane
PVX_092275
mGEDAEVENAKYRIPAGRCPVFGKGI
AAGTACAGGATCCCAGCTGGCAGGTGCCCAG



antigen 1, AMA1

VIENSDVSFLRPVATGDQKLKDGGFA
TGTTCGGCAAGGGCATCGTCATCGAGAACTCC



(Orthologs with Pf

FPNANDHISPMTLANLKERYKDNVEM
GACGTGAGCTTCCTCCGCCCAGTGGCTACCGG



vaccine candidates)

MKLNDIALCRTHAASFVMAGDQNSS
CGACCAAAAGCTGAAGGACGGCGGATTCGCC





YRHPAVYDEKEKTCHMLYLSAQENM
TTCCCAAACGCCAACGACCACATCTCCCCAATG





GPRYCSPDAQNRDAVFCFKPDKNES
ACCCTCGCCAACCTGAAGGAGAGGTACAAGG





FENLVYLSKNVRNDWDKKCPRKNLG
ACAACGTGGAGATGATGAAGCTCAACGACAT





NAKFGLWVDGNCEEIPYVKEVEAEDL
CGCTCTGTGCAGGACCCACGCTGCTAGCTTCG





RECNRIVFGASASDQPTQYEEEMTD
TGATGGCTGGCGACCAGAACTCCAGCTACAG





YQKIQQGFRQNNREMIKSAFLPVGAF
GCACCCAGCCGTCTACGACGAGAAGGAGAAG





NSDNFKSKGRGFNWANFDSVKKKCY
ACCTGCCACATGCTCTACCTGTCCGCCCAAGA





IFNTKPTCLINDKNFIATTALSHPQEVD
GAACATGGGCCCAAGGTACTGCTCCCCAGAC





LEFPCSIYKDEIEREIKKQSRNMNLYS
GCTCAGAACAGGGACGCTGTCTTCTGCTTCAA





VDGERIVLPRIFISNDKESIKCPCEPER
GCCAGACAAGAACGAGTCCTTCGAGAACCTCG





ISNSTCNFYVCNCVEKRAEIKENNQV
TGTACCTGAGCAAGAACGTCAGGAACGACTG





VIKEEFRDYYENGEEKSNKQhhhhhh
GGACAAGAAGTGCCCACGCAAGAACCTCGGC






AACGCCAAGTTCGGCCTGTGGGTGGACGGCA






ACTGCGAGGAGATCCCATACGTGAAGGAAGT






GGAGGCCGAGGACCTCAGGGAGTGCAACAG






GATCGTCTTCGGCGCTTCCGCTAGCGACCAAC






CAACCCAGTACGAGGAAGAGATGACCGACTA






CCAAAAGATCCAACAGGGCTTCAGGCAGAAC






AACCGCGAGATGATCAAGTCCGCCTTCCTCCC






AGTGGGCGCCTTCAACTCCGACAACTTCAAGA






GCAAGGGCCGCGGCTTCAACTGGGCCAACTTC






GACAGCGTGAAGAAGAAGTGCTACATCTTCAA






CACCAAGCCAACCTGCCTGATCAACGACAAGA






ACTTCATCGCCACCACCGCCCTCTCCCACCCAC





18
hypothetical protein
PVX_084720
mNGNRNLNIKPTCHKSGKNDKANGS
CAACCTGCCACAAGAGCGGCAAGAACGACAA





DNIANKGGAQHAANGATGTPSGSSN
GGCCAACGGCTCCGACAACATCGCTAACAAG





GKKGATTTSASAGQAGASGGMAAP
GGCGGCGCCCAACACGCTGCTAACGGCGCCA





GMNPNFEQMMKPLNDMFKGNGEGL
CCGGCACCCCAAGCGGCTCCAGCAACGGCAA





NIENIMNSDMFQNFFNSLMGGNPHD
GAAGGGCGCTACGACCACCAGCGCTTCCGCT





GAGGGQEILFKDMLNAMNAQGGGAP
GGCCAAGCTGGCGCTTCCGGCGGCATGGCCG





GAAATSGGANKDPNISVSPEQLNKIN
CCCCAGGCATGAACCCAAACTTCGAGCAGATG





QLKDKLENVLKNVGVDVEQLKENMQ
ATGAAGCCACTGAACGACATGTTCAAGGGCA





NENIMQNKDALRDLLANLPMNPGMM
ACGGCGAGGGCCTCAACATCGAGAACATCAT





QNMMAGKDGNMFNMDPNQMMNMF
GAACAGCGACATGTTCCAGAACTTCTTCAACT





NQLSQGKMNMKDFGMGDFMPPPVH
CCCTGATGGGCGGCAACCCACACGACGGCGC





ANDQDAEDDSRGKAFVTNSSNNDIN
TGGCGGCGGCCAAGAGATCCTGTTCAAGGAC





FAHKLNAFEYSNGPSEGMFQLYGMN
ATGCTCAACGCCATGAACGCCCAAGGCGGCG





NDDGVIDDGMSDSVGKNSALDVSGG
GCGCCCCAGGCGCTGCCGCCACCTCCGGCGG





SINRNLSDGDSAKEDSDESNANATSN
CGCCAACAAGGACCCAAACATCAGCGTCTCCC





SNATVPNKGGHEGGSANEVYSNEEE
CAGAGCAGCTGAACAAGATCAACCAACTCAA





LITSSGSKGDANKLAGTGGYKNNNAF
GGACAAGCTGGAGAACGTGCTCAAGAACGTG





LDLNNLKKDASAAKYGKDNSGDKSN
GGCGTCGACGTGGAGCAGCTCAAGGAGAACA





GGNSNGGNNKVMNKRIGGKKKKTFK
TGCAAAACGAGAACATCATGCAGAACAAGGA





KKKNPGQIPFKMETLQKLVKEYTNTS
CGCTCTGAGGGACCTCCTGGCTAACCTCCCGA





NQKIMEKIIKKYVSMSNQSARGNSEE
TGAACCCAGGCATGATGCAAAACATGATGGCC





EDDEEEAEDEKSAKDKNSEKEAELN
GGCAAGGACGGCAACATGTTCAACATGGACC





MNEFSVKDIKKLISEGILTYEDLTEEEL
CAAACCAGATGATGAACATGTTCAACCAACTC





KKLAKPDDMFYELSPYANEEKDLSLN
AGCCAGGGCAAGATGAACATGAAGGACTTCG





ETSGVSNEQLNAFLRKNGSYHMSYD
GCATGGGCGACTTCATGCCACCACCAGTCCAC





SKAIDYLKQKKAEKKEEEQEDDNFYD
GCCAACGACCAAGACGCTGAGGACGACTCCC





AYKQIKNSYEGIPSNYYHDAPQLIGEN
GCGGCAAGGCTTTCGTGACCAACTCCAGCAAC





YVFTSVYDKKKELIDFLKRSNGATDS
AACGACATCAACTTCGCCCACAAGCTGAACGC





19
merozoite surface
PVX_003770
mPLEVSLWGQGNAHLGTQTSRLLRE
GCAACGCTCACCTCGGCACCCAAACCTCCCGC



protein 5

SGRNGQANRVNQADQADQVASPPIS
CTGCTCAGGGAGTCCGGCAGGAACGGCCAGG





GKERRRGIGMTSNLQLLSGEDEKDS
CCAACAGGGTGAACCAGGCTGACCAGGCTGA





TSEEAPNLEGKDNADAGKDGEKEPS
CCAAGTGGCTTCCCCACCAATCTCCGGCAAGG





EKQSGDVDPTVTDAERAKDENASVS
AGAGGCGCAGGGGCATCGGCATGACCTCCAA





EEEQMKTLDSGEDHTDDGNADGGQ
CCTCCAACTCCTGAGCGGCGAGGACGAGAAG





GGGDGNDENQKGDGKEKEGGEEKK
GACTCCACCAGCGAGGAAGCCCCAAACCTGG





EDGKDDHEKGEKGSEGESGEKDEA
AGGGCAAGGACAACGCTGACGCTGGCAAGGA





APKGDAAEKDKKLESKTADAKVSEH
TGGCGAGAAGGAGCCATCCGAGAAGCAGAGC





KADDANPGGNKDSPEGESPKEGNPD
GGCGACGTGGACCCAACCGTCACCGACGCTG





DPSQKNPEAAGDDDSRLHLDNLDDK
AGAGGGCTAAGGACGAGAACGCTTCCGTCAG





VPHYSALRNNRVEKGVTDTMVLNDII
CGAGGAAGAGCAGATGAAGACCCTGGACAGC





GENAKSCSVDNGGCADDQICIRIDNI
GGCGAGGACCACACCGACGACGGCAACGCTG





GIKCICKEGHLFGDKCILTKhhhhhh
ACGGCGGACAAGGCGGCGGCGACGGCAACG






ACGAGAACCAAAAGGGCGACGGCAAGGAGA






AGGAAGGCGGCGAGGAGAAGAAGGAAGACG






GCAAGGACGACCACGAGAAGGGCGAGAAGG






GCTCCGAGGGCGAGAGCGGCGAGAAGGACG






AGGCTGCTCCAAAGGGCGACGCTGCCGAGAA






GGACAAGAAGCTGGAGTCCAAGACCGCCGAC






GCCAAGGTGAGCGAGCACAAGGCTGACGACG






CTAACCCAGGCGGCAACAAGGACTCCCCAGA






GGGCGAGAGCCCAAAGGAAGGCAACCCAGAC






GACCCATCCCAGAAGAACCCGGAGGCTGCTG






GCGACGACGACAGCCGCCTCCACCTGGACAAC






CTCGACGACAAGGTCCCACACTACTCCGCCCT






GCGCAACAACAGGGTGGAGAAGGGCGTCACC






GACACCATGGTGCTGAACGACATCATCGGCG





20
TRAg (Pv-fam-a)
PVX_092990
mDVLQLVIPSEEDIQLDKPKKDELGS
GGAAGACATCCAGCTCGACAAGCCAAAGAAG





GILSILDVHYQDVPKEFMEEEEETAVY
GACGAGCTGGGCAGCGGCATCCTCTCCATCCT





PLKPEDFAKEDSQSTEWLTFIQGLEG
GGACGTIGCACTACCAAGACGTCCCAAAGGAG





DWERLEVSLNKARERWMEQRNKEW
TTCATGGAGGAAGAGGAAGAGACGGCCGTGT





AGWLRLIENKWSEYSQISTKGKDPA
ACCCACTCAAGCCAGAGGACTTCGCCAAGGAA





GLRKREWSDEKWKKWFKAEVKSQI
GACTCCCAAAGCACCGAGTGGCTCACCTTCAT





DSHLKKWMNDTHSNLFKILVKDMSQ
CCAAGGCCTGGAGGGCGACTGGGAGAGGCT





FENKKTKEWLMNHWKKNERGYGSE
GGAGGTGTCCCTGAACAAGGCCAGGGAGCGC





SFEVMTTSKLLNVAKSREWYRANPNI
TGGATGGAGCAAAGGAACAAGGAGTGGGCT





NRERRELMKWFLLKENEYLGQEWKK
GGCTGGCTCAGGCTGATCGAGAACAAGTGGT





WTHWKKVKFFVFNSMCTTFSGKRLT
CCGAGTACAGCCAGATCTCCACCAAGGGCAA





KEEWNQFVNEIKVhhhhhh
GGACCCGGCTGGCCTCAGGAAGCGCGAGTGG






TCCGACGAAAAGTGGAAGAAGTGGTTCAAGG






CCGAGGTGAAGAGCCAAATCGACTCCCACCTG






AAGAAGTGGATGAACGACACCCACAGCAACC






TCTTCAAGATCCTGGTCAAGGACATGTCCCAG






TTCGAGAACAAGAAGACCAAGGAGTGGCTCA






TGAACCACTGGAAGAAGAACGAGAGGGGCTA






CGGCTCCGAGAGCTTCGAGGTCATGACCACCA






GCAAGCTCCTGAACGTCGCCAAGTCCAGGGA






GTGGTACTGCGCCAACCCAAACATCAACCGCG






AGAGGCGCGAGCTCATGAAGTGGTTCCTCCTG






AAGGAGAACGAGTACCTGGGCCAAGAGTGGA






AGAAGTGGACCCACTGGAAGAAGGTGAAGTT






CTTCGTCTTCAACAGCATGTGCACCACCTTCTC






CGGCAAGCGCCTGACCAAGGAAGAGTGGAAC






CAGTTCGTGAACGAGATCAAGGTCCACCACCA






CCACCACCACTGA





21
unspecified product
PVX_112690
mEAMPKFPQNNLKGGLKDSPLKQPK
ATGGAGGCCATGCCAAAGTTCCCACAAAACAA





SPLINGPPKPVNDKLKDDSNKTETKD
CCTCAAGGGCGGCCTGAAGGACTCCCCACTCA





AKNGLNKPPKNINDKVKDGENKTPS
AGCAGCCAAAGAGCCCACTGATCAACGGCCC





QDLNEPSFKLPMRQKESSWYTWLK
ACCAAAGCCAGTGAACGACAAGCTCAAGGAC





GTKKDYETLKCFAKGNLYDWLCNVR
GACTCCAACAAGACCGAGACGAAGGACGCCA





ESFDLYLQSLEKKWTTCSDSATTLFL
AGAACGGCCTGAACAAGCCACCAAAGAACAT





CECFAESSGWNDSQWGNWMNNQL
CAACGACAAGGTCAAGGACGGCGAGAACAAG





KEQLKTEAEAWISTKKKDFDGLTSKY
ACCCCATCCCAAGACCTCAACGAGCCAAGCTT





FSLWKDHRRKELDADEWKNKVSSG
CAAGCTGCCAATGAGGCAGAAGGAGTCCAGC





GLSEWEELTNKMNTRYRNNLDNMW
TGGTACACCTGGCTCAAGGGCACCAAGAAGG





SHFSRDLFFNFDEWAPQVLEKWIEN
ACTACGAGACGCTGAAGTGCTTCGCCAAGGG





KQWNRWVKKVRKhhhhhh
CAACCTCTACGACTGGCTGTGCAACGTGCGCG






AGTCCTTCGACCTCTACCTGCAAAGCCTGGAG






AAGAAGTGGACCACCTGCTCCGACAGCGCTAC






CACCCTCTTCCTGTGCGAGTGCTTCGCCGAGT






CCAGCGGCTGGAACGACTCCCAGTGGGGCAA






CTGGATGAACAACCAACTCAAGGAGCAGCTG






AAGACCGAGGCCGAGGCCTGGATCAGCACCA






AGAAGAAGGACTTCGACGGCCTCACCTCCAAG






TACTTCAGCCTGTGGAAGGACCACAGGCGCA






AGGAGCTCGACGCCGACGAGTGGAAGAACAA






GGTGTCCAGCGGCGGCCTCAGCGAGTGGGAG






GAGCTGACCAACAAGATGAACACCAGGTACC






GCAACAACCTCGACAACATGTGGTCCCACTTC






AGCAGGGACCTGTTCTTCAACTTCGACGAGTG






GGCCCCACAAGTCCTGGAGAAGTGGATCGAG






AACAAGCAGTGGAACCGCTGGGTGAAGAAGG






TCCGCAAGCACCACCACCACCACCACTGA





22
petidase, M16 family
PVX_091710
mQRAPNNGRNNYGLNDDELGAILFG
ACTACGGCCTCAACGACGACGAGCTGGGCGC





LNYDSIAKNKDNLEKRKNVENESIFLR
CATCCTCTTCGGCCTGAACTACGACAGCATCG





NFANEDTSKNTQSEKAQKEIKIETETE
CCAAGAACAAGGACAACCTGGAGAAGAGGAA





SVNSNEKEVATSQKSDTSNKNSSVE
GAACGTCGAGAACGAGTCCATCTTCCTGCGCA





NEKIELKNDELLGKNFEKDKVNKKGD
ACTTCGCCAACGAGGACACCAGCAAGAACACC





NTNTTNNHDLTNSSEKQGVDIRGSK
CAATCCGAGAAGGCCCAGAAGGAGATCAAGA





NMNNYLQKTGDTNIEKSESLQKDVNI
TCGAGACGGAGACGGAGTCCGTCAACAGCAA





KNHNEEANDAKRLDSAQTNNEKSKIS
CGAGAAGGAAGTGGCCACCTCCCAGAAGAGC





KDTIDKDVQSNELTNLASNRSNKKSQ
GACACCTCCAACAAGAACTCCAGCGTCGAGAA





GLAKKENELKSANLEENHNAKKDLLK
CGAGAAGATCGAGCTGAAGAACGACGAGCTC





KDQKREDGKKITHPENSNSDQYGVQ
CTGGGCAAGAACTTCGAGAAGGACAAGGTGA





VSLNDEEKNTNTKSVSHSEDHSASY
ACAAGAAGGGCGACAACACCAACACCACCAA





SGEKFGTHVSNSQKDMLKNIRPVQF
CAACCACGACCTCACCAACTCCAGCGAGAAGC





DESAYGKLNGGSPENDENEILNKINK
AAGGCGTCGACATCAGGGGCAGCAAGAACAT





NNENNFSEKVALRKGTKDRNEYEYF
GAACAACTACCTCCAAAAGACCGGCGACACCA





KLKSNDFKVLGIINKYSSRGGFSISVD
ACATCGAGAAGTCCGAGAGCCTGCAGAAGGA





CGGYDDFDEVPGVSNLLQHAIFYKSE
CGTGAACATCAAGAACCACAACGAGGAAGCC





KRNTTLLSELGKYSSEYNSCTSESST
AACGACGCCAAGAGGCTGGACAGCGCCCAGA





SYYATAHSEDIYHLLNLFAENLFYPVF
CCAACAACGAGAAGAGCAAGATCTCCAAGGA





SEEHIQNEVKEINNKYISIENNLESCLK
CACCATCGACAAGGACGTGCAATCCAACGAGC





IASQYITNFKYSKFFVNGNYTTLCENV
TCACCAACCTGGCCAGCAACCGCTCCAACAAG





LKNRLSIKNILTEFHKKCYQPRNMSLT
AAGAGCCAGGGCCTCGCCAAGAAGGAGAACG





ILLGNKVNTADHYNMKDVENMVVHIF
AGCTCAAGTCCGCCAACCTGGAGGAGAACCA





GKIKNESYPIDGDVIGKRINRMESERV
CAACGCCAAGAAGGACCTCCTGAAGAAGGAC





NLYGKKDSYNDANFIHIEGRNEKEAA
CAAAAGAGGGAGGACGGCAAGAAGATCACCC





FLQSMNELHYALDLNQKSRYVEIIKKE
ACCCAGAGAACTCCAACAGCGACCAATACGGC





EWGDQLYLYWSSKTNAELCKKIEEF
GTGCAAGTGTCCCTGAACGACGAGGAGAAGA





GSMTFLREIFSDFRRNGLYYKISVENK
ACACCAACACCAAGTCCGTCAGCCACTCCGAG





23
rhoptry-associated
PVX_087885
mKEAVKKGSKKAMKQPMHKPNLLEE
ATGAAGGAAGCCGTGAAGAAGGGCTCCAAGA



membrane antigen,

EDFEEKESFSDDEMNGFMEESMDAS
AGGCCATGAAGCAACCAATGCACAAGCCAAA



RAMA

KLDAKKAKTTLRSSEKKKTPTSGMSG
CCTCCTGGAGGAAGAGGACTTCGAGGAGAAG





MSGSGATSAATEAATNMNATAMNAA
GAGTCCTTCAGCGACGACGAGATGAACGGCT





AKGNSEASKKQTDLSNEDLFNDELTE
TCATGGAGGAGTCCATGGACGCCAGCAAGCT





EVIADSYEEGGNVGSEEAESLTNAFD
GGACGCCAAGAAGGCCAAGACCACCCTCAGG





DKLLDQGVNENTLLNDNMIYNVNMVP
TCCAGCGAGAAGAAGAAGACCCCAACCTCCG





HKKRELYISPHKHTSAASSKNGKHHA
GCATGAGCGGCATGTCCGGCAGCGGCGCTAC





ADADALDKKLRAHELLELENGEGSNS
CAGCGCTGCTACCGAGGCCGCCACCAACATGA





VIVETEEVDVDLNGGKSSGSVSFLSS
ACGCTACCGCCATGAACGCTGCCGCCAAGGG





VVFLLIGLLCFTNhhhhhh
CAACTCCGAGGCTAGCAAGAAGCAAACCGAC






CTCTCCAACGAGGACCTGTTCAACGACGAGCT






CACCGAGGAAGTGATCGCCGACAGCTACGAG






GAAGGCGGCAACGTGGGCTCCGAGGAAGCC






GAGAGCCTGACCAACGCCTTCGACGACAAGCT






CCTGGACCAGGGCGTGAACGAGAACACCCTC






CTGAACGACAACATGATCTACAACGTGAACAT






GGTCCCACACAAGAAGAGGGAGCTCTACATCT






CCCCACACAAGCACACCAGCGCCGCCTCCAGC






AAGAACGGCAAGCACCACGCTGCTGACGCTG






ACGCTCTGGACAAGAAGCTCAGGGCTCACGA






GCTCCTGGAGCTGGAGAACGGCGAGGGCTCC






AACAGCGTGATCGTCGAGACGGAGGAAGTGG






ACGTGGACCTGAACGGCGGCAAGTCCTCCGG






CTCCGTCAGCTTCCTCTCCAGCGTGGTCTTCCT






CCTGATCGGCCTCCTGTGCTTCACCAACCACCA






CCACCACCACCACTGA





24
HP, conserved
PVX_003555
mDDNGRRLPRKAAPPVDKAKQDVM
AGGCTGCCCCACCAGTGGACAAGGCCAAGCA





KDIVNYLSKNMLAFVRQKRNVSGKEG
GGACGTGATGAAGGACATCGTCAACTACCTCT





EAPTGPSGAQGGDSSQYASKFTFTD
CCAAGAACATGCTGGCCTTCGTGAGGCAAAA





HSVDFSKYNKLDKEKFAAKDDLKSRL
GCGCAACGTCTCCGGCAAGGAAGGCGAGGCT





KNEVVASMLDTEGDILTEEFGYLLRN
CCAACCGGCCCAAGCGGCGCTCAAGGCGGCG





YFDKVKLEEKKSQEAESAKPAEQEEE
ACTCCAGCCAGTACGCCAGCAAGTTCACCTTC





AEEAPEQKEEATAEKATEETTEAATE
ACCGACCACTCCGTGGACTTCAGCAAGTACAA





ETTEAATEETTEAATEETTEAATEETT
CAAGCTCGACAAGGAGAAGTTCGCCGCCAAG





EAATEETTEAATEETTEAATEETTEA
GACGACCTCAAGTCCAGGCTGAAGAACGAGG





ATEEATEGATEEGAEETTEEATEEGA
TGGTCGCCAGCATGCTCGACACCGAGGGCGA





EEATEEGAEEATEEGAEETTEEATEE
CATCCTGACCGAGGAGTTCGGCTACCTCCTGC





GAEETTEETTEEGAEEEATEEGAEET
GCAACTACTTCGACAAGGTCAAGCTGGAGGA





TEEGAEEAAEEGAEEGAEAATEEAT
GAAGAAGTCCCAAGAGGCCGAGAGCGCTAAG





EEATEEATEEATEEATEEATEEATAE
CCAGCTGAGCAAGAGGAAGAGGCCGAGGAA





VAEAATPEKVTEEATEEATEEGDNEP
GCCCCAGAGCAAAAGGAAGAGGCCACCGCTG





AEQAAEKEEDVKGGLMDNETYYNTL
AGAAGGCTACCGAGGAGACGACCGAGGCTGC





QELYEEIENDDKKEKEKIQKAKEQEE
CACGGAGGAGACGACGGAGGCCGCCACGGA





LEKKLFKESKKGKKKEKKRRKKLCKM
GGAGACGACCGAGGCCGCCACCGAGGAGAC





AKIVEKYAEEIPKDSERSLRYDKEEHI
GACGGAGGCTGCCACTGAAGAGACGACCGAG





DDPDEMDDLLFGEFKTLEKYGTHKTS
GCTGCGACGGAAGAGACGACCGAGGCCGCGA





TFYYEMTCFDERLRDFEINTKLKEME
CGGAAGAGACGACTGAGGCTGCCACTGAGGA





EVPEKWELLSLYWQSYRNERHKYLA
GACGACGGAAGCTGCTACCGAGGAAGCCACC





VKKYLLEKFLELKTNQSTEALPKYNK
GAGGGCGCTACCGAGGAAGGCGCTGAGGAG





KWKQCEEIVDNNFTKQHEHVNDVFY
ACGACGGAGGAAGCCACGGAGGAAGGCGCT





TFVAKENLSRDEFKEILNDVRASWhh
GAGGAAGCCACCGAGGAAGGCGCCGAGGAA





hhhh
GCCACGGAGGAAGGCGCAGAGGAGACGACA






GAGGAAGCCACGGAGGAAGGCGCCGAAGAG






ACGACCGAAGAGACGACCGAGGAAGGCGCG





25
phosphatidylinositol-4-
PVX_117385
MRCCTKDAVNVESPKKVVVGETEED
TGGAGTCCCCAAAGAAGGTGGTCGTGGGCGA



phosphate-5-kinase,

TREEENPYEDLPTVTVTLSDGSVYTG
GACGGAGGAAGACACCAGGGAGGAAGAGAA



putative

TTKDNRVHGRGVLKYVNGDQYEGEF
CCCATACGAGGACCTCCCAACCGTCACCGTGA





VDGKKEGKGKWTDKENNTYEGDWV
CCCTGTCCGACGGCAGCGTCTACACCGGCACC





KDKRHGHGVYKTAEGFIFEGEFANNK
ACCAAGGACAACAGGGTGCACGGCCGCGGCG





REGKGTIITPEKTKYVCSFQDDEEVG
TCCTCAAGTATGTGAACGGCGACCAATACGAG





EVEFFFANGDHALGYIKDGYLCQNGR
GGCGAGTTCGTCGACGGCAAGAAGGAAGGCA





YEFKNGDIYVGNFEKGLFHGEGYYK
AGGGCAAGTGGACCGACAAGGAGAACAACAC





WNNDANYTIYEGNYSEGKKHGKGQL
CTACGAGGGCGACTGGGTCAAGGACAAGAGG





INKDGRILCGMFRDNNMDGEFLEISP
CACGGCCACGGCGTGTACAAGACCGCTGAGG





QGNQTKVLYDKGFFVKVLDKIEENLD
GCTTCATCTTCGAGGGCGAGTTCGCCAACAAC





VQEFLKDSIIHTTIFSDPTTYKKLYEITE
AAGCGCGAGGGCAAGGGCACCATCATCACCC





KKKPQFRLNLKRTQPTShhhhhh
CAGAGAAGACCAAGTATGTGTGCAGCTTCCAA






GACGACGAGGAAGTGGGCGAGGTGGAGTTCT






TCTTCGCCAACGGCGACCACGCCCTCGGCTAC






ATCAAGGACGGCTACCTGTGCCAGAACGGCC






GCTACGAGTTCAAGAACGGCGACATCTACGTG






GGCAACTTCGAGAAGGGCCTGTTCCACGGCG






AGGGCTACTACAAGTGGAACAACGACGCCAA






CTACACCATCTACGAGGGCAACTACTCCGAGG






GCAAGAAGCACGGCAAGGGCCAACTCATCAA






CAAGGACGGCAGGATCCTGTGCGGCATGTTC






CGCGACAACAACATGGACGGCGAGTTCCTGG






AGATCAGCCCACAAGGCAACCAGACCAAGGT






CCTCTACGACAAGGGCTTCTTCGTCAAGGTGC






TGGACAAGATCGAGGAGAACCTCGACGTGCA






GGAGTTCCTGAAGGACTCCATCATCCACACCA






CCATCTTCAGCGACCCAACCACCTACAAGAAG





26
Plasmodium exported
PVX_113225
mNKLGTSLVEDATANGEFGLRVQRL
ACGCTACCGCTAACGGCGAGTTCGGCCTCGC



protein, unknown

LGGSRSSRDSIFADSFYDDDDDDDD
GTCCAAAGGCTGCTGGGCGGCTCCAGGTCCA



function

NNDKLFDYDSDHKSRREVKDRHHRH
GCCGCGACAGCATCTTCGCCGACTCCTTCTAC





RHSHSHRHKRRHSHKHRTSSRSRRE
GATGATGACGACGACGACGACGACAACAACG





KEESSTTNDDDDEVLSLSRFDVDDDK
ACAAGCTGTTCGACTACGACAGCGACCACAAG





DDRSHSRYSVDYDDENDDEPSSSRP
TCCAGGCGCGAGGTGAAGGACAGGCACCACA





ASTDYDDIIDLTNARRSGSKYRISSMD
GGCACAGGCACAGCCACTCCCACCGCCACAAG





IELYPEHEDEYLFEGKRRSGGVLKKA
AGGCGCCACAGCCACAAGCACAGGACCTCCA





DNYCENKIFDALSALDKYKEYYGEER
GCCGCTCCAGGCGCGAGAAGGAAGAGTCCAG





RVMKQAAYRKATKVFAIPGAAALSPLI
CACCACCAACGACGACGACGACGAGGTGCTC





ITLFLTTSNVVALPLAASAVILGGILYK
AGCCTGTCCAGGTTCGACGTCGACGACGACAA





KSKDKSDYGRPHLKSITYhhhhhh
GGACGACAGGAGCCACTCCCGCTACAGCGTG






GACTACGACGACGAGAACGACGACGAGCCAT






CCAGCTCCAGGCCAGCCTCCACCGACTACGAC






GACATCATCGACCTCACCAACGCTAGGCGCAG






CGGCTCCAAGTACCGCATCAGCTCCATGGACA






TCGAGCTCTACCCAGAGCACGAGGACGAGTA






CCTGTTCGAGGGCAAGAGGCGCAGCGGCGGC






GTCCTGAAGAAGGCTGACAACTACTGCGAGA






ACAAGATCTTCGACGCCCTCTCCGCCCTGGAC






AAGTACAAGGAGTACTACGGCGAGGAGAGGC






GCGTGATGAAGCAGGCCGCCTACAGGAAGGC






CACCAAGGTCTTCGCTATCCCAGGCGCTGCCG






CCCTCAGCCCACTGATCATCACCCTCTTCCTGA






CCACCAGCAACGTGGTGGCTCTCCCACTGGCT






GCTTCCGCCGTCATCCTCGGCGGCATCCTGTA






CAAGAAGAGCAAGGACAAGTCCGACTACGGC






CGCCCACACCTCAAGTCCATCACCTACCACCAC





27
tryptophan-rich antigen
PVX_090265
MEAARGVSGLVPSSNSLQEITLRYKD
TCCCATCCAGCAACAGCCTCCAAGAGATCACC



(Pv-fam-a)

KLLNMDKEQMILTLGVTMIAITSAVAF
CTGCGCTACAAGGACAAGCTCCTGAACATGGA





GVLATHGDINDFLGVESDEESEKKKE
CAAGGAGCAGATGATCCTCACCCTGGGCGTCA





IVEKSEEWKRKEWSNWLKKLEQDW
CCATGATCGCTATCACCTCCGCTGTGGCTTTCG





KVFNEKLQNEKKTFLEEKEEDWNTWI
GCGTCCTGGCTACCCACGGCGACATCAACGAC





KSVEKKWTHFNPNMDKEFHTNMMR
TTCCTGGGCGTCGAGTCCGACGAGGAGAGCG





RSINWTESQWREWIQTEGRLYLDIE
AGAAGAAGAAGGAGATCGTGGAGAAGTCCG





WKKWFFENQSRLDELIVKKWIQWKK
AGGAGTGGAAGAGGAAGGAGTGGAGCAACT





DKIINWLMSDWKRAEQEHWEEFEEK
GGCTCAAGAAGCTGGAGCAAGACTGGAAGGT





SWSSKFFQIFEKRNYEDFKDRVSDE
CTTCAACGAGAAGCTCCAGAACGAGAAGAAG





WEDWFEWVKRKDNIFITNVLDQWIK
ACCTTCCTGGAGGAGAAGGAAGAGGACTGGA





WKEEKNLLYNNWADAFVTNWINKKQ
ACACCTGGATCAAGTCCGTGGAGAAGAAGTG





WVVWVNERRNLAAKAKAALNKKKhh
GACCCACTTCAACCCAAACATGGACAAGGAGT





hhhh
TCCACACCAACATGATGAGGCGCTCCATCAAC






TGGACCGAGAGCCAATGGCGCGAGTGGATCC






AGACCGAGGGCAGGCTCTACCTGGACATCGA






GTGGAAGAAGTGGTICTICGAGAACCAAAGC






AGGCTCGACGAGCTGATCGTGAAGAAGTGGA






TCCAGTGGAAGAAGGACAAGATCATCAACTG






GCTCATGTCCGACTGGAAGCGCGCCGAGCAA






GAGCACTGGGAGGAGTTCGAGGAGAAGAGC






TGGTCCAGCAAGTTCTTCCAGATCTTCGAGAA






GCGCAACTACGAGGACTTCAAGGACCGCGTG






AGCGACGAGTGGGAGGACTGGTTCGAGTGG






GTCAAGCGCAAGGACAACATCTTCATCACCAA






CGTGCTGGACCAGTGGATCAAGTGGAAGGAA






GAGAAGAACCTCCTGTACAACAACTGGGCCG






ACGCCTTCGTCACCAACTGGATCAACAAGAAG





28
MSP7 famiiy
PVX_082700
mTKGPSGPPPNKKLNANALHFLRGK
CAAGAAGCTCAACGCCAACGCCCTCCACTTCC





LELLNKISEEQVVSPDFKKNVELLKKK
TGAGGGGCAAGCTGGAGCTCCTGAACAAGAT





IEELQGKAEKDKSKTDGEDTTPKEQQ
CTCCGAGGAGCAAGTGGTCAGCCCAGACTTCA





EDQNVSQNGLEEQAPSDSNEGEAQ
AGAAGAACGTCGAGCTCCTCAAGAAGAAGAT





EENTQVKNVIFTEKEEAVDEEAEKED
CGAGGAGCTCCAGGGCAAGGCCGAGAAGGA





TAVISEKANFPNEESQGNDETQTQES
CAAGTCCAAGACCGACGGCGAGGACACCACC





IEGEASPGVVVDETDDSPEGEPLSGL
CCAAAGGAGCAACAAGAGGACCAAAACGTGA





ETEGNSSAESAPNEPDVNTTHTAVD
GCCAGAACGGCCTGGAGGAGCAAGCTCCGTC





THMPADANIGVDTNMPFDTPPHPSG
CGACAGCAACGAGGGCGAGGCTCAAGAGGA





ENPGAPQETHLPSIDENANRRASRM
GAACACCCAGGTCAAGAACGTGATCTTCACCG





KHMSSFLNGLLTNQSNNKKEIFFHPY
AGAAGGAAGAGGCCGTCGACGAGGAAGCCG





YGPYFNHGGYYNYDPYYNYAPAYNP
AGAAGGAAGACACCGCCGTGATCTCCGAGAA





FVSQARDYEVIKKLLDACFNKGEGAD
GGCCAACTTCCCAAACGAGGAGAGCCAGGGC





PNVPCIIDIFKKVLDDERFRNELKTFM
AACGACGAGACGCAAACCCAAGAGTCCATCG





YDLYEFLKKNDVLSDDEKKNELMRFF
AGGGCGAGGCTAGCCCGGGCGTGGTGGTGG





FDNAFQLVNPMFYYhhhhhh
ACGAGACGGACGACTCCCCGGAGGGCGAGCC






ACTCAGCGGCCTCGAAACCGAGGGCAACTCCA






GCGCTGAGTCCGCTCCAAACGAGCCAGACGTC






AACACCACCCACACCGCTGTGGACACCCACAT






GCCAGCTGACGCCAACATCGGCGTCGACACCA






ACATGCCATTCGACACCCCACCACACCCAAGC






GGCGAGAACCCGGGCGCCCCACAAGAGACGC






ACCTCCCATCCATCGACGAGAACGCCAACAGG






CGCGCCAGCAGGATGAAGCACATGTCCAGCTT






CCTGAACGGCCTCCTGACCAACCAGTCCAACA






ACAAGAAGGAGATCUCTTCCACCCATACTAC






GGCCCATACTTCAACCACGGCGGATACTACAA






CTACGACCCATACTACAACTACGCCCCAGCCTA





29
Hyp, huge list of
PVX_002550
mFSGGVGDDEEEEEEEEGEEGESE
AAGAGGAAGAGGAAGAGGAAGGCGAGGAAG



orthologs, paralogs,

RDDSERDYAGRDDAGRDDAERNDA
GCGAGAGCGAGAGGGACGACTCCGAGAGGG



synteny with Py LSA3

ERDDAERNDAERDDAERDHAERDHA
ACTACGCTGGCAGGGACGATGCCGGCAGGGA



(PyLSA3syn-3)

DKAESDRESSLEANENRLVKLSEGG
CGACGCCGAGAGGAACGACGCCGAGCGCGAT





ESEPALLEVEEDIKQTVLGMFSLKGE
GATGCTGAGCGCAACGACGCCGAGCGCGACG





FDEAESEKLALDLQKNLLSMLSGNME
ACGCCGAGAGGGACCACGCCGAGCGCGACCA





DNDDEYEDIDEEYEEVEEDYEEEKLG
CGCCGACAAGGCCGAGTCCGACAGGGAGTCC





KPVEVVVEDATEEAVDEVVGVVQEP
AGCCTGGAGGCCAACGAGAACAGGCTGGTGA





EEEGAEESDKDTGEVSEEEVAKEAA
AGCTCAGCGAGGGCGGCGAGTCCGAGCCAGC





DEVMEEEKKEEAGEPSVVVEEPSVV
TCTCCTGGAGGTGGAGGAAGACATCAAGCAA





VKEPSVVVKEPSVVVEEPSVVVEEPS
ACCGTCCTGGGCATGTTCAGCCTCAAGGGCGA





VVVEEPSVVVEEPAFTVEEPAFTVEE
GTTCGACGAGGCCGAGTCCGAGAAGCTCGCC





PAITVEEPAITVEEPVFTVEEPVFTVE
CTGGACCTCCAGAAGAACCTCCTGTCCATGCT





EPAFTVEEPAFTVEEPAFTVEEPATT
CAGCGGCAACATGGAGGACAACGACGACGAG





VEELVEEVLKVAEEEVATEAVEKDGE
TACGAGGACATCGACGAGGAGTACGAGGAAG





EAEEQVTEESVEEDEEESGEEEGEE
TGGAGGAAGACTACGAGGAAGAGAAGCTCG





SEEEETEESAEEEVAKESVEEEVAKE
GCAAGCCAGTGGAGGTGGTCGTGGAGGACGC





AEESEESGEESAEEEKEKAEEPVAPV
CACCGAGGAAGCCGTGGACGAGGTGGTGGG





DEVLKEGMQKIEESVKEALGVVQEAV
CGTCGTGCAAGAGCCAGAGGAAGAGGGCGCT





DKVAEEEQTEQAQGPAEAGPVGVVK
GAGGAGAGCGACAAGGACACCGGCGAGGTG





EPEEEEESEEEGEEGEEGEEGEEEE
TCCGAGGAAGAGGTGGCCAAGGAAGCCGCCG





EEESEEEESEEGESEAGESEAGKSD
ACGAGGTCATGGAGGAAGAGAAGAAGGAAG





AAESEVAESEAGEPAEDQAGMDAKM
AGGCCGGCGAGCCATCCGTGGTGGTGGAGGA





KDELLGMLSEKMKAEGKDLDKLPPE
GCCAAGCGTGGTCGTGAAGGAGCCATCCGTC





VKKNLLDMLAGNMEMDDEEEEGEEE
GTGGTCAAGGAGCCTTCCGTGGTCGTGGAGG





GEDLGNEELDLQKNLLEMLSGKGGF
AGCCTAGCGTCGTCGTCGAGGAGCCTTCCGTC





NPNMLGNLKELEALQKSVPGLMGKA
GTGGTGGAGGAGCCCAGCGTGGTCGTCGAGG





QGISPAEIESLKSMFSGAFDSRGFKG
AGCCAGCCTTCACCGTGGAGGAGCCTGCCTTC





30
MSP7-like protein
PVX_082650
mQLGIQKKKKNLEQDAMHALMKKLE
ACCTGGAGCAGGACGCCATGCACGCCCTCATG





SLYKLSATDNGEIFNKEIDALKKQIDQ
AAGAAGCTGGAGAGCCTGTACAAGCTCTCCG





LHQHGGGNEGESLGHLLESEAADDS
CCACCGACAACGGCGAGATCTTCAACAAGGA





GKKTIFGVDEDDLDNYDADFIGQSKG
GATCGACGCCCFGAAGAAGCAAATCGACCAG





KIKGQADTTAVAKPPTGSGAGAHGS
CTCCACCAACACGGCGGCGGAAACGAGGGCG





HSPPKPSVLVVPGKSGKEDSVATLEN
AGAGCCTGGGCCACCTCCTGGAGAGCGAGGC





GYESIHGEDEPREDSTSHDSPPALPV
TGCTGACGACTCCGGCAAGAAGACCATCTTCG





GRSEGDSSASGGGTEGQQPDPASA
GCGTGGACGAGGACGACCTGGACAACTACGA





RGSQASGGRGGGDQTNTTQPAGGQ
CGCCGACTTCATCGGCCAGTCCAAGGGCAAG





QSSSAARSLQAPHAGDSQLPNAGGD
ATCAAGGGCCAGGCTGACACCACCGCTGTGG





PQSPAAAGHQQPPTSPPANNEGTTV
CTAAGCCACCAACCGGCAGCGGCGCTGGCGC





TQESALAATPPKGTADSNDAKIKYLD
TCACGGCAGCCACICCCCACCAAAGCCATCCG





KLYDEVLTTSDNTSGIHVPDYHSKYN
TGCTCGTGGTCCCAGGCAAGAGCGGCAAGGA





TIRQKYEYSMNPVEYEIVKNLFNVGF
AGACTCCGTCGCCACCCTGGAGAACGGCTACG





KNDGAASSDATPLVDVFKKALADEKF
AGAGCATCCACGGCGAGGACGAGCCAAGGGA





QAEFDNFVHGLYGFAKRHSYLSEAR
GGACAGCACCTCCCAGGACTCCCCACCAGCTC





MKDNKLYSDLLKNAISLMSTLQVShhh
TCCCAGTGGGCCGCAGCGAGGGCGACTCCAG





hhh
CGCTTCCGGCGGCGGCACCGAGGGCCAACAG






CCAGACCCAGCTAGCGCCAGGGGCAGCCAGG






CTTCCGGCGGCAGGGGCGGCGGCGACCAAAC






CAACACCACCCAACCAGCTGGCGGCCAACAGT






CCAGCTCCGCTGCTAGGAGCCTGCAGGCCCCA






CACGCTGGCGACAGCCAGCTCCCAAACGCCG






GCGGCGACCCACAATCCCCAGCTGCCGCCGGC






CACCAACAGCCACCAACCTCCCCACCAGCCAA






CAACGAGGGCACCACCGTGACCCAAGAGTCC






GCTCTGGCTGCTACCCCACCAAAGGGCACCGC






CGACTCCAACGACGCCAAGATCAAGTACCTGG





31
reticulocyte binding
PVX_094255
mAAYNTVLQIYKYSDDIVRKQEKCEQ
CAAGTACTCCGACGACATCGTGAGGAAGCAA



protein 2b (RBP2b)

LVKDGKDICLKFKSINEIKVMIQNSKG
GAGAAGTGCGAGCAGCTGGITAAGGACGGCA





KESTLSAKVSHSFNKLSELNKIKCND
AGGACATCTGCCTCAAGITCAAGTCCATCAAC





ESYDAILETPSREELNKLRSTFKQEK
GAGATCAAGGTCATGATCCAGAACAGCAAGG





DTIANQAKLSGYKTDFETHIGKLNDLA
GCAAGGAGTCCACCCTCAGCGCCAAGGTGTCC





KIVDNLKASETLPKNIEEKKTSINLIST
CACAGCTTCAACAAGCTCAGCGAGCTGAACAA





KLETIEKEIESINSSFDQLLEKGKKCE
GATCAAGTGCAACGACGAGAGCTACGACGCC





MTKYKLVRDSLSTKINDHSAIIKDNQK
ATCCTCGAAACCCCATCCAGGGAGGAGCTCAA





KATEYLTYIQNNHISIFKDIDMLNENLG
CAAGCTGCGCAGCACCTTCAAGCAAGAGAAG





EKSVSRYAIAKIEEANDLSAQLTAAVS
GACACCATCGCCAACCAGGCCAAGCTCTCCGG





EYEAIANSIRKEFTNISDHTEMDTLEN
CTACAAGACCGACTTCGAGACGCACATCGGCA





EAKMLKEHYDNLINKKNIITELHNKINLI
AGCTCAACGACCTGGCCAAGATCGTGGACAAC





KLLEIRATSDKYVDIAELLGEVVKDQK
CTCAAGGCCAGCGAGACGCTGCCAAAGAACA





KKLQEAKNKLDTLKDHAVKEKELINH
TCGAGGAGAAGAAGACCTCCATCAACCTCATC





DSSFTLVSIKAFDEIYDDIKYNVGQLH
AGCACCAAGCTCGAAACCATCGAGAAGGAGA





TLEVTNFDELKKGKTYEENVTHLLNR
TCGAGTCCATCAACTCCAGCTTCGACCAACTCC





RETLQNDLHNYEEKDKLKNTNIEMSN
TGGAGAAGGGCAAGAAGTGCGAGATGACCAA





EENNQIRQTSEVIKKLESEFQNLLKIIQ
GTACAAGCTCGTCAGGGACTCCCTGAGCACCA





QSNTLCSNDNIKQFISDILKKVETIRER
AGATCAACGACCACTCCGCCATCATCAAGGAC





FVKNFPEREKYHQIEINYNEIKGIVKEV
AACCAAAAGAAGGCCACCGAGTACCTCACCTA





DTNPEISIFTEKINTYIRQKIRSAHHLE
CATCCAGAACAACCACATCAGCATCTTCAAGG





DAQKIKDIIEDVTSNYRKIKSKLSQVN
ACATCGACATGCTCAACGAGAACCTGGGCGA





NALDRIKIKKSEMDTLFESLSKENANN
GAAGTCCGTGAGCAGGTACGCCATCGCCAAG





YNSAKYFLVDSDKIIKHLEDQVSKMSS
ATCGAGGAAGCCAACGACCTCTCCGCTCAACT





LISYAEREIKELEEKVYShhhhhh
CACCGCTGCCGTCAGCGAGTACGAGGCTATCG






CCAACTCCATCCGCAAGGAGTTCACCAACATC






TCCGACCACACCGAGATGGACACCCTGGAGA






ACGAGGCCAAGATGCTAAGGAGCACTACGA





32
MSP3.3 [merozoite
PVX_097680
MNVAtext missing or illegible when filed RGEtext missing or illegible when filed VNLKNPNLRNGWSMKN
ACCTGAAGAACCCAAACCTCCGCAACGGCTGG



surface protein 3 beta

LSAQNEENIVHSDGSDDVTDKEEDG
AGCATGAAGAACCTGTCCGCCCAAAACGAGG



MSP3b)]

EVLEGQKGSPKKSAEQKVHAQEEVN
AGAACATCGTCCACTCCGACGGCAGCGACGAC





KESLKSKAQNAKAEAEKAAKAAESAK
GTGACCGACAAGGAAGAGGACGGCGAGGTG





ENTLDALEKVNVPTELNNEKNFAESA
CTGGAGGGCCAGAAGGGCAGCCCAAAGAAGT





ATEAKKQEKISTEAAEEVKEIEVDGQL
CCGCCGAGCAAAAGGTCCACGCCCAAGAGGA





EKLKNEEEKTAKKARKQEIKTEIAEQA
AGTGAACAAGGAGTCCCTCAAGAGCAAGGCC





AKAQAAKTEAETAQKDATTAKDEAIK
CAAAACGCCAAGCCCTGAGGCTGAGAAGGCTG





ETGKPKSQNTTKAVTMATEEEKKTK
CTAAGGCTGCCGAGTCCGCCAAGGAGAACAC





DEAQTASEKAGKTAEEAQKEVGKET
CCTCGACGCCCTGGAGAAGGTGAACGTCCCA





ADDDKEVSQLEEEIKELERILKIVKDLA
ACCGAGCTCAACAACGAGAAGAACTTCGCTGA





SEASSASDNAKKAKLKTQIAAEVVKA
GAGCGCTGCTACCGAGGCCAAGAAGCAGGAG





EKARIEAEEAEKEAGEAKTKTEATEK
AAGATCTCCACCGAGGCCGCCGAGGAAGTGA





EVLKISDESKAAKVKKAVEKAKEAEK
AGGAGATCGAGGTGGACGGCCAACTGGAGAA





QAKSEAEKAKGMADDAGGKGTTNLE
GCTGAAGAACGAGGAAGAGAAGACCGCCAA





DVLTKLSEVLTSVKSLASNAEVASKN
GAAGGCCAGGAAGCAGGAGATCAAGACCGA





AKKEMTKAQIAAEVAKAEKAKIEAEN
GATCGCTGAGCAAGCTGCTAAGGCTCAGGCT





AKLLADTASKAAENIAKSSKAAKIANN
GCTAAGACCGAGGCCGAGACGGCCCAAAAGG





VSTIAAEKSKVATEAADEAAKALDETE
ACGCCACCACCGCCAAGGACGAGGCCATCAA





NPESKIAEVTEKATKAVNAAEEAKKE
GGAGACGGGCAAGCCAAAGAGCCAGAACACC





KAKAEVAVEVAHAEVAKEKAQEAKE
ACCAAGGCCGTCACCATGGCCACCGAGGAAG





AAKQVADKSKLEKAIQAADKASEKAN
AGAAGAAGACCAAGGACGAGGCTCAAACCGC





EASKLAEEALSNLESLEKETGEIVEKV
TTCCGAGAAGGCTGGCAAGACCGCTGAGGAA





NAIEQKVQTAKNAAIEAHKEKTKAEIA
GCCCAGAAGGAAGTGGGCAAGGAGACGGCC





VEVAKAEEAKKEADNAKVAAEKAKET
GACGACGACAAGGAAGTGTCCCAACTCGAAG





AEKIAKTSKSTEKITEEVRKATEFAKT
AGGAGATCAAGGAGCTGGAGAGGATCCTCAA





AGDETTLAATKAESEIPSEEKNQKELL
GATCGTGAAGGACCTGGCTAGCGAGGCCTCC





DSIKQKAESAFQASQEAIKAKTEAEN
AGCGCTTCCGACAACGCCAAGAAGGCCAAGC





33
hypothetical protein,
PVX_001000
mNNYGKLKHGKWDDGSYSERTRWR
AGTGGGACGACGGCTCCTACAGCGAGAGGAC



conserved

MLSGDDHDDLLPSCDSPGGRNDEH
CAGGTGGAGGATGCTGTCCGGCGACGACCAC





QVNKEVSRTAPSEKVKVVDKETGES
GACGACCTCCTCCCATCCTGCGACAGCCCAGG





MLVDVGESGGKSSPGVAEESGPSLR
CGGCAGGAACGACGAGCACCAAGTCAACAAG





GRDVRDVRVDQETRETLQGGATNRR
GAAGTGTCCAGGACCGCCCCAAGCGAGAAGG





DLTQHGEEETGDDSKRAKQDDEAGV
TGAAGGTGGTCGACAAGGAGACCGGCGAGTC





RSMLNDTVTAIKDNGSNLLRSVIGQIN
CATGCTGGTGGACGTGGGCGAGAGCGGCGGC





FVQGSAELLKVANEEERQPSGGSVL
AAGTCCTCCCCAGGCGTGGCTGAGGAGTCCG





SKEGEEATPGDFLGGNNPNGGEKGE
GCCCAAGCCTGCGCGGCAGGGACGTGCGCGA





LPNGTKNDVMIKGYANVLLNEGKHVL
CGTCAGGGTGGACCAAGAGACCCGCGAGACC





VGNVRNFLSRVFNLIVREKIMTRMCH
CTGCAGGGCGGCGCCACCAACAGGCGCGACC





RGGEASIERSGEPVGERSGEPTGER
TCACCCAACACGGCGAGGAAGAGACCGGCGA





SGDPTGERSGDPTGERSGEPTGERS
CGACAGCAAGCGCGCTAAGCAGGACGACGAG





GEPTGERSGEPTAERSGEPTAERSD
GCTGGCGTCAGGTCCATGCTCAACGACACCGT





EPTAERSDEPTADPKGDPTNCRLPK
GACCGCCATCAAGGACAACGGCTCCAACCTCC





RSATKFYQSEDLYNYYSSLEEMLGKR
TGCGCAGCGTCATCGGCCAAATCAACTTCGTG





GIRWKTDRVSRYFTFSPSKKIKDNFE
CAAGGCAGCGCTGAGCTCCTGAAGGTCGCCA





EVMNNKVFIESVRSILFDSHKKNKKAV
ACGAGGAAGAGCGCCAGCCATCCGGCGGCAG





FSSFAVVVETLFSLIKEEKVIADMYSY
CGTGCTGTCCAAGGAAGGCGAGGAAGCCACC





VKLFFQDLDILNLKVLHFLSSSSTENT
CCAGGCGACTTCCTCGGCGGCAACAACCCGAA





QFVGPPDLSLTNFEYILAKIYSRSVLA
CGGCGGCGAGAAGGGCGAGCTGCCAAACGG





NILSPKMNHSDSKKLSKLLTRRENNL
CACCAAGAACGACGTCATGATCAAGGGCTAC





KFSFLEGVKMVHSAIPSEGVSAVVLG
GCCAACGTGCTCCTGAACGAGGGCAAGCACG





NAGGQVNVPIPGADDTLCKFIPIRKKL
TCCTCGTGGGCAACGTCCGCAACTTCCTGTCC





LYERLSVTRKVAEEVILDYLFRLLLRK
AGGGTGTTCAACCTCATCGTCAGGGAGAAGA





VHEYVLEhhhhhh
TCATGACCAGGATGTGCCACAGGGGCGGCGA






GGCTAGCATCGAGAGGTCCGGCGAGCCAGTG






GGGGAGCGCTCCGGCGAGCCAACCGGCGAG





34
merozoite surface
PVX_097625
mGNVSPPNFNDNRVNGNNGNKGNG
CAACAGGGTCAACGGCAACAACGGCAACAAG



protein 8 (GPI-

NDNDVPSFIGGNNNNVNGNNDDNIF
GGCAACGGCAACGACAACGACGTGCCAAGCT



anchored, C24)

NKNGKDVTRNDGDAKDGENRNNKK
TCATCGGCGGCAACAACAACAACGTCAACG





NENGSGSNENNSIANADNGSGKSDA
AACAACGACGACAACATCTTCAACAAGAACGG





NANQIDEDGNKMDEASLKKILKIVDE
CAAGGACGTGACCCGCAACGACGGCGACGCT





MENIQGLLDGDYSILDKYSVKLVDED
AAGGACGGCGAGAACCGCAACAACAAGAAGA





DGETNKRKIIGEYDLKMLKNILLFREKI
ACGAGAACGGCTCCGGCAGCAACGAGAACAA





SRVCENKYNKNLPVLLKKCSNVDDPK
CTCCATCGCCAACGCTGACAACGGCTCCGGCA





LSKSREKIKKGLAKNNMSIEDFVVGLL
AGAGCGACGCCAACGCCAACCAAATCGACGA





EDLFEKINEHFIKDDSFDLSDYLADFE
GGACGGCAACAAGATGGACGAGGCCAGCCTC





LINYIIMHETSELIDELLNIIESMNFRLE
AAGAAGATCCTGAAGATCGTGGACGAGATGG





SGSLEKMVKSAESGMNLNCKMKEDII
AGAACATCCAGGGCCTCCTGGACGGCGACTA





HLLKKSSAKFFKIEIDRKTKMIYPVQA
CTCCATCCTCGACAAGTACAGCGTGAAGCTGG





THKGANMKQLALSFLQKNNVCEHKK
TCGACGAGGACGACGGCGAGACGAACAAGA





CPLNSNCYVINGEEVCRCLPGFSDVK
GGAAGATCATCGGCGAGTACGACCTCAAGAT





IDNVMNCVRDDTLDCSNNNGGCDVN
GCTGAAGAACATCCTCCTGTTCAGGGAGAAG





ATCTLIDKKIVCECKDNFEGDGIYChh
ATCTCCCGCGTCTGCGAGAACAAGTACAACAA





hhhh
GAACCTCCCAGTGCTCCTGAAGAAGTGCAGCA






ACGTCGACGACCCAAAGCTCTCCAAGAGCCGC






GAGAAGATCAAGAAGGGCCTGGCTAAGAACA






ACATGTCCATCGAGGACTTCGTGGTCGGCCTC






CTGGAGGACCTGTTCGAGAAGATCAACGAGC






ATTCATCAAGGACGACTCCTTCGACCTCAGC






GACTACCTGGCCGACTTCGAGCTCATCAACTA






CATCATCATGCACGAGACGTCCGAGCTGATCG






ACGAGCTCCTGAACATCATCGAGAGCATGAAC






TTCAGGCTGGAGTCCGGCAGCCTGGAGAAGA






TGGTGAAGTCCGCCGAGAGCGGCATGAACCT





35
adenylate kinase-like
PVX_087110
METLLDSETLKNYEKETNEYIRKKKV
ATGGAGACGCTCCTGGACTCCGAGACGCTCAA



protein 2, putative

EKLFDVILKNVLVNKPENVYLYIYKNIY
GAACTACGAGAAGGAGACGAArGAGTACATC



(AKLP2)

SFLLNKIFVIGPPLLKITPTLCSAIASCF
AGGAAGAAGAAGGTGGAGAAGCTCTTCGACG





SYYHLSASHMIESYTTGEVDDAAESS
TCATCCTCAAGAACGTGCTGGTCAACAAGCCA





TSKKLVSDDLICSIVKSNINQLNAKQK
GAGAACGTGTACCTGTACATCTACAAGAACAT





RGYVVEGFPGTNLQADSCLRHLPSY
CTACAGCTTCCTCCTGAACAAGATCTTCGTCAT





VFVLYADEEYIYDKYEQENNVKIRSD
CGGCCCACCACTCCTGAAGATCACCCCAACCC





MNSQTFDENTQLFEVAEFNTNPLKD
TCTGCTCCGCCATCGCCTCCTGCTTCAGCTACT





EVKVYLRNhhhhhh
ACCACCTGTCCGCCAGCCACATGATCGAGAGC






TACACCACCGGCGAGGTGGACGACGCTGCTG






AGTCCAGCACCTCCAAGAAGCTCGTGAGCGAC






GACCTGATCTGCTCCATCGTCAAGAGCAACAT






CAACCAACTCAACGCCAAGCAGAAGAGGGGC






TACGTGGTCGAGGGCTTCCCAGGCACCAACCT






CCAGGCTGACTCCTGCCTCAGGCACCTGCCAA






GCTACGTGTTCGTCCTGTACGCCGACGAGGAG






TACATCTACGACAAGTACGAGCAGGAGAACA






ACGTGAAGATCAGGTCCGACATGAACAGCCA






AACCTTCGACGAGAACACCCAGCTGTTCGAGG






TCGCCGAGTTCAACACCAACCCACTCAAGGAC






GAGGTGAAGGTCTACCTGCGCAACCACCACCA






CCACCACCACTGA





36
MSP7-like protein
PVX_082670
mKPGVEKKKKLEEDVIGILRRKLESLQ
CTCGAAGAGGACGTCATCGGCATCCTGCGCA





KRSLTNSDGKLKKEIELVKKQIQELQK
GGAAGCTGGAGTCCCTGCAAAAGAGGTCCCT





YEKGEAGKKVDATLGEEPGVESAEE
CACCAACAGCGACGGCAAGCTCAAGAAGGAG





QPLSVEEAGDTQDEDRLDELEGVED
ATCGAGCTGGTCAAGAAGCAAATCCAGGAGC





FEEENLEQSEQVEEAEVVEEAEEEA
TGCAGAAGTACGAGAAGGGCGAGGCTGGCAA





GDAEEEQPAEAEEDGSLLEEAPNSV
GAAGGTGGACGCTACCCTGGGCGAGGAGCCG





ERKAEGAIAEFEEADVEEGAEADEGV
GGCGTGGAGTCCGCTGAGGAGCAACCACTGA





ETDEGADADEASLGSFDLEGELIEED
GCGTGGAGGAAGCCGGCGACACCCAGGACGA





LQESFDLEGEQEEEDLQEGFKSEEE
GGACAGGCTCGACGAGCTGGAGGGCGTCGA





ANQGGQLPREIPPHGEEAVEPPLRG
GGACTTCGAGGAAGAGAACCTGGAGCAAAGC





NKPSMEYVGNLHSDVGPTEGSANQI
GAGCAGGTGGAGGAAGCCGAGGTGGTGGAG





SPPSVDEKGKEDGDKYKSASQDGGN
GAAGCCGAGGAAGAGGCCGGCGACGCTGAG





SVGINNFGGCFQGGNSNGICPLDIFK
GAAGAGCAACCGGCTGAGGCTGAGGAAGAC





KVLEDENFLQEFDSFIHNLYGSSKNN
GGCTCCCTCCTCGAAGAGGCCCCAAACAGCGT





TPWGGDKMGNENLYMDLFTNALSFL
GGAGAGGAAGGCTGAGGGCGCTATCGCTGA





NTIEVIhhhhhh
GTTCGAGGAAGCCGACGTCGAGGAAGGCGCC






GAGGCCGACGAGGGCGTGGAGACGGACGAG






GGCGCTGACGCTGACGAGGCTTCCCTGGGCA






GCTTCGACCTGGAGGGCGAGCTGATCGAGGA






AGACCTCCAGGAGTCTTTCGACCTGGAGGGG






GAGCAAGAGGAAGAGGACCTCCAAGAGGGCT






TCAAGAGCGAGGAAGAGGCCAACCAAGGCG






GCCAGCTGCCAAGGGAGATCCCACCACACGG






CGAGGAAGCCGTGGAGCCACCACTCCGCGGC






AACAAGCCATCCATGGAGTATGTGGGCAACCT






GCACAGCGACGTGGGCCCAACCGAGGGCAGC






GCCAACCAAATCTCCCCACCAAGCGTCGACGA






GAAGGGCAAGGAAGACGGCGACAAGTACAA





37
high molecular weight
PVX_099930
mELSHSLSVKNAPDASALNIEVEKDK
CGCTCCAGACGCTAGCGCTCTCAACATCGAGG



rhoptry protein-2,

KKICKNAFQYINVAELLSPREEETYVQ
TCGAGAAGGACAAGAAGAAGATCTGCAAGAA



putative

KCEEVLDTIKNDSPDESAEAEINEFIL
CGCCTTCCAATACATCAACGTCGCCGAGCTCCT





SLLHARSKYTIINDSDEEVLSKLLRSIN
GTCCCCAAGGGAGGAAGAGACTTACGTGCAG





GSISEEAALKRAKQLITFNRFIKDKAK
AAGTGCGAGGAAGTGCTGGACACCATCAAGA





VKNVQEMLVISSKADDFMNEPKQKM
ACGACAGCCCAGACGAGTCCGCTGAGGCTGA





LQKIIDSFELYNDYLVILGSNINIAKRYS
GATCAACGAGTTCATCCTCAGCCTCCTGCACG





SETFLSIKNEKFCSDHIHLCQKFYEQS
CCCGCTCCAAGTACACCATCATCAACGACAGC





IIYYRLKVIFDNLVTYVDQNSKHFKKE
GACGAGGAAGTGCTGAGCAAGCTCCTGAGGT





KLLELLNMDYRVNRESKVHENYVLED
CCATCAACGGCAGCATCTCCGAGGAAGCCGCT





ETVIPTMRITDIYDQDRLIVEVVQDGN
CTCAAGAGGGCTAAGCAACTGATCACCTTCAA





SKLMHGRDIEKREISERYIVTVKNLRK
CAGGTTCATCAAGGACAAGGCCAAGGTGAAG





DLNDEGLYADLMKTVKNYVLSITQIDN
AACGTCCAGGAGATGCTCGTCATCTCCAGCAA





DISNLVRELDHEDVEKhhhhhh
GGCCGACGACTTCATGAACGAGCCAAAGCAA






AAGATGCTCCAGAAGATCATCGACAGCTTCGA






GCTGTACAACGACTACCTCGTGATCCTGGGCT






CCAACATCAACATCGCCAAGCGCTACTCCAGC






GAGACGTTCCTCAGCATCAAGAACGAGAAGTT






CTGCTCCGACCACATCCACCTGTGCCAAAAGT






TCTACGAGCAGAGCATCATCTACTACAGGCTC






AAGGTCATCTTCGACAACCTGGTGACCTACGT






CGACCAAAACTCCAAGCACTTCAAGAAGGAG






AAGCTCCTGGAGCTCCTGAACATGGACTACAG






GGTGAACCGCGAGTCCAAGGTGCACGAGAAC






TACGTCCTGGAGGACGAGACTGTGATCCCAAC






CATGCGCATCACCGACATCTACGACCAAGACA






GGCTCATCGTGGAGGTGGTCCAGGACGGCAA






CAGCAAGCTGATGCACGGCAGGGACATCGAG





38
IMP-specific 5′-
PVX_084340
MEKLDIPPHEMYEDMQQAFREQDKY
GTACGAGGACATGCAACAGGCCTTCAGGGAG



nucleotidase

DFLAISDGSVINSYMKKNVVDWNNRY
CAAGACAAGTACGACTTCCTGGCCATCTCCGA





SYNQLKNKDSLIMFLVDIFRSLFLSNCI
CGGCAGCGTGATCAACTCCTACATGAAGAAGA





DKNIDNVLSSIEEMFTDHYYNPMHSR
ACGTGGTCGACTGGAACAACAGGTACTCCTAC





LKYLIDDVGIFFTKLPITKAFHTYNKKY
AACCAGCTCAAGAACAAGGACAGCCTCATCAT





RITKRLYAPPTFNEVRHILNLAQILSLE
GTTCCTGGTGGACATCTTCCGCTCCCTCTTCCT





DGLDLLTFDADETLYPDGYDFHDEVL
GAGCAACTGCATCGACAAGAACATCGACAAC





ASYISSLLKKMNIAIVTAASYSNDAEK
GTCCTGTCCAGCATCGAGGAGATGTTCACCGA





YQKRLENLLRYFSKHNIEDGSYENFY
CCACTACTACAACCCAATGCACAGCAGGCTCA





VMGGESNYLFKCNEDANLYSVPEEE
AGTACCTGATCGACGACGTGGGCATCTTCTTC





WYHYKKYVNKETVEQILDISQKCLQQ
ACCAAGCTCCCAATCACCAAGGCCTTCCACAC





VITDFKLCAQIQRKEKSIGLVPNKIPSA
CTACAACAAGAAGTACAGGATCACCAAGCCC





NNQKEQKNYMIKYEVLEEAVIRVKKEI
TGTACGCCCCACCAACCTTCAACGAGGTCCGC





VKNKITAPYCAFNGGQDLWVDIGNKA
CACATCCTCAACCTGGCCCAAATCCTCTCCCTG





EGLIILQKLLKIEKKKCCHIGDQFLHSG
GAGGACGGCCTCGACCTCCTGACCTTCGACGC





NDFPTRFCSLTLWISNPQETKACLKSI
CGACGAGACGCTGTACCCAGACGGCTACGAC





MNLNMKSFIPEVLYENEhhhhhh
TTCCACGACGAGGTGCTCGCCAGCTACATCTC






CAGCCTCCTGAAGAAGATGAACATCGCCATCG






TCACCGCCGCCTCCTACAGCAACGACGCCGAG






AAGTACCAGAAGAGGCTGGAGAACCTCCTGC






GCTACTTCTCCAAGCACAACATCGAGGACGGC






AGCTACGAGAACTTCTACGTGATGGGCGGCG






AGTCCAACTACCTCTTCAAGTGCAACGAGGAC






GCCAACCTGTACAGCGTCCCAGAGGAAGAGT






GGTACCACTACAAGAAGTATGTGAACAAGGA






GACGGTCGAGCAAATCCTCGACATCTCCCAGA






AGTGCCTGCAACAAGTGATCACCGACTTCAAG






CTCTGCGCCCAAATCCAGAGGAAGGAGAAGT





39
subpellicular
PVX_098915
MEIIAEKPKVKFNFASEEYKNCDSSD
AGTTCAACTCGCCTCCGAGGAGTACAAGAAC



microtubule protein 1,

YSECAEDYGRPNGKDYFYANRILSLD
TGCGACTCCAGCGACTACTCCGAGTGCGCTGA



putative (SPM1)

RNSEQRRKESPSKRPGLCVDEICTC
GGACTACGGCAGGCCAAACGGCAAGGACTAC





GFHRCPKIVKSLPFDGESNYRSEFGP
TTCTACGCCAACAGGATCCTCTCCCTGGACCG





KPLPELPPRQEAKLTRSLPFEGESNY
CAACAGCGAGCAGAGGCGCAAGGAGTCCCCA





RSEFGPKPLPELPPRVEQKPPKSLPF
AGCAAGAGGCCAGGCCTCTGCGTGGACGAGA





DGESNYRSEFGPKPLPELPPRVEQK
TCTGCACCTGCGGCTTCCACCGCTGCCCAAAG





PPKSLPFDGESNYRSEFGPKPLPELP
ATCGTCAAGTCCCTGCCATTCGACGGCGAGTC





PRVEQKPPKSLPFEGESNYRSEFGP
CAACTACCGCAGCGAGTTCGGCCCAAAGCCAC





KPLPELPPRVEQKPPKSLPFEGESNY
TCCCAGAGCTGCCACCAAGGCAAGAGGCCAA





RSEFGPKALPELPPRVEQKPPKSLPF
GCTCACCCGCAGCCTGCCATTCGAGGGCGAGT





EGESNYRSEFGPKPLPALPPRVETKL
CCAACTACAGGTCCGAGTTCGGGCCTAAGCCT





VKSLPFEGESNYRSEFGPKPLPELPP
CTGCCTGAGCTGCCACCACGCGTGGAGCAAA





RVEQKPPKSLPFEGESNYRSEFGPK
AGCCACCAAAGTCCCTCCCTTTCGATGGGGAG





PLPALPPRVVTKLVKSLPFEGESNYR
AGCAACTACAGGAGTGAATTCGGGCCTAAGC





SEFGPKPLPEIPPRVEQKPPKSLPFE
CGCTGCCCGAGCTGCCACCACGCGTCGAGCA





GESNYRSEFGPKPLPELPPRVEQKP
GAAGCCACCAAGAGCCTCCCTTTCGATGGCG





PKSLPFEGESNYRSEFGPKQLPELPP
AGAGCAACTACAGGAGCGAATTTGGGCCTAA





RQEAKLTRSLPFEGESSYRSEYVRKA
GCCGCTGCCGGAACTGCCACCACGCGTGGAA





IPICPVNLLPKYPAPTYPSEHVFWDSA
CAAAAGCCACCAAAGAGCCTGCCTTTCGAGGG





CKRWYhhhhhh
GGAGTCCAACTACAGGAGTGAGTTTGGGCCT






AAGCCGTTGCCTGAACTGCCACCACGCGTCGA






ACAGAAACCACCAAAAAGCCTCCCTTTCGAGG






GCGAGAGCAACTACCGCTCCGAGTTCGGCCCA






AAGGCTCTGCCGGAGCTGCCACCACGCGTGG






AACAGAAACCACCAAAGAGCCTCCCCTTCGAG






GGGGAGAGCAATTATCGCTCTGAGTTCGGGC






CAAAGCCGCTGCCGGCTCTGCCACCACGCGTG





40
tryptophan-rich antigen
PVX_088820
mAAANRPNANGFVSPTLIGFGELSIQ
ATGGCTGCCGCCAACAGGCCAAACGCCAACG



(Pv-fam-a)

ESEEFKRMAWNNWMLRLESDWKHF
GCTTCGTCTCCCCAACCCTCATCGGCTTCGGCG





NDSVEEAKTKWLHERDSAWSDWLR
AGCTGTCCATCCAAGAGAGCGAGGAGTTCAA





SLQSKWSHYSEKMLKEHKSNVMEKS
GAGGATGGCCTGGAACAACTGGATGCTCCGC





ANWNDTQWGNWIKTEGRKILEAQW
CTGGAGTCCGACTGGAAGCACTTCAACGACA





EKWIKKGDDQLQKLIWKWVQWKND
GCGTGGAGGAAGCCAAGACCAAGTGGCTGCA





KIRSWLSSEWKTEEDYYWANVERAT
CGAGAGGGACTCCGCTTGGAGCGACTGGCTC





TAKWLQEAEKMHWLKWKERINRESE
CGCTCCCTGCAGAGCAAGTGGTCCCACTACAG





QWVNWVQMKESVYINVEWKKWPK
CGAGAAGATGCTGAAGGAGCACAAGTCCAAC





WKNDKKILFNKWSTNLVYKWTLKKQ
GTCATGGAGAAGAGCGCCAACTGGAACGACA





WNVWIKEANTAPQVhhhhhh
CCCAATGGGGCAACTGGATCAAGACCGAGGG






CCGCAAGATCCTGGAGGCCCAGTGGGAGAAG






TGGATCAAGAAGGGCGACGACCAACTGCAGA






AGCTCATCCTGGACAAGTGGGTCCAGTGGAA






GAACGACAAGATCAGGTCCTGGCTCTCCAGCG






AGTGGAAGACCGAGGAAGACTACTACTGGGC






TAACGTGGAGAGGGCTACCACCGCTAAGTGG






CTCCAAGAGGCCGAGAAGATGCACTGGCTGA






AGTGGAAGGAGAGGATCAACCGCGAGTCCGA






GCAATGGGTGAACTGGGTCCAGATGAAGGAG






AGCGTGTACATCAACGTCGAGTGGAAGAAGT






GGCCAAAGTGGAAGAACGATAAGAAGATCCT






GTTCAACAAGTGGAGCACCAACCTCGTGTACA






AGTGGACCCTGAAGAAGCAGTGGAACGTCTG






GATCAAGGAAGCCAACACCGCCCCACAGGTG






CACCACCACCACCACCACTGA





41
PvTRAP/SSP2
PVX_082735
mEKVVDEVKYSEEVCNESVDLYLLVD
GCGAGGAAGTGTGCAACGAGTCCGTCGACCT





GSGSIGYPNWITKVIPMLNGLINSLSL
CTACCTCCTGGTGGACGGCTCCGGCAGCATCG





SRDTINLYMNLFGNYTTELIRLGSGQS
GCACCCAAACTGGATCACCAAGGTCATCCCA





IDKRQALSKVTELRKTYTPYGTTNMT
ATGCTCAACGGCCTGATCAACTCCCTCAGCCT





AALDEVQKHLNDRVNREKAIQLVILM
GTCCCGCGACACCATCAACCTCTACATGAACC





TDGVPNSKYRALEVANKLKQRNVSL
TGTTCGGCAACTACACCACCGAGCTCATCAGG





AVIGVGQGINHQFNRLIAGCRPREPN
CTGGGCAGCGGCCAATCCATCGACAAGCGCC





CKFYSYADWNEAVALIKPFIAKVCTEV
AGGCCCTCAGCAAGGTGACCGAGCTGAGGAA





ERVANCGPWDPWTACSVTCGRGTH
GACCTACACCCCATACGGCACCACCAACATGA





SRSRPSLHEKCTTHMVSECEEGECP
CCGCCGCCCTCGACGAGGTGCAAAAGCACCT





VEPEPLPVPAPLPTVPEDVNPRDTDD
GAACGACAGGGTCAACCGCGAGAAGGCCATC





ENENPNFNKGLDVPDEDDDEVPPAN
CAGCTCGTGATCCTGATGACCGACGGCGTCCC





EGADGNPVEENVFPPADDSVPDESN
AAACAGCAAGTACCGCGCCCTGGAGGTGGCC





VLPLPPAVPGGSSEEFPADVQNNPD
AACAAGCTGAAGCAAAGGAACGTCTCCCTGG





SPEELPMEQEVPQDNNVNEPERSDS
CCGTGATCGGCGTGGGCCAAGGCATCAACCA





NGYGVNEKVIPNPLDNERDMANKNK
CCAGTTCAACAGGCTGATCGCTGGCTGCAGGC





TVHPGRKDSARDRYARPHGSTHVNN
CACGCGAGCCAAACTGCAAGTTCTACAGCTAC





NRANENSDIPNNPVPSDYEQPEDKA
GCTGACTGGAACGAGGCTGTGGCTCTCATCAA





KKSSNNGYKhhhhhh
GCCATTCATCGCCAAGGTCTGCACCGAGGTGG






AGAGGGTGGCTAACTGCGGCCCATGGGACCC






GTGGACCGCTTGCTCCGTGACCTGCGGCAGG






GGCACCCACAGCAGGTCCCGCCCAAGCCTGCA






CGAGAAGTGCACCACCCACATGGTGTCCGAGT






GCGAGGAAGGCGAGTGCCCAGTGGAGCCAG






AGCCACTGCCGGTCCCAGCCCCACTGCCAACC






GTGCCAGAGGACGTCAACCCAAGGGACACCG






ACGACGAGAACGAGAACCCAAACTTCAACAA






GGGCCTCGACGTGCCAGACGAGGACGACGAC





42
MSP7-like protein
PVX_082645
mDDKKDKENEHKEDADKKNNDELKT
CACAAGGAAGACGCCGATAAGAAGAACAACG





LKGKLQKIRVQIKDDKLPQKISEEQIS
ACGAGCTCAAGACCCTGAAGGGCAAGCTCCA





VLKKKLEDFKNLKSEHEAKLASEKGD
AAAGATCAGGGTGCAGATCAAGGACGACAAG





TSAGGEGELGLSDKEFVGQNVKANG
CTGCCACAAAAGATCTCCGAGGAGCAGATCA





DAAGVSGEQGASGGSGQGEAGPSS
GCGTCCTCAAGAAGAAGCTGGAGGACTTCAA





PADEQDDDNEAVQWGPATEEVVAE
GAACCTCAAGTCCGAGCACGAGGCCAAGCTG





AMSDEGPQEQGAEGGPSNPTDDQA
GCCTCCGAGAAGGGCGACACCTCCGCCGGCG





EEATPGPSKPASGASGSQGASDSSN
GCGAGGGCGAGCTGGGCCTGTCCGACAAGGA





DSAEPTSAAAAAAPAGPTAAAASPO
GTTCGTGGGCCAAAACGTCAAGGCCAACGGC





VKHVDTLCDELLAGENKKNVLDEGE
GACGCCGCCGGCGTGAGCGGCGAGCAAGGC





DHSQYNIFRKQYDKMVLNKTEYNISL
GCCTCCGGCGGCAGCGGCCAGGGCGAGGCTG





KLLDTMLTNGQVEREKKNTLIKTFKK
GCCCATCCAGCCCAGCCGACGAGCAAGACGA





ALYDKQYSEKLRNLISGVYAFAKRNN
CGACAACGAGGCTGTCCAGTGGGGCCCAGCT





FIDGDKWEGDYSKLFEYIGCMMNTL
ACCGAGGAAGTGGTGGCTGAGGCTATGTCCG





ELhhhhhh
ACGAGGGCCCACAAGAGCAGGGCGCTGAGG






GCGGCCCAAGCAACCCAACCGACGACCAAGC






TGAGGAAGCCACCCCAGGCCCATCCAAGCCA






GCTTCCGGCGCTTCCGGCAGCCAGGGCGCTTC






CGACTCCAGCAACGACTCCGCCGAGCCAACCA






GCGCTGCCGCCGCCGCCGCCCCAGCTGGCCCA






ACCGCTGCCGCCGCCAGCCCACAGGTGAAGC






ACGTGGACACCCTCTGCGACGAGCTCCTGGCT






GGCGAGAACAAGAAGAACGTGCTGGACGAG






GGCGAGGACCACTCCCAATACAACATCTTCAG






GAAGCAGTACGACAAGATGGTCCTCAACAAG






ACCGAGTACAACATCAGCCTCAAGCTCCTGGA






CACCATGCTGACCAACGGCCAAGTGGAGCGC






GAGAAGAAGAACACCCTCATCAAGACCTTCAA





43
early transcribed
PVX_111065
mKRHAtext missing or illegible when filed RGALHSLKStext missing or illegible when filed EHEVQRKKNK
ACTCCCTGAAGAGCATCGAGCACGAGGTGCA



membrane protefn

KKKIILYSIGSILALAAVIATGVGIGMYI
AAGGAAGAAGAACAAGAAGAAGAAGATCATC



(etramp 10.2)

KKKKKNSLEKLQQIEPQKLESKTDES
CTCTACTCCATCGGCAGCATCCTGGCTCTGGCT





DPLLGKSEAAKVEVKGDSEEVPQEV
GCCGTGATCGCTACCGGCGTCGGCATCGGCAT





SSPSEALDVEPPVSEALNMEPAVGE
GTACATCAAGAAGAAGAAGAAGAACAGCCTG





SANFEDSAKGEVDIEPVSEVESIEPVS
GAGAAGCTGCAACAGATCGAGCCACAAAAGC





EVESIEPVSEVESIEPSVDEVMDAAE
TGGAGTCCAAGACCGACGAGAGCGACCCACT





PISTEPVNVEPAGNETENIVPTSFEQV
CCTGGGCAAGAGCGAGGCTGCTAAGGTGGAG





NIEPAVSEAFSQERSGEETADFEDSV
GTCAAGGGCGACTCCGAGGAAGTGCCACAAG





KEDVIPESPPVESVTIEAENIQPMNVE
AGGTGTCCATCCCGAGCGAGGCTCTGGACGT





QMNVDPTVSDAESIEPTPVEAVDIEP
GGAGCCACCAGTCTCCGAGGCCCTGAACATG





VNVEPVNVEPAVSETMSQEPSLDEV
GAGCCAGCCGTGGGCGAGTCCGCCAACTTCG





ENVESAVNEMMSQEPSAEETANFAH
AGGACAGCGCCAAGGGCGAGGTCGACATCGA





SIKEDVSPESTSVESLDVESSVSEPM
GCCAGTGTCCGAGGTCGAGTCTATTGAACCAG





STDPSPVESVSMESVDSETVNVESID
TGTCCGAGGTGGAGTCTATTGAGCCAGTGTCC





SETVNVEPSDETSKVEADVQQFTDE
GAAGTCGAGAGCATCGAGCCATCCGTGGACG





ELSTIGNVADKASDGPAPEASDFPDS
AGGTCATGGACGCTGCTGAGCCAATCAGCACC





IFEENLDNANPPLKLEDALVDPPASD
GAGCCAGTGAACGTCGAGCCAGCCGGCAACG





EAQPEPSHPNEAVGAAKSAESAEAD
AGACGGAGAACATCGIGCCAACCTCCTTCGAG





QISHSGSGDASPSAPSSSDDTSGSK
CAAGTGAACATCGAGCCAGCCGTCAGCGAGG





NSGTSGKDRLFKTYDSDVEPPIVPEK
CCTTCTCCCAAGAGAGGAGCGGCGAGGAGAC





YPTVGVKEAPKMGFAEMAFKNIFDTF
GGCTGACTTCGAGGACTCCGTGAAGGAAGAC





SKVADASKVLTPEKQSAPEKQSAPEK
GTCATCCCAGAGTCCCCACCAGTGGAGAGCGT





QSAPEKQSAPEKHSTPPKQSTSPKE
CACCATCGAGGCCGAGAACATCCAACCGATGA





STSPKQPAPPKPSTSPKQSAPAKQS
ACGTGGAGCAGATGAACGTGGACCCAACCGT





APPKQSAPAKQSAPAKNAAPPQSAS
CTCCGACGCCGAGAGCATCGAGCCAACCCCAG





SSRFFSSSSNGNKGFGLRLFSDASSS
TGGAGGCCGTGGATATCGAGCCTGTCAACGT





NNKKGRAGNPIIRFKRRANhhhhhh
GGAGCCTGTCAACGTTGAGCCAGCCGTGTCCG





44
hypothetical protein,
PVX_091500
MNNPAEVVAAHLRRTGNSNEIRQAS
ACCTGAGGCGCACCGGCAACTCCAACGAGATC



conserved

HVESVGGSANSSLDDDDGGGYDSAA
AGGCAGGCTAGCCACGTGGAGAGCGTCGGCG





PPGELHTTGDAPPGEFRTTGVVPPG
GCTCCGCTAACTCCAGCCTCGACGACGACGAC





RQKGGKKRMFKIKKKKSLTPLHIDDG
GGCGGCGGATACGACAGCGCMCCCCACCAG





GFTQGGEAKGPDVALESFAITRKRRR
GCGAGCTCCACACCACCGGCGACGCCCCACCA





PPLLGRGVVESSNIELTSKLGGKLGS
GGCGAGTTCCGCACCACCGGCGTGGTCCCACC





KLGGKLNPTLSLVASRAVDGLLGGVH
AGGCAGGCAAAAGGGCGGCAAGAAGCGCAT





KHMQGPFSLDLDGTNNSPLATPIVTP
GTTCAAGATCAAGAAGAAGAAGTCCCTCACCC





NLYSNISTPFNMHNGIPPSAPAPMAL
CACTGCACATCGACGACGGCGGCTTCACCCAG





PPQGVQVPLPNAQPQPPPSVATTAT
GGCGGCGAGGCTAAGGGCCCAGACGTGGCTC





AAPAATSPMASPTTPTPAASTGVPPP
TGGAGTCCTTCGCCATCACCAGGAAGAGGCG





PGIQLATNAMTYPQMNMQNVMTANQ
CAGGCCACCACTCCTGGGCCGCGGCGTGGTC





MAQNPAFNIHPTATNLRDDPGNVNY
GAGTCCAGCAACATCGAGCTCACCAGCAAGCT





NEVVTITIGIVICLFLFCFVFGCIVKMC
GGGCGGCAAGCTCGGCTCCAAGCTGGGCGGC





KPAKRRRhhhhhh
AAGCTCAACCCGACCCTCAGCCTGGTGGCCTC






CAGGGCCGTGGACGGCCTCCTGGGCGGCGTG






CACAAGCACATGCAAGGCCCATTCAGCCTCGA






CCTGGACGGCACCAACAACTCCCCACTGGCCA






CCCCAATCGTCACCCCAAACCTCTACTCCAACA






TCAGCACCCCATTCAACATGCACAACGGCATC






CCACCAAGCGCTCCAGCTCCAATGGCTCTGCC






ACCACAAGGCGTGCAGGTCCCACTCCCAAACG






CCCAACCACAACCACCACCATCCGTGGCTACC






ACCGCTACCGCTGCTCCAGCTGCTACCAGCCC






AATGGCTTCCCCAACCACCCCAACCCCAGCTG






CTAGCACCGGCGTGCCACCACCACCAGGCATC






CAGCTGGCCACCAACGCCATGACCTACCCACA






GATGAACATGCAGAACGTCATGACCGCCAACC





45
hypothetical protein,
PVX_090145
mSKTGNNNRNAKNAKGGGGGGKRG
CCAAGAACGCTAAGGGCGGCGGCGGCGGCG



conserved

NNEANKNDGMSGKGSQKGKKKDPG
GCAAGAGGGGCAACAACGAGGCCAACAAGA





GGGTPKGQGKGPEQGKQKNKKGED
ACGACGGCATGTCCGGCAAGGGCAGCCAAAA





SHFDEYIKDMKNSQDEDNFMDELNR
GGGCAAGAAGAAGGACCCAGGCGGCGGCGG





FEKNFHDEDFESDENLFNYGKGGTH
CACCCCGAAGGGCCAGGGCAAGGGCCCAGAG





SGEFNKIGELNSGNYNEMKPDANDY
CAAGGCAAGCAGAAGAACAAGAAGGGCGAG





QYFDNEDILEGDEDLTNIWNKNMQNF
GACTCCCACTCGACGAGTACATCAAGGACAT





EPSTLLTFEIQGNSEEYLFEEVTSLNT
GAAGAACAGCCAAGACGAGGACAACTTCATG





YFRGVFYSNNESDDNKILFFITDPDGE
GACGAGCTCAACAGGTTCGAGAAGAACTTCCA





VIYKKEASEGIFYFYTQKIGVYTITLKN 
CGACGAGGACTTCGAGTCCGACGAGAACCTG





SKWMGKKLTTVALGLGESPSLKSEHI
TTCAACTACGGCAAGGGCGGCACCCACTCCGG





KDFTNYIDKIVAETKRLKNELKYLSSK
CGAGTTCAACAAGATCGGCGAGCTCAACAGC





HMTHIEKMKKITNKAFLYCFIKLFVLVF
GGCAACTACAACGAGATGAAGCCAGACGCCA





LSLFTIYYIKNLVSNKRVLhhhhhh
ACGACTACCAGTACTTCGACAACGAGGACATC






CTGGAGGGCGACGAGGACCTGACCAACATCT






GGAACAAGAACATGCAAAACITCGAGCCAAG






CACCCTCCTGACCTTCGAGATCCAGGGCAACT






CCGAGGAGTACCTCTTCGAGGAAGTGACCAG






CCTGAACACCTACTTCCGCGGCGTCTTCTACTC






CAACAACGAGAGCGACGACAACAAGATCCTG






TTCTTCATCACCGACCCAGACGGCGAGGTCAT






CTACAAGAAGGAAGCCTCCGAGGGCATCTTCT






ACTTCTACACCCAAAAGATCGGCGTGTACACC






ATCACCCTCAAGAACAGCAAGTGGATGGGCA






AGAAGCTGACCACCGTGGCTCTGGGCCTGGG






CGAGTCCCCAAGCCTCAAGAGCGAGCACATCA






AGGACTTCACCAACTACATCGACAAGATCGTC






GCCGAGACGAAGAGGCTGAAGAACGAGCTCA





46
hypothetical protein,
PVX_119265
MNNHQAVKQQMNPKGSKEQNRMVA
GAACCCAAAGGGCTCCAAGGAGCAGAACAGG



conserved

PNSNMPGGMRDLAYHRNNGNNEMG
ATGGTGGCCCCAAACAGCAACATGCCAGGCG





KMNMNANGQQHNAGSSNTYNSNSIN
GCATGAGGGACCTCGCTTACCACAGGAACAAC





NNNYSLGLYIDNPQNAFVFDENDLKT
GGCAACAACGAGATGGGCAAGATGAACATGA





LFSHYKGAKNIRILNDKAAAQITFNDK
ACGCCAACGGCCAACAGCACAACGCCGGCTCC





NMIQQVRKDINGLTITDIGTIRCIILNEG
AGCAACACCTACAACTCCAACTCCATCAACAA





KIVEQFLPFSANDPASAQQKGGSNQ
CAACAACTACTCCCTCGGCCTGTACATCGACA





SGDSTVDMLKKLANLLQPERAMDSS
ACCCACAAAACGCCTTCGTCTTCGACGAGAAC





MAPKMGDNGGLSATGSVNMGASIAT
GACCTCAAGACCCTGTTCAGCCACTACAAGGG





NVGMGGNMPTNANMGGVITTNANVS
CGCCAAGAACATCAGGATCCTCAACGACAAG





ANVSANVSANPMPGKNQVKNKMGN
GCTGCCGCCCAGATCACCTTCAACGACAAGAA





HAIYNNGGSHFNQAHMNKGEPGENN
CATGATCCAACAGGTCAGGAAGGACATCAAC





PYATKRLSRIELIDIFGFPVEFDVMKKI
GGCCTGACCATCACCGACATCGGCACCATCCG





LGKNNSNISYIKEQTNNSVSIEIKGKP
CTGCATCATCCTCAACGAGGGCAAGATCGTGG





FNEAPIVERMHVSVSSDDLIGYKKAT
AGCAATTCCTGCCATTCTCCGCCAACGACCCG





ELIVKLLNSIFEEFYDFCYEKNYPVPE
GCTAGCGCTCAACAGAAGGGCGGCTCCAACC





NLSFKRHEYMYNPDGSTKYVGFKDK
AAAGCGGCGACTCCACCGTGGACATGCTCAA





WHVMKDSYRTDYSFRKNKGLQKND
GAAGCTCGCTAACCTCCTGCAGCCAGAGAGG





KDKRMHGGAFGGHPNLSIGYANQNA
GCCATGGACTCCAGCATGGCCCCAAAGATGG





PQGDFKEMNhhhhhh
GCGACAACGGCGGCCTCTCCGCTACCGGCTCC






GTCAACATGGGCGCCTCCATCGCCACCAACGT






GGGCATGGGCGGCAACATGCCAACCAACGCC






AACATGGGCGGCGTCATCACCACCAACGCCAA






CGTGAGCGCCAACGTCTCCGCTAACGTGAGCG






CTAACCCAATGCCAGGCAAGAACCAAGTGAA






GAACAAGATGGGCAACCACGCCATCTACAACA






ACGGCGGCTCCCACTTCAACCAGGCCCACATG






AACAAGGGCGAGCCAGGCGAGAACAACCCAT





47
rhoptry neck protein 2,
PVX_117880
mREAKGSVRDGKQYVKTKSPTYTPQ
ATGCGCGAGGCTAAGGGCTCCGTGCGCGACG



putative (RON2)

KKTKVIFYMPGQEQEEEEDDNDPNG
GCAAGCAATACGTCAAGACCAAGAGCCCAAC





SKKNGKSDTGANKGTHMGSKTDAG
CTACACCCCACAGAAGAAGACCAAGGTCATCT





NSPSGLNKGSGVGSGSRPASNNYKG
TCTACATGCCAGGCCAAGAGCAAGAGGAAGA





NAGGGINIDMSPHGDNSNKGQQGNA
GGAAGACGACAACGACCCAAACGGCTCCAAG





GLNKNQEDTLRDEYEKIRKQEEEEEE
AAGAACGGCAAGAGCGACACCGGCGCCAACA





RINNQRRADMKRAQRGKNKFGDDK
AGGGCACCCACATGGGCTCCAAGACCGACGC





GVQDShhhhhh
TGGCAACTCCCCGAGCGGCCTCAACAAGGGCT






CCGGCGTGGGCTCCGGCAGCAGGCCAGCCAG






CAACAACTACAAGGGCAACGCCGGCGGCGGC






ATCAACATCGACATGTCCCCACACGGCGACAA






CAGCAACAAGGGCCAACAGGGCAACGCCGGC






CTCAACAAGAACCAAGAGGACACCCTGAGGG






ACGAGTACGAGAAGATCCGCAAACAAGAGGA






AGAGGAAGAGGAGCGCATCAACAACCAAAGG






CGCGCTGACATGAAGAGGGCTCAGAGGGGCA






AGAACAAGTTCGGCGACGACAAGGGCGTGCA






AGACAGCCACCACCACCACCACCACTGA





48
tryptophan-rich antigen
PVX_121897
mSSQSAVDYIEQEPLDILNLEEGDLE
ATGTCCAGCCAAAGCGCCGTGGACTACATCGA



(Pv-fam-a)

VTEQWKDNEWHNWKLKLEEDWDSF
GCAGGAGCCACTCGACATCCTCAACCTCGAAG





STSLIRDKKDFMKIKTDELNGWLNLE
AGGGCGACCTGGAGGTCACCGAGCAGTGGAA





ENKWNNFSGYLSDGYKNYLLKKSEK
GGACAACGAGTGGCACAACTGGAAGCTCAAG





WNDADWENWANTEMVAHLDKDYHL
CTCGAAGAGGACTGGGACTCCTTCAGCACCTC





WSLNTERSVNALVRGEWNQWQHDK
CCTCATCAGGGACAAGAAGGACTTCATGAAG





MSSWLSSDWKKVGAMYWDLQESR
ATCAAGACCGACGAGCTGAACGGCTGGCTCA





NWASYSHTDDMKEHWIKWNDRNAR
ACCTGGAGGAGAACAAGTGGAACAACTTCAG





ENIEWSKWVQNKEYFIMYARHSDIEQ
CGGCTACCTCTCCGACGGCTACAAGAACTACC





WKYDNYALYSTWRNDFINRWVSEKK
TCCTGAAGAAGTCCGAGAAGTGGAAGGACGC





WNSILNhhhhhh
CGACTGGGAGAACTGGGCCAACACCGAGATG






GTGGCCCACCTCGACAAGGACTACCACCTCTG






GAGCCTGAACACCGAGAGGTCCGTGAACGCT






CTGGTCCGCGGCGAGTGGAACCAATGGCAGC






ACGACAAGATGTCCAGCTGGCTCTCCAGCGAC






TGGAAGAAGGTCGGCGCCATGTACTGGGACC






TGCAGGAGAGCAGGAACTGGGCCAGCTACTC






CCACACCGACGACATGAAGGAGCACTGGATC






AAGTGGAACGACAGGAACGCCCGCGAGAACA






TCGAGTGGTCCAAGTGGGTGCAAAACAAGGA






GTACTTCATCATGTACGCCCGCCACAGCGACA






TCGAGCAGTGGAAGTACGACAACTACGCCCTC






TACTCCACCTGGAGGAACGACTTCATCAACCG






CTGGGTCAGCGAGAAGAAGTGGAACTCCATC






CTGAACCACCACCACCACCACCACTGA





49
tryptophan-rich antigen
PVX_125728
mKSSNEIERLTHVKLKDTSEWTENVE
ATGAAGTCCAGCAACGAGATCGAGAGGCTCA



(Pv-fam-a)

EWVKDEWHEWMDEVQMDWKEFNS
CCCACGTGAAGCTGAAGGACACCTCCGAGTG





SLESEKNKWFGKKEKEMMELIKSIED
GACCGAGAACGTGGAGGAGTGGGTCAAGGA





KWLDFNENMHEVLNYAILKISLMWSF
CGAGTGGCACGAGTGGATGGACGAGGTCCAG





SEWQKWINKDGKRIIENQWERWTIS
ATGGACTGGAAGGAGTTCAACTCCAGCCTGG





NKNLYYKIIMKEWFKWKNKKIKQWLK
AGTCCGAGAAGAACAAGTGGTTCGGCAAGAA





RNWLHHEGRILENWERLPYTKILAMS
GGAGAAGGAGATGATGGAGCTGATCAAGAGC





EKKPWFNSNAQVINERDYFLIWIKKK
ATCGAGGACAAGTGGCTCGACTTCAACGAGA





EDFLVNEERDKWENWEYYKNDFFQT
ACATGCACGAGGTGCTCAACTACGCCATCCTC





WMDSFLSHWLNIKKRDILHSQShhhh
AAGATCTCCCTGATGTGGTCCTTCAGCGAGTG





hh
GCAAAAGTGGATCAACAAGGACGGCAAGAGG






ATCATCGAGAACCAGTGGGAGCGCTGGACCA






TCAGCAACAAGAACCTGTACTACAAGATCATC






ATGAAGGAGTGGTTCAAGTGGAAGAACAAGA






AGATCAAGCAATGGCTCAAGAGGAACTGGCT






GCACCACGAGGGCAGGATCCTGGAGAACTGG






GAGCGCCTGCCATACACCAAGATCCTCGCCAT






GTCCGAGAAGAAGCCATGGTTCAACAGCAAC






GCCCAAGTGATCAACGAGAGGGACTACTTCCT






GATCTGGATCAAGAAGAAGGAAGACTTCCTC






GTCAACGAGGAGCGCGACAAGTGGGAGAACT






GGGAGTACTACAAGAACGACTTCTTCCAAACC






TGGATGGACTCCTTCCTCAGCCACTGGCTGAA






CATCAAGAAGCGCGACATCCTCCACTCCCAGA






GCCACCACCACCACCACCACTGA





50
reticulocyte binding
PVX_090330
mRLKHDHNLLPNYANLMRDDQNGQ
ATGAGGCTCAAGCACGACCACAACCTCCTGCC



protein 2 precursor

NSENRGDNINNHNKNHNDQNNHNG
AAACTACGCCAACCTGATGAGGGACGACCAA



(PvRPB-2), putative

NNDNSINSEYLKTSHLQNSSAMVHLN
AACGGCCAGAACTCCGAGAACCGCGGCGACA





DHKITTKPARYSYIQRSKIYAFNPNNK
ACATCAACAACCACAACAAGAACCACAACGAC





KIENNNELHShhhhhh
CAAAACAACCACAACGGCAACAACGACAACTC






CATCAACAGCGAGTACCTCAAGACCAGCCACC






TGCAGAACTCCAGCGCCATGGTGCACCTCAAC






GACCACAAGATCACCACCAAGCCAGCCAGGTA






CTCCTACATCCAACGCAGCAAGATCTACGCCTT






CAACCCAAACAACAAGAAGATCGAGAACATCA






ACAACGAGCTGCACTCCCACCACCACCACCAC






CACTGA





51
histone-lysine N-
PVX_123685
mSMEQGTPIVFPHKEGTILTKGTNNL
CCCACACAAGGAAGGCACCATCCTCACCAAGG



methyltransferase, H3

AVAHKEEVHRSEEETTLKGLKEELPH
GCACCAACAACCTGGCCGTGGCCCACAAGGA



lysine-4 specific,

EHTLAIQKYDPSFGRGGSPGSGSTE
AGAGGTGCACAGGAGCGAGGAAGAGACGAC



putative (SET10)

HTNGSFSNSYETILYNKSNDVVKNLK
CCTCAAGGGCCTGAAGGAAGAGCTCCCACAC





EIKKGAPFGGVISDAVSCPASSSSNT
GAGCACACCCTGGCCATCCAGAAGTACGACCC





GGNKNLCFSNMMKLSKKILGFPLLTD
AAGCTTCGGCCGCGGCGGCTCCCCAGGCAGC





FERGMSTNQPCLPLSDHLKRLSVCT
GGCAGCACCGAGCACACCAACGGCTCCTTCAG





VCYSKHNDLAKAIICRVTKMHFEANY
CAACTCCTACGAGACGATCCTCTACAACAAGT





NDGLGDEDMFKTSSECIQSVIRELAN
CCAACGACGTGGTCAAGAACCTGAAGGAGAT





TIKEYRKRELSGAYVQELARSGSSSY
CAAGAAGGGCGCTCCATTCGGCGGCGTGATC





RSCSSSSYSSRGGSCAGSRGDGLA
TCCGACGCCGTCTCCTGCCCGGCCGCCAGCTCC





GSHGEIHAVIAGPPLTDDHNDIGAEA
AGCAACACCGGCGGCAACAAGAACCTCTGCTT





HSPSSSLKLPPQKPFYGMMSDPPCS
CAGCAACATGATGAAGCTCTCCAAGAAGATCC





DRRPGDTNNPFENNTPPLLWDNKVN
TGGGCTTCCCACTCCTGACCGACTTCGAGAGG





YTDDYTCKRGEVNSTLGKRPHEEDN
GGCATGAGCACCAACCAACCATGCCTCCCACT





KGSSQKKSKLRTKPSNDTIGGENGD
GAGCGACCACCTCAAGCGCCTGTCCGTGTGCA





SLKGGTDEGKTHEGGGNVGSCTAQ
CCGTCTGCTACAGCAAGCACAACGACCTGGCC





GGADQLPRSDLCRDPRGDPCVDPLP
AAGGCCATCATCTGCAGGGTGACCAAGATGC





EQHAHRSKDENQKGDKNDIHFAGEK
ACTTCGAGGCCAACTACAACGACGGCCTCGGC





LDEIEAPGDQKGNYVTLENISKASNFI
GACGAGGACATGTTCAAGACCTCCAGCGAGT





PLLGVELGSTKIQREFTNGTYVGTVT
GCATCCAATCCGTGATCCGCGAGCTGGCCAAC





EQIKDEHGNPFFVVTYEDGDAEWMT
ACCATCAAGGAGTACAGGAAGCGCGAGCTGT





PCFLFQELLKQSTNSVDYPLATTFKE
CCGGCGCCTACGTCCAAGAGCTCGCTAGGTCC





VFNPEFKKDLKLSNCSLELKIERRKRK
GGCTCCAGCTCCTACAGGAGCTGCAGCTCCAG





SNCESASNNNSVSKRQKHAQEENSS
CTCCTACAGCTCCAGGGGCGGCAGCTGCGCTG





RKKKQRFhhhhhh
GCTCCCGCGGCGACGGCCTCGCCGGCTCCCAC






GGCGAGATCCACGCCGTCATCGCTGGCCCACC






ACTGACCGACGACCACAACGACATCGGCGCTG





52
reticulocyte binding
PVX_125738
mtext missing or illegible when filed FNDGSDEtext missing or illegible when filed Stext missing or illegible when filed AQKYKtext missing or illegible when filed DVEGtext missing or illegible when filed DKL
CACCGCCCAAAAGTACAAGACCGACGTGGAG



protein 1 precursor,

NVIDETINGINSTLDELLELGNNCQLH
GGCATCATCG ACAAGCTGAACGTCATCGACGA



putative

RTFLISSSLNNKIAKFLVEIREQKENTK
GACGATCAACGGCATCAACAGCACCCTGGAC





KCFQYVKRNHQHLANFVSELHKTQG
GAGCTCCTGGAGCTCGGCAACAACTGCCAACT





GIFENVNLVDNTPDADKYYHEFMEIE
CCACAGGACCTTCCTGATCTCCAGCTCCCTCAA





QEATKIVKDIKKEIYHLNDDVDEPVLE
CAACAAGATCGCCAAGTTCCTCGTGGAGATCA





KRIKDVINTYNKLKTKKVQMDQSYKN
GGGAGCAGAAGGAGAACACCAAGAAGTGCTT





MYITKLREVEGSHDLFNQVAQLIRGE
CCAATACGTGAAGCGCAACCACCAGCACCTGG





TDKKGKALSERENNLHSIYNFVKLHE
CCAACTTCGTCTCCGAGCTCCACAAGACCCAA





TELHNLYAKYTPEYMEKINKIFDDINA
GGCGGCATCTTCGAGAACGTCAACCTGGTGG





RMIAVDLNDDHSSEYSDVKRHEHHEA
ACAACACCCCAGACGCCGACAAGTACTACCAC





MLLMDATNNLSKEVEMMQNESGGK
GAGTCATGGAGATCGAGCAAGAGGCCACCA





NDGINGGKSQLVEDYTNTMSEFTEQ
AGATCGTCAAGGACATCAAGAAGGAGATCTA





AKTVAKKIHDSKGDYANMFDHIRENE
CCACCTGAACGACGACGTGGACGAGCCAGTC





AMLERIDLKKKDIKEILAHLNRMKEYLL
CTGGAGAAGAGGATCAAGGACGTGATCAACA





KKLSEEEKLHHMREKLEEVNTSTDEI
CCTACAACAAGCTGAAGACCAGAAGGTCCA





VKKFRTYDQMVDISQNIDIKNVQSKR
GATGGACCAGTCCTACAAGAACATGTACATCA





YDSVDEIDKEMSYIKTHNKDLIDSKFIV
CCAAGCTGAGGGAGGTGGAGGGCAGCCACG





ERALENDKRKKSEMAQIFSTISRDNS
ACCTGTTCAACCAAGTCGCCCAGCTCATCAGG





SMYEYAKSFFDSVLKEIEKLTQMIRN
GGCGAGACGGACAAGAAGGGCAAGGCCCTGT





MDKLINENEAVMEKLKDQRRELQNV
CCGAGCGCGAGAACAACCTCCACAGCATCTAC





ENASTDLGKLEEVDKMAQTKSETELS
AACTTCGTGAAGCTGCACGAGACGGAGCTCC





ERNDSRNAKDGATYSTLMDDKETDS
ACAACCTGTACGCCAAGTACACCCCAGAGTAC





VNGEETKQENVVVKKGLPPQTDIYTS
ATGGAGAAGATCAACAAGATCTTCGACGACAT





VVLKNDRNDQKSEKIGEKKSNKPVGT
CAACGCCAGGATGATCGCCGTGGACCTCAAC





EENIQHSSYLNNDNSNNDIDVGTLYT
GACGACCACAGCTCCGAGTACAGCGACGTCA





LGGYNAPNDNYNTNESGDDINEEAK
AGCGCCACGAGCACGAGGCCATGCTCCTGAT





KKRNAVLFVYVGGLFSALFICIGAVFY
GGACGCCACCAACAACCTGTCCAAGGAAGTG





53
PvDBP (region II);
PVX_110810
mGEHKTDSKTDNGKGANNLVMLDYE
ACAACGGCAAGGGCGCCAACAACCTGGTCAT



;Duffy receptor

TSSNGQPAGTLDNVLEFVTGHEGNS
GCTCGACTACGAGACGTCCTCCAACGGCCAGC



precursor (DBP)

RKNSSNGGNPYDIDHKKTISSAIINHA
CAGCTGGCACCCTGGACAACGTGCTGGAGTTC





FLQNTVMKNCNYKRKRRERDWDCN
GTCACCGGCCACGAGGGCAACAGCAGGAAGA





TKKDVCIPDRRYQLCMKELTNLVNNT
ACTCCAGCAACGGCGGCAACCCATACGACATC





DTNFHRDITFRKLYLKRKLIYDAAVEG
GACCACAAGAAGACCATCTCCAGCGCCATCAT





DLLLKLNNYRYNKDFCKDIRWSLGDF
CAACCACGCCTTCCTGCAGAACACCGTGATGA





GDIIMGTDMEGIGYSKVVENNLRSIFG
AGAACTGCAACTACAAGAGGAAGAGGCGCGA





TDEKAQQRRKQWWNESKAQIWTAM
GCGCGACTGGGACTGCAACACCAAGAAGGAC





MYSVKKRLKGNFIWICKLNVAVNIEP
GTCTGCATCCCAGACAGGCGCTACCAACTCTG





QIYRWIREWGRDYVSELPTEVQKLKE
CATGAAGGAGCTGACCAACCTCGTGAACAACA





KCDGKINYTDKKVCKVPPCQNACKS
CCGACACCAACTTCCACAGGGACATCACCTTC





YDQWITRKKNQWDVLSNKFISVKNA
CGCAAGCTGTACCTCAAGAGGAAGCTGATCTA





EKVQTAGIVTPYDILKQELDEFNEVAF
CGACGCTGCTGTGGAGGGCGACCTCCTGCTCA





ENEINKRDGAYIELCVCSVEEAKKNT
AGCTCAACAACTACAGGTACAACAAGGACTTC





QEVVhhhhhh
TGCAAGGACATCCGCTGGTCCCTGGGCGACTT






CGGCGACATCATCATGGGCACCGACATGGAG






GGCATCGGCTACTCCAAGGTGGTCGAGAACA






ACCTCCGCAGCATCTTCGGCACCGACGAGAAG






GCCCAACAGAGGCGCAAGCAATGGTGGAACG






AGTCCAAGGCCCAGATCTGGACCGCCATGATG






TACAGCGTGAAGAAGAGGCTGAAGGGCAACT






TCATCTGGATCTGCAAGCTCAACGTGGCCGTC






AACATCGAGCCACAGATCTACAGGTGGATCAG






GGAGTGGGGCAGGGACTACGTCTCCGAGCTG






CCAACCGAGGTGCAAAAGCTCAAGGAGAAGT






GCGACGGCAAGATCAACTACACCGACAAGAA






GGTGTGCAAGGTCCCACCATGCCAAAACGCCT





54
MSP3.10[merozoite
PVX_097720
mVtext missing or illegible when filed GGSPNNEAPNSStext missing or illegible when filed Ltext missing or illegible when filed NGFPG
CCCCAAACTCCAGCAGGCACCACCTCCGCAAC



surface protein 3 alpha

KNDSLPHEEPNNLEGKNESSDQCDTI
GGCTTCCCAGGCAAGAACGACTCCCTCCCACA



MSP3a)]

NLGQVTEKEKKTIEQASVQAQDATKP
CGAGGAGCCAAACAACCTGGAGGGCAAGAAC





EANNAEQIQAELQKVKTAKDESATAA
GAGTCCAGCGACCAATGCGACACCATCAACCT





KDAETAKKNAVDAGKGLDAAKGAIKK
GGGCCAGGTGACCGAGAAGGAGAAGAAGAC





AEEAAAEAKKQAGIAEKAEKDAEAAG
CATCGAGCAAGCTAGCGTCCAAGCTCAGGAC





KKDKLEDVNSQVQIAVEASTKAKDKK
GCTACCAAGCCAGAGGCCAACAACGCCGAGC





TEAEIAVEIVKAVVAKEEAQKASDEAQ
AAATCCAGGCCGAGCTCCAAAAGGTGAAGAC





KACEKAQKAHAKAQKASDTTKTVETF
CGCTAAGGACGAGTCCGCTACCGCTGCTAAG





KTNAEAAAKNAKEKAGNANKAATEA
GACGCTGAGACGGCCAAGAAGAACGCTGTGG





ESANELSVAKQKAKDAEEAAKEAKKE
ACGCTGGCAAGGGCCTGGACGCCGCCAAGGG





QVKAEIAAEVAKAKVAKEEADAAQKK
CGCCATCAAGAAGGCTGAGGAAGCCGCCGCC





AEAAKKIVDKIAQDTKVPEAQREAKLA
GAGGCCAAGAAGCAGGCTGGCATCGCCGAGA





TQTASKATEAATEAGKKAQEAEESS
AGGCTGAGAAGGACGCTGAGGCTGCTGGCAA





KEAEEKAETSDAVKGKADAAEKAAG
GAAGGACAAGCTGGAGGACGTGAACAGCCAA





EAKKASIETEIAIEVAKAEVLNAEVKKT
GTCCAGATCGCCGTGGAGGCCTCCACCAAGG





AQEAEKDATEAKEQAEKAKAAAEEA
CCAAGGACAAGAAGACCGAGGCCGAGATCGC





KTHGEKAEKVGESTKAHSDEAQQEN
CGTGGAGATCGTCAAGGCCGTGGTCGCCAAG





KNAKDASEEAENRAVDALEEAYAVE
GAAGAGGCCCAAAAGGCTAGCGACGAGGCTC





AHLARTKNAAESAKSATDMSELEKAK
AGAAGGCTTGCGAGAAGGCCCAAAAGGCTCA





EEAIDAANIAHQKWLKATQAATIAKEK
CGCTAAGGCTCAGAAGGCTTCCGACACCACCA





KEAAKVAAEKAQTAANVVKDKAAKA
AGACCGTGGAGACGTTCAAGACCAACGCCGA





EAKKAETEAVKAAVEARAAAEEAKQE
GGCTGCCGCCAAGAACGCCAAGGAGAAGGCT





AAKVGASKEPQETKNKANVEAEATG
GGCAACGCTAACAAGGCTGCTACCGAGGCTG





NEAKKAEDAAEEAKEAAKKANEATD
AGAGCGCTAACGAGCTCTCCGTGGCCAAGCA





YGLLKTKNQYVLEPLDISPESADNITS
GAAGGCCAAGGACGCCGAGGAAGCCGCCAA





KEEQVKEEMEDQGDEDSNEAEVEEA
GGAAGCCAAGAAGGAGCAAGTCAAGGCTGA






GATCGCTGCTGAGGTGGCTAAGGCTAAGGTG





55
sexual stage antigen
PVS_000930
mENNKIKGGKVPPPSVPTGNNSDNN
ATGGAGAACAACAAGATCAAGGGCGGCAAGG



s16, putative

VPKKDGGENNPPPDAENALQELKNF
TGCCACCACCATCCGTCCCAACCGGCAACAAC





TKNLEKKTTTNRNIIISTTVNMVLLVLL
TCCGACAACAACGTGCCAAAGAAGGACGGCG





SGLIGYNTKKGFKKGQMGSVKEVTP
GCGAGAACAACCCACCACCAACGCCGAGAA





EAQKGKLhhhhhh
CGCCCTCCAAGAGCTGAAGAACTTCACCAAGA






ACCTGGAGAAGAAGACCACCACCAACAGGAA






CATCATCATCTCCACCACCGTCATCAACATGGT






GCTCCTGGTCCTCCTGAGCGGCCTGATCGGCT






ACAACACCAAGAAGGGCTTCAAGAAGGGCCA






AATGGGCTCCGTGAAGGAAGTGACCCCAGAG






GCCCAGAAGGGCAAGCTCCACCACCACCACCA






CCACTGA





56

Positive






Control?







57

Negative






Control?






text missing or illegible when filed indicates data missing or illegible when filed







Appendix II









TABLE 5







list of protein references for additional 25 proteins










Protein

Protein



Code
Protein Name
Reference
Source





X1
PVX_094350
PVX_094350
Ehime University


X2
PVX_099930
PVX_099930
Ehime University


X3
PVX_114330
PVX_114330
Ehime University


X4
PVX_088820
PVX_088820
Ehime University


X5
PVX_080665
PVX_080665
Ehime University


X6
PVX_092995
PVX_092995
Ehime University


X7
PVX_087885
PVX_087885
Ehime University


X8
PVX_003795
PVX_003795
Ehime University


X9
PVX_087110
PVX_087110
Ehime University


X10
PVX_087670
PVX_087670
Ehime University


X11
PVX_081330
PVX_081330
Ehime University


X12
PVX_122805
PVX_122805
Ehime University


V1
RBP1b (P7)
PVX_098582
WEHI


V2
RBP2a (P9)
PVX_121920
WEHI


V3
RBP2b (P25)
PVX_094255
WEHI


V4
RBP2cNB (M5)
PVX_090325
WEHI


V12
RBP1a (P5)
PVX_098585
WEHI


V5
RBP2-P2 (P55)
PVX_101590
WEHI


V11
PvEBP
KMZ83376.1
IPP


V10
Pv DBPII (AH)
AAY34130.1
IPP


V13
Pv DBPII (SaII)
PVX_110810
IPP


V6
PvDBP R3-5
PVX_110810
WEHI


V7
PvGAMA
PVX_088910
WEHI


V8
PvRipr
PVX_095055
WEHI


V9
PvCYRPA
PVX_090240
WEHI









List of Protein Sequences (Insert aa Sequence)










X1:



ENPVRHSVDIKSEDFVVLISLQNLQTFIMIGYTAVNKDHLNFDFSYLWALCIGTGLFIYSL





ISFVLIRSLALSKIDIGKYVLELLFSLSIIATCSLSIIIDSFKIANMQLLFFSFALTGYAYYNL





MSLFFFCTLVGMTIQYNLSFTGFRAHSTSFFFLDMLSYLVQMIGGNILYFRMYELCTLIVI





SKRNPCKYVVASKEVKQVEKQIFSSLENSYMCIKSKTYSDLTCTNDLLNKDSQSVVGRD





TNPKWNSPIGTSYQDKVNHTKKLLLRRGKRDKRYPKGGGGARLTCAKHSAYHNSRSL





ANCASKNTPICTTNFRISNTLSLKNHFNPNLTLEASPPVCKKCVSEKNSHKDNEYKNGEE





RKKAKRGIKSGTANKSNQLGNHGGDATQVANPTYRTTSHGGDATQVAYPTYRTTSHG





GDATQVDSPTHPTTSHGGNNSSSGHPQDDEVLIPIRGTNATNDAAATYNSNASWIKTAA





VIDVSVEGKQKKGGHQTFAGNPVNSSANFPSDKKPSYNSHRNGGTPPPNEQLRYYACPC





YQTHSSGSSLSEVPSGQTTKRKNSAHNSVEGGNPKMDNQQSRRVSNKRVDGATGEEHD





HPSDPPADNPNGNSNTYHC





X2


ELSHSLSVKNAPDASALNIEVEKDKKKICKNAFQYINVAELLSPREEETYVQKCEEVLDT





IKNDSPDESAEAEINEFILSLLHARSKYTIINDSDEEVLSKLLRSINGSISEEAALKRAKQLI





TFNRFIKDKAKVKNVQEMLVISSKADDFMNEPKQKMLQKIIDSFELYNDYLVILGSNINI





AKRYSSETFLSIKNEKFCSDHIHLCQKFYEQSIIYYRLKVIFDNLVTYVDQNSKHFKKEKL





LELLNMDYRVNRESKVHENYVLEDETVIPTMTITDIYDQDRLIVEVVQDGNSKLMHGR





DIEKREISERYIVTVKNLRKDLNDEGLYADLMKTVKNYVLSITQIDNDISNLVRELDHED





VEK





X3


LPWTKKRKAVNQMGIIKDMSQELRTKAEQLPTPEDISAKIHRVDKEVIDKLNKDIIEEEN





LDKHKPHVCQEPAYERDYSYLCPEDWVKNSNDQCWGIDYDGHCEALKYFQDYSVEEK





KEFEMNCCVLWPKLKNEGMKGAHKKDLLRGSISSNNGLIIKPKYL





X4


ELKKNNAALTSQRSSSRTTSTRSYKNAPKNSTSFLSRLSILIFALSCAIFVNTASGAAANR





PNANGFVSPTLIGFGELSIQESEEFKRMAWNNWMLRLESDWKHFNDSVEEAKTKWLHE





RDSAWSDWLRLQSKWSHYSEKMLKEHKSNVMEKSANWNDTQWGNWIKTEGRKILE





AQWEKWIKKGDDQLQKLILDKWVQWKNDKIRSWLSSEWKTEEDYYWANVERATTAK





WLQEAEKMHWLKWKERINRESEQWVNWVQMKESVYINVEWKKWPKWKNDKKILFN





KWSTNLVYKWTLKKQWNVWIKEANTAPQV





X5


KGVTLSCVFSHASEEREGGTGTFALSNEPIYYAPSGGLAPCALISRGLSGDEEGSGEDGG





EDGDGDGGEDSAEDNAEDGDDDGGEDGGLPGGRFPYEEGKKSSLVSDAPSDLLDGDA





DEHAAEDGGAKRKMSKKEEEAEDNKIDKLVNAEMKKLEAGEEANKDPDAEPEKEDQG





SGQGQRAKLRCSNKLNYIQVTANGQREGDLFGENDGESAPAFVEIPHEVEEESGGVPTK





HDEAGEAAAAEEPHNRVDRAEKENNAKDLKFVEGERERQRSSPPSNGYSQNSFVELKG





VPDKLPPNFTNSLGSSPTHSNLEKPVYKHLPWSILASDSGSNTGSWADVNSSTYNVSPFS





FTSIRSGNSLHLLPMNFQIQNSIVKVTDEEYDKLKLKNSVKVYDKNALVDYKYEIFEVKE





GEEYNDGNDPYEERNGEEGDAGGEGGSDGEGDADSKSYQNNKSDGRGFFDGTLVTYTI





IILAGVIILLLSFVIYYYDIINKVKRRMSAKRKNNKSMAIANDTSAGMYMGDTYMENPH





V





X6


SQGCSGYRLPPPKRWFTFTSRPYCKTAAYYELKHMPYYVDAVSASENVKHEKWNNWL





KEMKISLTEKLEKESQEYMEKLEQQWDEFMKNSEDKWRHYNPQMEEEYQCSVYPLGL





KWDDEKWTAWFYEKGLWCLKKSFKTWLTDSKKGYNTYMKNLLQEFGKQFYEDWCR





RPEKRREDKICKRWGQKGLRNDNYYSLKWMQWRNWKNRNHDQKHVWVTLMKDAL





KEYTGPEFKLWTEFRKEKIDFYKQWMQAFAEQWTQDKQWNTWTEERNEYMKKKKEE





EAKKKAASKKKAASKKGGAAKKAPAKKAPTKKAAPGTKAPAKKAAPKKVAAPNAA





X7


KEAVKKGSKKAMKQPMHKPNLLEEEDFEEKESFSDDEMNGFMEESMDASKLDAKKAK





TTLRSSEKKKTPTSGMSGMSGSGATSAATEAATNMNATAMNAAAKGNSEASKKQTDL





SNEDLFNDELTEEVIADSYEEGGNVGSEEAESLTNAFDDKLLDQGVNENTLLNDNMIYN





VNMVPHKKRELYISPHKHTSAASSKNGKHHAADADALDKKLRAHELLELENGEGSNSV





IVETEEVDVDLNGGKSSGSVSFLSSVVFLLIGLLCFTN





X8


NLSNDCKKGANNSFKLIVHTSDDILTLKWKVTGEGAAPGNKADVKKYKLPTLERPFTSV





QVHSANAKSKIIESKFYDIGSGMPAQCSAIATNCFLSGSLEIEHCYHCTLLEKKLAQDSEC





FKYVSSEAKELIEKDTPIKAQEEDANSADHKLIESIDVILKAVYKSDKDEEKKELITPEEV





DENLKKELANYCTLLKEVDTSGTLNNHQMANEEETFRNLTRLLRMHSEENVVTLQDKL





RNAAICIKHIDKWILNKRGLTLPEEGYPSEGYPPEEYPPEELLKEIEKEKSALNDEAFAKD





TNGVIHLDKPPNEMKFKSPYFKKSKYCNNEYCDRWKDKTSCMSNIEVEEQGDCGLCWI





FASKLHLETIRCMRGYGHFRSSALFVANCSKRKPEDRCNVGSNPTEFLQIVKDTGFLPLE





SDLPYSYSDAGNSCPNKRNKWTNLWGDTKLLYHKRPNQFAQLGYVSYESSRFEHSID





LFIDILKREIQNKGSVIIYIKTNNVIDYDFNGRVVHSLCGHKDADHAANLIGYGNYISAGG





EKRSYWIVRNSWGYYWGDEGNFKVDMYGPEGCKRNFIHTAVVFKIDLGIVEVPKKDEG





SIYSYFVQYVPNFLHSLFYVSYGKGADKGAAVVTGQAGGAVVTGQTETPTPEAAKNGD





QPGAQGSEAEVAEGGQAGNEAPGGLQESAVSSQTSEVTPQSSITAPQIGAVAPQIGAAAP





QIDVAAPQIDVVAPQTRSVDAPQTSSVAAHPPNVTPQNVTLGEGQHAGGVGSLIPADN





X9


ETLLDSETLKNYEKETNEYIRKKKVEKLFDVILKNVLVNKPENVYLYIYKNIYSFLLNKIF





VIGPPLLKITPTLCSAIASCFSYYHLSASHMIESYTTGEVDDAAESSTSKKLVSDDLICSIV





KSNINQLNAKQKRGYVVEGFPGTNLQADSCLRHLPSYVFVLYADEEYIYDKYEQENNV





KIRSDMNSQTFDENTQLFEVAEFNTNPLKDEVKVYLRN





X10


YPKKNFDKPDPTSPYQGQYGESEEQRQGYGIPPNPTMINLTGNQDQRPNVLQQFGINNK





NVMQFLINMFVYVAAILVSLKIWDYMSYSKCDYYKDLLLRIVRYQSHMNDGKMA





X11


SRIDKQPIQSSYLFQDNAVPPVRFSAVDADLFSIGVVHTEEQIFMDDANWVISSVPSKYL





NLHLLKTGSRPHFSHFSVSMNTGCNLFIASPVGETFPLSPSKDGATWKAFETDDSVEVIH





RETKEKRIYKLKFIPLKSGALLKVDVLKGIPFWVISQGRKILPTICSGDEEVLSNPQNEVF





KECTSSSSLSPEFDCLAGLSTYHRDKKNHTWKTSSGSIGQFIKIFFNKPVQITKFRFKPRD





DLLSWPSEVALQFDTDEEVIIPILHTHNMGQNTTRLEHPIITTSVKVEVRDMYERASENT





GGSFEVIGSTCQMMEDDYMTHHAVIDITECDRRLESLPDVMPLTKGSKFLAICPRPCLSS





SNGGVIYGSDVYSTDSAVCGAAVHAGVCSREGEGSCHFLVVVRGGRANFVGALQNNV





LSLSRGGGGSGSGSSTSSDGDGDSDSSTSRANFSFSLSSASGFGGGPRGAHAEAAPSSYSI





VFKPRDHLAPTNGFLVDSGREFTSYGSVAYGWKREVSPSSSFSSPSPSYTSPPLEEPTLLR





GDSSSFNGIYSGGIEFPPASASQNCISQLDCQTNFWKFQMQENGTYFVQVLVGNKTSPEK





QKAFVELNGVPIIKGVDLGPDEVFNATDRVQVTNRALVLTSTCLGGESACSRARVSIMA





VQIVKT





X12


NGMNKDKDAEITPPPFIVLPGGKKIHMLQSEYEYDVLRDMYRTDEANGGSGEKESHPSG





DGAIRRNEFFKLFHHREGHYKFVIKNVPTKLSDLLQKGGNEQETDLFPLLYRSLQFACSA





DGTWPYARREVAFFKNGSVHCEAEFQNELSVRRTPRSGKKSFGRFPRGTLIKSSDLRSKI





VEGNSYDKRAAPLKSEKKKKALFLHPESVLYKMEEIFFYENPSVKSEIVGFVLFHDVCT





VTSLGHGAHPVNSPFLGSDLLEMIFGYCILHGFKKIRVKSESLNYETGIRTSFIEILLNGKT





ALEHLGLRLTNVAKFSKELYYVITGYTWKSDLVLSPIVRFEHDLYVHHDIEERFFLYVNK





MYRNMLHDLSFSCDENYYPYKNCYDIYPSVRRSQNNLCLFELNPIYEELKELFPDSCNIG





QRVRKCYEEIKKNVVCTHNGEGGEDGCKYYQFIVNTFIKPRRKTSFFIYHNMYVQEYLS





KKSYPYYLLLSEVIKNEENNFLEKGNYDLVADAQTHLFLNYVLQNSTFFIFWNFSTEFW





KRFRYIQAGPTGATSTPQKGQAVFCPMAYAYEFVEHLDTFYVRG





V6


SVEEAKKNTQEVVTNVDNAAKSQATNSNPISQPVDSSKAEKVPGDSTHGNVNSG





QDSSTTGKAVTGDGQNGNQTPAESDVQRSDIAESVSAKNVDPQKSVSKRSDDTASVTGI





AEAGKENLGASNSRPSESTVEANSPGDDTVNSASIPVVSGENPLVTPYNGLRHSKDNSDS





DGPAESMANPDSNSKGETGKGQDNDMAKATKDSSNSSDGTSSATGDTTDAVDREINKG





VPEDRDKTVGSKDGGGEDNSANKDAATVVGEDRIRENSAGGSTNDRSKNDTEKNGAS





TPDSKQSEDATALSKTESLESTESGDRTTNDTTNSLENKNGGKEKDLQKHDFKSNDTPN





EEPNSDQTTDAEGHDRDSIKNDKAERRKHMNKDTFTKNTNSHHLN





V7


IRNGNNPQALVPEKGADPSGGQNNRSGENQDTCEIQKMAEEMMEKMMKEKDV





FSSIMEPLQSKLTDDHLCSKMKYTNICLHEKDKTPLTFPCTSPQYEQLIHRFTYKKLCNS





KVAFSNVLLKSFIDKKNEENTFNTIIQNYKVLSTCIDDDLKDIYNASIELFSDIRTSVTEITE





KLWSKNMIEVLKTREQTIAGILCELRNGNNSPLVSNSFSYENFGILKVNYEGLLNQAYAA





FSDYYSYFPAFAISMLEKGGLVDRLVAIHESLTNYRTRNILKKINEKSKNEVLNNEEIMH





SLSSYKHHAGGTRGAFLQSRDVREVTQGDVSVDEKGDRATTAGGNQSASVAAAAPKD





AGPTVAAPNTAATLKTAASPNAAATNTAAPPNMGATSPLSNPLGTSSLQPKDVAVLV





RDLLKNTNIIKFENNEPTSQMDDEEIKKLIESSFFDLSDNTMLMRLLIKPQAAILLIIESFIM





MTPSPTRDAKTYCKKALVNGQLIETSDLNAATEEDDLINEFSSRYNLFYERLKLEEL





V8


KEYCDQLSFCDVGLTHHFDTYCKNDQYLFVHYTCEDLCKTCGPNSSCYGNKYK





HKCLCNSPFESKKNHSICEARGSCDAQVCGKNQICKMVDAKATCTCADKYQNVNGVC





LPEDKCDLLCPSNKSCLLENGKKICKCINGLTLQNGECVCSDSSQIEEGHLCVPKNKCKR





KEYQQLCTNEKEHCVYDEQTDIVRCDCVDHFKRNERGICIPVDYCKNVTCKENEICKVV





NNTPTCECKENLKRNSNNECVFNNMCLVNKGNCPIDSECIYHEKKRHQCLCHKKGLVA





INGKCVMQDMCRSDQNKCSENSICVNQVNKEPLCICLFNYVKSRSGDSPEGGQTCVVD





NPCLAHNGGCSPNEVCTFKNGKVSCACGENYRPRGKDSPTGQAVKRGEATKRGDAGQ





PGQAHSANENACLPKTSEADQTFTFQYNDDAAIILGSCGIIQFVQKSDQVIWKINSNNHF





YIFNYDYPSEGQLSAQVVNKQESSILYLKKTHAGKVFYADFELGHQGCSYGNMFLYAH





REEA





V9


SKNIIILNDEITTIKSPIHCITDIYFLFRNELYKTCIQHVIKGRTEIHVLVQKKINSAW





ETQTTLFKDHNWFELPSVFNFIHNDEIIIVICRYKQRSKREGTICKRWNSVTGTIYQKEDV





QIDKEAFANKNLESYQSVPLTVKNKKFLLICGILSYEYKTANKDNFISCVASEDKGRTWG





TKILINYEELQKGVPYFYLRPIIFGDEFGFYFYSRISTNNTARGGNYMTCTLDVTNEGKKE





YKFKCKHVSLIKPDKSLQNVAKLNGYYITSYVKKDNFNECYLYYTEQNAIVVKPKVQN





DDLNGCYGGSFVKLDESKALFIYSTGYGVQNIHTLYYTRYD






List of Polynucleotide Sequence (Insert bp Sequence)









X1


GAGAACCCCCGTGAGGCACTCGGTGGACATAAAGTCGGAAGACTTCGTCG





TCCTGATTTCGCTCCAAAACCTGCAGACCTTCATCATGATAGGGTACACA





GCCGTGAACAAAGACCACCTGAATTTCGACTTCTCCTACTTATGGGCCCT





CTGCATCGGGACGGGCCTCTTCATATACTCCCTCATCAGCTTTGTACTCA





TAAGATCCCTAGCACTGTCAAAAATAGACATAGGCAAATACGTCCTGGAG





CTGCTATTCAGTTTGAGTATAATCGCCACATGTTCACTCTCCATAATAAT





TGACTCTTTCAAAATAGCCAACATGCAGTTGCTTTTTTTTTCGTTCGCTT





TAACGGGCTATGCCTACTACAATTTGATGAGCCTCTTCTTTTTCTGCACA





CTGGTAGGAATGACCATTCAGTACAATTTAAGTTTCACTGGGTTCAGAGC





GCATTCGACTTCTTTCTTCTTTTTAGATATGCTATCTTACCTAGTGCAAA





TGATAGGAGGGAACATCCTCTACTTTCGCATGTACGAGCTGTGTACCCTA





ATCGTCATTTCGAAGAGGAACCCCTGCAAGTATGTTGTCGCATCGAAGGA





AGTGAAACAAGTGGAGAAGCAAATTTTCTCTTCTTTATTTAATTCTTACA





TGTGCATCAAGTCCAAAACTTATTCAGATTTAACCTGCACTAATGATCTG





TTAAATAAAGACAGTCAATCTGTTGTCGGTAGGGATACGAACCCTAAGTG





GAACTCCCCCATTGGTACTTcCTACCAGGATAAGGTCAATCATACGAAGA





AGTTACTCCTTCGGAGGGGAAAACGGGACAAACGCTACCCCAAAGGGGGA





GGGGGAGCTCGACTAACATGTGCAAAACATAGTGCCTACCATAATAGCCG





AAGTCTTGCCAACTGTGCCAGTAAGAATACCCCCATTTGCACAACTAACT





TTAGGATATCTAACACCCTTTCACTTAAAAATCATTTCAACCCTAACCTA





ACCTTAGAAGCGTCTCCCCCCGTTTGTAAAAAATGCGTTTCGGAAAAGAA





TAGCCATAAGGATAATGAGTACAAAAACGGGGAAGAGAGAAAAAAAGCAA





AACGTGGTATCAAGTCGGGCACTGCAAACAAGTCTAACCAGTTGGGCAAC





CACGGGGGGGACGCTACGCAGGTGGCTAATCCTACCTACAGAACTACTTC





CCACGGGGGGGACGCAACCCAGGTGGCTTATCCTACCTACAGAACTACTT





CCCACGGGGGGGACGCAACGCAGGTGGATAGTCCTACCCACCCAACTACC





TCCCATGGGGGGAACAACTCGTCGAGCGGGCACCCCCAAGACGACGAAGT





GCTCATCCCCATTAGGGGAACCAACGCCACTAACGATGCAGCCGCCACCT





ACAACTCGAACGCTAGTTGGATCAAAACCGCTGCGGTTATTGACGTGTCT





GTGGAGGGGAAGCAGAAAAAGGGGGGACATCAAACGTTCGCGGGCAATCC





CGTAAATTCATCCGCTAATTTCCCATCGGACAAGAAACCTTCCTACAACT





CGCACCGCAACGGAGGTACTCCCCCCCCAAATGAACAACTCAGGTACTAC





GCCTGCCCCTGCTACCAGACCCACTCCAGCGGATCGTCCCTCAGTGAGGT





GCCCTCGGGACAAACGACGAAGCGGAAAAATAGTGCGCACAACTCGGTTG





AAGGGGGAAACCCCAAAATGGATAATCAGCAAAGTCGCCGCGTGAGTAAC





AAGCGGGTAGATGGCGCAACGGGTGAGGAACATGACCACCCAAGTGACCC





CCCCGCAGATAACCCAAATGGAAACTCCAACACCTACCACTGC





X2


GAGCTGAGCCACAGCTTGTCCGTGAAGAACGCGCCGGACGCGAGCGCGCT





GAACATCGAGGTGGAGAAGGACAAAAAGAAGATCTGCAAAAACGCATTCC





AATACATAAACGTAGCTGAGCTGTTTGTCCCCAAGGGAGGAAGAAACCTA





CGTGCAGAAATGTGAAGAGGTCCTAGACACAATAAAGAATGACAGTCCAG





ATGAATCGGCAGAAGCAGATAAACGAATTTATACTGAGCTTACTGCACGC





TCGTTCTAAGTATACCATAATAAATGACTCAGATGAGGAGGTACTGAGCA





AGCTCCTGAGGAGTATCAACGGATCGATAAGTGAAGAGGCAGCGTTGAAG





AGAGCCAAACAGCTAATCACATTCAATCGGTTTATAAAAGACAAAGCGAA





GGTAAAAAATGTGCAAGAGATGCTAGTAATAAGTAGCAAAGCAGATCACT





TCATGAATGAGCCGAAGCAAAAAATGCTCCAAAAAATTATAGATTCGTTT





GAACTGTATAATGATTACCTAGTCATTTTAGGGTCAAATATTAACATCGC





CAAGAGGTACTCCTCAGAAACGTTTCTTTCTATTAAAAATGAAAAGTTCT





GCTCAGACCACATCCACTTATGCCAGAAGTTCTACGAGCAGTCTATCATT





TACTACAGATTGAAGGTTATTTTTGATAACCTGGTGACTTATGTAGATCA





AAATTCCAAGCATTTTAAAAAGGAAAAGTTGCTGGAGCTTCTAAATATGG





ATTATAGGGTCAATCGAGAGTCGAAGGTGCATGAAAATTACGTGCTGGAG





GATGAGACGGTCATCCCCACGATGCGCATTACAGACATTTACGATCAAGA





TAGGCTAATTGTTGAGGTCGTTCAGGATGGAAATAGCAAGCTGATGCACG





GCAGGGATATTGAGAAGAGGGAAATCAGCGAGAGGTACATCGTCACCGTG





AAGAACCTGCGCAAGGACCTCAACGACGAGGGGCTCTACGCCGACTTGAT





GAAGACCGTCAAGAACTACGTGCTCTCCATCACGCAGATCGACAACGACA





TTTCCAACCTCGTGCGCGAGCTCGACCACGAGGATGTGGAGAAG





X3


CTACCATGGACGAAGAAAAGAAAGGCGGTGAACCAAATGGGCATCATAAA





AGATATGTCGCAGGAGCTTAGGACTAAGGCCGAACAGCTTCCAACCCCCG





AGGATATATCAGCCAAAATTCACAGAGTAGATAAAGAGGTCATCGATAAG





TTAAACAAAGACATCATAGAGGAAGAAAATTTAGACAAGCACAAACCGCA





CGTCTGCCAGGAGCCAGCATACGAGAGGGACTATTCGTACCTATGTCCCG





AAGACTGGGTGAAGAACTCCAACGATCAGTGCTGGGGCATAGACTACGAT





GGTCACTGTGAAGCGCTAAAATATTTTCCAAGATTATTCTGTAGAGGAGA





AAAAAGAATTTGAAATGAACTGCTGCGTCTTGTGGCCTAAGCTAAAAAAT





GAAGGCATGAAAGGAGCGCACAAGAAGGACCTCCTAAGGGGATCGATAAG





TTCAAACAATGGGTTAATAATAAAGCCGAAATATTTG





X4


GAATTGAAGAAGAACAATGCCGCGTTGACCTCACAAAGGTCATCTTCTAG





AACCACATCCACAAGGAGCTACAAAAATGCCCCAAAAAATTCCACTTCAT





TCCTTTCTCGTTTATCTATTCTGATATTTGCCTTATCATGTGCTATTTTT





GTAAATACTGCATCAGGGGCGGCAGCTAATAGACCAAACGCGAATGGCTT





CTGTGTCACCTACTTTAATAGGATTTGGCGAATTAAGCATCCAAGAATCA





GAAGAATTCAAAAGAATGGCTTGGAATAATTGGATGTTGCGATTGGAGTC





CGACTGGAAACATTTTAACGATTCTGTTGAAGAAGCCAAAACCAAATGGC





TTCATGAAAGAGACTCAGCTTGGTCTGATTGGCTTCGTTCCTTGCAAAGT





AAATGGTCTCACTATAGTGAAAAAATGCTTAAAGAACACAAAAGTAATGT





TATGGAAAAATCAGCCAACTGGAATGACACGCAATGGGGAAATTGGATAA





AAACTGAAGGAAGAAAAATTCTAGAAGCGCAATGGGAAAAATGGATTAAA





AAAGGTGATGACCAATTACAAAAGTTAATTTTAGATAAATGGGTTCAATG





GAAAAATGATAAGATCCGATCCTGGTTATCCAGTGAATGGAAAACCGAAG





AAGATTACTACTGGGCAAATGTAGAGCGCGCTACAACAGCAAAATGGTTG





CAAGAAGCAGAGAAAATGCATTGGCTTAAATGGAAAGAAAGAATTAACAG





AGAGTCTGAACAATGGGTGAACTGGGTCCAAATGAAAGAAAGCGTTTACA





TCAATGTAGAATGGAAAAAATGGCCCAAATGGAAAAATGATAAAAAAATT





CTATTTAACAAATGGTCAACTAACCTTGTCTACAAATGGACACTGAAAAA





GCAGTGGAACGTTTGGATTAAGGAAGCAAATACTGCACCCCAAGTT





X5


AAGGGTGTCACCTTGAGTTGCGTTTTTTCCCATGCGAGTGAGGAACGTGA





GGGTGGCACAGGGACATTTGCTTTGAGCAATGAGCCGATTTATTACGCCC





CTAGTGGGGGGCTGGCGCCGTGCGCGCTCATCAGCAGAGGGTTAAGCGGG





GATGAGGAGGGTAGCGGCGAGGACGGCGGTGAAGATGGCGACGGAGATGG





TGGTGAAGACAGCGCTGAGGACAACGCTGAGGATGGAGACGATGATGGTG





GCGAAGATGGCGGCTTGCCCGGGGGACGCTTCCCATACGAAGAAGGAAAA





AAGAGTAGCCTTGTGAGCGACGCACCCAGCGACCTCCTGGATGGAGATGC





GGATGAACATGCCGCCGAAGATGGGGGAGCGAAGCGAAAGATGAGTAAGA





AGGAGGAAGAGGCGGAGGATAACAAAATTGACAAGTTGGTAAATGCGGAA





ATGAAAAAGCTCGAGGCAGGGGAAGAGGCGAACAAGGATCCCGACGCAGA





ACCAGAAAAAGAGGACCAGGGAAGTGGCCAAGGACAAAGGGCGAAGCTGA





GGTGCTCAAACAAGCTAAATTACATACAGGTGACGGCGAATGGCCAAAGG





GAGGGCGACCTCTTTGGCGAGAACGACGGGGAGAGCGCCCCAGCTTTCGT





GGAGATACCCCACGAGGTTGAGGAGGAAAGCGGCGGTGTGCCCACAAAGC





ATGACGAAGCGGGGGAAGCAGCTGCGGCGGAGGAACCACATAACCGCGTC





GACCGAGCGGAAAAAGAAAACAACGCGAAGGACTTAAAATTTGTGGAGGG





GGAGCGAGAAAGACAAAGGAGCAGCCCCCCCTCGAATGGATATTCCCAAA





ACAGCTTTGTCGAACTGAAAGGTGTGCCCGATAAATTGCCCCCTAATTTA





CCAACTCGCTTGGTAGCTCCCCAACGCACAGTAATTTGGAGAAACCAGTT





TATAAGCACTTACCCTGGTCTATCCTGGCATCCGACTCTGGTTCGAACAC





CGGGTCCTGGGCAGACGTCAACAGTAGTACCTACAATGTGAGTCCATTCA





GTTTCACCTCAATACGTAGTGGTAACTCTCTGCATCTACTGCCGATGAAT





TTCCAAATCCAAAACTCCATCGTGAAAGTAACTGATGAGGAGTATGACAA





ATTGAAGCTTAAAAACAGCGTCAAAGTGTATGACAAAAATGCCCTGGTAG





ATTATAAGTATGAAATTTTTGAGGTGAAGGAAGGGGAGGAATATAATGAT





GGGAATGACCCTTATGAGGAAAGGAATGGGGAAGAAGGGGATGCAGGTGG





AGAGGGGGGTTCCGATGGGGAGGGAGATGCAGATTCTAAATCATATCAAA





ATAACAAATCGGATGGACGTGGGTTCTTCGATGGGACCTTAGTAACCTAC





ACCATTATCATTTTAGCTGGTGTTATAATTCTGCTGCTAAGTTTTGTCAT





TTATTACTACGATATAATAAATAAGGTGAAGAGGCGAATGAGTGCCAAGC





GGAAGAACAACAAATCTATGGCCATCGCGAATGATACATCCGCGGGGATG





TACATGGGCGACACCTACATGGAGAATCCCCACGTT





X6


TCACAAGGATGTTCAGGATACCGTTTACCACCACCAAAAAGATGGTTTAC





CTTCACTTCTCGACCATACTGTAAAACAGCTGCATATTATGAACTTAAAC





ATATGCCATATTATGTAGATGCAGTTAGTGCATCAGAAAACGTAAAACAT





GAGAAATGGAATAACTGGTTAAAAGAAATGAAAATATCATTAACTGAAAA





ATTAGAAAAAGAATCACAAGAATATATGGAAAAATTGGAACAGCAATGGG





ATGAATTMTGAAAAATTCAGAAGATAAATGGAGGCTATTATAATCCCCAA





ATGGAAGAAGAATATCAATGTAGTGTTTATCCACTTGGATTAAAATGGGA





TGATGAAAAGTGGACTGCATGGTTTTATGAAAAAGGATTATGGTGTTTGA





AGAAAACTCTTTAAAACATGGCTCACTGATTCTAAAAAAGGTTACAACAC





CTACATGAAAAATCTTTTACAGGAATTTGGTAAACAATTTTATGAAGATT





GGTGTCGTAGACCTGAAAAACGTCGTGAAGATAAAATTTGCAAGAGATGG





GGACAAAAAGGATTACGTAATGACAATTACTATTCGTTAAAGTGGATGCA





GTGGAGAAATTGGAAAAACAGAAACCACGATCAAAAACATGTGTGGGTAA





CTCTTATGAAGGATGCGCTAAAGGAATATACGGGGCCCGAATTCAAATTA





TGGACTGAGTTTAGAAAAGAAAAGATAGACTTTTACAAGCAATGGATGCA





AGCTTTCGCCGAACAGTGGACACAAGACAAACAATGGAATACGTGGACTG





AAGAAAGAAATGAATATATGAAAAAGAAAAAAGAAGAAGAAGCAAAAAAA





AAAGCAGCATCAAAAAAAAAAGCAGCATCAAAAAAAGGAGGAGCAGCAAA





AAAGGCACCAGCAAAAAAGGCACCAACAAAAAAAGCCGCACCAGGAACAA





AGGCACCAGCAAAAAAAGCAGCACCTAAAAAAGTTGCAGCACCAAATGCA





GCA





X7


AAGGAGGCAGTGAAGAAGGGGTCCAAGAAGGCAATGAAGCAGCCCATGCA





CAAGCCGAACCTTCTTGAAGAGGAAGACTTTGAGGAGAAAGAATCCTTTT





CGGATGACGAGATGAATGGGTTCATGGAGGAGAGCATGGATGCTTCTAAG





TTGGATGCGAAGAAGGCCAAGACGACCCTCAGGAGCTCGGAGAAGAAGAA





GACTCCAACGAGCGGAATGAGTGGAATGAGTGGAAGCGGCGCCACCAGCG





CAGCCACCGAGGCAGCCACGAACATGAACGCCACCGCCATGAACGCCGCT





GCTAAGGGCAACAGCGAGGCGAGCAAAAAGCAAACCGACTTGTCCAACGA





AGACCTGTTCAACGACGAGCTCACAGAAGAGGTCATTGCAGATTCGTACG





AAGAGGGAGGAAACGTGGGAAGCGAGGAAGCCGAAAGCCTCACAAATGCA





TTTGACGACAAGCTACTAGACCAAGGAGTGAATGAAAATACTCTGCTGAA





CGACAACATGATTTACAACGTCAATATGGTTCCACATAAGAAGCGAGAAT





TATACATCTCCCCACACAAGCATACCTCTGCAGCAAGCAGTAAAAATGGC





AAACATCATGCGGCGGACGCGGACGCTTTGGACAAAAAACTGAGGGCTCA





CGAGCTGCTCGAGCTGGAAAACGGAGAAGGCAGCAACTCAGTCATTGTCG





AAACGGAAGAAGTGGATGTTGACCTAAACGGAGGAAAGTCAAGCGGCTCC





GTGTCCTTCCTCAGCTCCGTAGTCTTCTTGCTCATCGGATTGTTATGTTT





CACCAAT





X8


AACCTGAGCAACGATTGCAAAAAAGGAGCCAACAACAGCTTTAAGTTAAT





CGTGCACACCAGCGATGATATTTTGACACTCAAGTGGAAGGTCACTGGGG





AAGGGGCAGCTCCAGGCAACAAAGCAGATGTAAAGAAGTACAAACTCCCT





ACCCTAGAGAGGCCTTTCACTTCCGTGCAAGTGCATTCAGCCAACGCCAA





GTCGAAGATAATCGAAAGCAAATTTTACGACATTGGCAGCGGCATGCCAG





CCCAGTGCAGCGCGATCGCCACGAACTGCTTCCTCAGCGGCAGCCTCGAA





ATCGAGCACTGCTACCACTGCACCCTGTTGGAGAAGAAGCTGGCCCAAGA





CAGCGAGTGCTTCAAGTACGTCTCGAGTGAAGCGAAGGAGTTGATCGAGA





AAGACACGCCGATTAAAGCTCAAGAAGAAGACGCCAACTCTGCAGACCAC





AAACTGATCGAGTCCATAGACGTGATACTAAAGGCAGTGTACAAATCAGA





TAAAGATGAGGAAAAGAAGGAGCTCATCACCCCGGAGGAAGTGGACGAAA





ATTTGAAGAAAGAGCTAGCCAATTATTGTACCCTACTGAAGGAGGTAGAC





ACAAGTGGCACTCTTAACAACCACCAGATGGCAAACGAAGAGGAAACGTT





CAGAAATTTGACTCGACTGTTGCGAATGCATAGCGAAGAAAACGTGGTGA





CCCTTCAGGACAAACTGAGAAACGCAGCCATATGCATCAAGCACATCGAC





AAGTGGATTCTTAACAAGAGGGGGTTGACCCTACCGGAAGAAGGGTACCC





ATCGGAAGGGTACCCCCCAGAAGAGTACCCCCCGGAGGAACTCCTCAAAG





AAATCGAGAAGGAAAAAAGCGCTCTGAATGATGAAGCGTTCGCTAAAGAT





ACCAACGGAGTCATCCACCTGGATAAGCCTCCCAACGAAATGAAATTTAA





ATCCCCCTATTTTAAAAAGAGCAAATACTGTAACAATGAGTACTGTGATA





GGTGGAAAGATAAAACGAGTTGCATGTCAAATATAGAAGTGGAAGAGCAA





GGGGATTGCGGGCTCTGTTGGATTTTCGCCTCTAAGTTACACTTAGAAAC





GATCAGGTGCATGAGAGGGTATGGCCACTTCCGCAGCTCCGCTCTGTTTG





TGGCCAACTGCTCGAAGAGGAAGCCAGAAGATAGATGCAACGTGGGTTCT





AACCCTACAGAGTTTCTTCAAATTGTTAAGGACACGGGATTTTTACCTCT





AGAGTCCGATCTCCCCTACAGCTATAGCGACGCGGGGAACTCCTGCCCCA





ATAAAAGAAACAAGTGGACCAACCTGTGGGGGGATACCAAACTGCTGTAT





CATAAGAGACCCAATCAGTTTGCACAAACACTCGGGTACGTTTCCTACGA





AAGCAGTCGCTTTGAGCACAGCATCGACCTCTTCATAGACATCCTCAAAA





GGGAAATTCAAAACAAAGGCTCCGTTATCATTTACATAAAAACCAACAAT





GTCATCGATTATGACTTTAATGGAAGAGTCGTCCACAGCCTATGTGGCCA





TAAGGATGCAGATCATGCCGCTAACCTGATCGGTTATGGTAACTACATCA





GTGCTGGTGGGGAGAAGAGGTCCTATTGGATTGTGCGAAACAGCTGGGGG





TACTACTGGGGAGATGAAGGCAACTTTAAGGTTGACATGTACGGCCCGGA





GGGATGCAAACGGAACTTCATCCACACGGCTGTTGTGTTTAAGATAGACC





TGGGCATCGTCGAAGTCCCGAAGAAGGACGAGGGGTCCATTTATAGCTAC





TTCGTTCAGTACGTCCCCAACTTTTTGCACAGCCTTTTCTACGTGAGTTA





CGGTAAGGGTGCTGATAAGGGAGCGGCGGTGGTGACAGGGCAGGCGGGAG





GAGCGGTAGTCACAGGACAGACTGAAACGCCCACTCCGGAGGCCGCTAAA





AATGGGGATCAGCCAGGAGCACAGGGTAGCGAGGCAGAAGTCGCGGAGGG





TGGCCAGGCAGGAAATGAAGCCCCGGGAGGGTTGCAAGAGAGTGCTGTTT





CGTCGCAAACGAGTGAGGTTACGCCGCAATCTAGTATAACTGCTCCGCAA





ATCGGTGCAGTTGCCCCACAAATCGGTGCAGCTGCCCCACAAATCGATGT





AGCCGCCCCACAAATCGATGTAGTCGCCCCACAAACGAGGTCCGTTGACG





CCCCCCAAACGAGCTCGGTTGCCGCCCACCCCCCAAACGTGACGCCGCAG





AACGTGACGCTTGGGGAGGGCCAGCACGCGGGGGGTGTAGGCTCCCTCAT





CCCCGCGGACAAC





X9


GAAACCCTGCTAGACAGCGAAACGTTAAAGAACTACGAAAAGGAAACGAA





CGAATACATTCGCAAAAAAAAAGTGGAGAAACTGTTCGATGTTATTTTAA





AAAATGTTCTGGTAAACAAACCGGAAAATGTATACCTGTACATATACAAG





AACATTTATTCCTTCCTTTTGAACAAAATTTTTGTGATCGGCCCTCCTTT





GCTGAAAATTACTCCCACCTTATGTTCTGCGATTGCCAGCTGCTTTAGCT





ACTACCACCTCAGCGCCTCGCACATGATCGAGTCTTACACTACTGGTGAA





GTAGATGACGCTGCAGAGAGTTCCACAAGCAAAAAGTTAGTCAGTGACGA





CTTAATCTGCTCCATCGTTAAAAGCAACATAAACCAGCTGAACGCGAAGC





AAAAGCGGGGGTATGTAGTCGAAGGGTTCCCCGGCACCAATCTTCAGGCA





GACAGTTGCCTACGGCATTTGCCATCTTACGTTTTTGTCCTGTACGCCGA





CGAAGAGTACATTTATGACAAGTACGAACAAGAGAACAACGTAAAAATTC





GTTCAGACATGAACAGCCAAACTTTTGATGAAAACACACAGTTGTTCGAA





GTGGCCGAGTTCAACACGAATCCGCTGAAGGATGAGGTAAAGGTCTACTT





AAGGAAC





X10


TATCCAAAAAAGAACTCGACAAACCCGACCCAACTTCCCCATACCAAGGA





CAATATGGAGAGTCTGAGGAACAAAGACAAGGTTATGGAATCCCCCCCAA





CCCAACCATGATTAACCTTACTGGTAACCAAGACCAACGACCAAATGTAT





TGCAACAATTTGGAATAAACAACAAAAATGTAATGCAGTTTTTAATAAAC





ATGTTTGTGTACGTTGCTGCTATATTAGTTAGTTTAAAAATATGGGACTA





CATGTCTTACAGCAAATGTGATTATTACAAAGATTTATTATTAAGAATTG





TAAGATACCAATCACACATGAATGATGGTAAGATGGCC





X11


AGCCGCATCGACAAGCAGCCCATCCAGAGCAGCTACCTCTTCCAGGATAA





CGCAGTCCCGCCTGTTCGATTCTCCGCAGTAGATGCAGACCTGTTTTCCA





TTGGAGTAGTTCACACAGAGGAGCAAATATTTATGGACGACGCCAACTGG





GTGATTAGCAGCGTGCCCAGTAAGTACCTGAACTTGCATCTACTCAAAAC





GGGTTCTAGACCCCATTTTTCGCACTTCTCCGTATCTATGAACACGGGTT





GCAACCTATTCCATCGCTTCCACCGGTGGGGGAAACCTTCCCCTTGAGTC





CCTCCAAAGATGGAGCGACGTGGAAAGCATTTGAAACGGACGACAGTGTA





GAGGTGATTCACAGAGAGACGAAGGAAAAGAGAATCTATAAGCTCAAGTT





CATTCCTCTGAAGAGTGGGGCTCTCCTAAAGGTTGACGTTTTGAAGGGAA





TTCCCTTTTGGGTTATCTCACAAGGGAGGAAAATCCTACCAACGATTTGT





TCTGGAGATGAGGAGGTGCTATCAAACCCACAGAATGAGGTCTTCAAAGA





GTGCACATCGTCGAGTAGTCTCTCTCCCGAATTTGATTGTCTAGCCGGGC





TGAGCACCTACCATAGGGATAAGAAGAACCACACGTGGAAAACCTTCTAG





CGGATCTATAGGTCAGTTTATAAAGATCTTCTTCAATAAGCCCGTACAAA





TTACCAAGTTTAGGTTTAAGCCCAGAGACGACCTGCTGTCTTGGCCCTCC





GAAGTAGCTCTCCAATTCGATACCGATGAGGAGGTGATCATACCAATTCT





GCATACGCACAATATGGGGCAGAACACGACTAGGCTAGAACACCCAATCA





TCACCACCTCTGTTAAGGTAGAAGTGAGAGACATGTACGAACGGGCAAGT





GAAAATACAGGAGGTTCTTTCGAGGTAATTGGAAGCACATGCCAGATGAT





GGAAGACGACTACATGACGCACCATGCTGTTATAGACATCACCGAGTGTG





ATCGTAGGTTGGAGTCCCTCCCAGATGTTATGCCCTTAACGAAGGGGAGC





AAATTTCTGGCCATTTGTCCCCGCCCCTGCTTGAGCAGCTCCAATGGGGG





AGTCATTTACGGGTCAGATGTTTATTCCACAGATTCTGCCGTATGTGGGG





CGGCCGTACACGCGGGGGTGTGCAGCCGTGAGGGGGAGGGCAGCTGCCAC





TTCCTCGTTGTGGTGCGCGGCGGGCGGGCCAACTTCGTGGGGGCTCTCCA





GAACAACGTCCTGTCTCTCAGTCGGGGTGGTGGCGGTAGCGGTAGCGGTA





GCTCCACCAGTAGCGATGGCGATGGCGATAGCGATAGCTCCACCAGTAGG





GCCAACTTCTCATTTTCCCTCTCCAGTGCGTCAGGGTTCGGGGGGGGTCC





GCGCGGGGCCCACGCAGAAGCCGCGCCAAGCAGCTACTCCATTGTGTTCA





AGCCGAGGGACCATTTGGCTCCAACGAACGGCTTTCTAGTAGACTCAGGG





AGAGAGTTCACCAGCTACGGAAGCGTTGCCTACGGATGGAAGAGGGAGGT





TTCTCCTTCGTCCTTCTTTTTCCTCTCCTTCTCCTAGCTACACTTCCCCC





CCGTTGGAAGAACCGACGCTGCTTAGGGGGGACTCCTCCTCATTCAATGG





GATTTACTCCGGGGGGATAGAATTCCCCCCCGCCTCGGCTAGCCAAAATT





GCATTTCCCAACTGGATTGCCAGACCAACyrCTGGAAGTTTCAGATGCAA





GAAAATGGCACCTACTTTGTGCAGGTGCTAGTGGGGAATAAAACTTCCCC





TGAGAAGCAGAAGGCCTTCGTCGAGCTGAATGGCGTTCCCATCATAAAGG





GGGTGGACCTTGGCCCAGACGAGGTCTTCGTCGCCACTGACCGCGTGCAG





GTGACGAACCGGGCCCTCGTCCTCACGTCCACTTGCCTGGGCGGCGAGAG





TGCCTGCTCGCGGGCGCGCGTCAGCATCATGGCGGTCCAGATTGTGAAGA





CG





X12


AACGGTATGAATAAAGACAAAGACGCAGAGATTACTCCCCCTCCGTTCAT





CGTCTTGCCGGGTGGAAAAAAAATCCACATGCTGCAAAGCGAATACGAGT





ATGACGTTCTGCGGGATATGTACCGAACGGATGAGGCGAATGGGGGAAGT





GGTGAGAAGGAGAGTCACCCCTCTGGGGATGGTGCAATCAGAAGAAACGA





ATTTTTTAAACTTTTTTCACCACAGGGAGGGTCATTATAAGTTTGTTATC





AAAAATGTTCCCACCAAATTGAGCGACCTTTTGCAGAAAGGTGGCAACGA





ACAGGAGACAGACCTAVTTCCTCTTTTATACAGGAGTCTGCAATTCGCAT





GCAGCGCAGACGGGACGTGGCCATATGCCAGAAGAGAGGTGGCCTTTTTT





AAAAACGGGAGCGTCCACTGCGAAGCGGAATTTCAAAACGAGTTATCAGT





GAGGAGAACCCCCCGAAGTGGGAAGAAATCATTTGGACGTTTTCCAAGGG





GGACACTAATAAAAAGTAGCGACCTGAGGAGCAAAATTGTGGAGGGGAAT





TCTTATGATAAAAGGGCCGCACCCCTGAAGAGTGAAAAAAAAAAGAAGGC





TCTCTTTTTACACCCAGAAAGTGTGCTATACAAAATGGAAGAAATATTTT





TTTATGAAAATCCAAGTGTCAAAAGTGAAATTGTCGCATTTTGTTCTTTT





TCATGATGTTGTCTCACAGTAACGTCCTTAGGACATGGAGCACATCCCGT





TAACTCCCCCTTTTTGGGAAGCGACCTGCTGGAGATGATATTTGGCTACT





GCATTTTACACGGGTTTAAAAAAATCAGAGTGAAAAGCGAATCCTTAAAT





TACGAAACTGGGATAAGGACCTCATTCATTGAGATTTTACTCAACGGAAA





AACAGCACTTGAACATTTAGGGTTAAGACTTACAAACGTAGCGAAGTTTT





CTAAAGAACTGTATTATGTAATCACTGGGTATACGTGGAAAAGTGATTTG





GTGCTATCACCCATAGTAAGGTTTGAACATGATTTATACGTGCATCACGA





CATAGAGGAGCGATTTTTCCTTTACGTGAATAAAATGTATAGGAATATGC





TCCACGATTTC1TCCTTCTCTTGTGATGAAAATTATTATCCTTATAAAAA





TTGTTATGACATCTACCCCTCCGTGAGAAGGAGTCAAAATAATCTTTGTC





TCTTCGAACTGAATCCCATATATGAAGAATTGAAGGAGCTCTTTCCAGAC





TCTTGTAATATTGGCCAACGCGTTAGAAAATGCTATGAGGAGATAAAAAA





AAACGTTGTCTGCACACATAACGGTGAAGGAGGAGAAGACGGATGTAAGT





ACTACCAATTTATTGTAAATACATTCATAAAGCCGAGGAGGAAAACGTCG





TTTTTTTVTTTTVTCACAATATGTATGTACAGGAATATCTTTCAAAGAAA





TCCTACCCCTATTACTTGCTACTCAGTGAGGTTATAAAAAATGAAGAAAA





TAACTTTCTCGAAAAAGGCAACTACGACTTAGTGGCCGATGCACAGACGC





ACCTCTTCTTAAATTACGTTTTGCAAAATTCTACCTTTTTTATCTTTTGG





AATTTCTCTACCGAATELTGGAAAAGGTTTCGGTACATCCAGGCTGGCCC





AACCGGGGCCACTTCCACACCGCAGAAGGGGCAAGCTGTGTTTTGCCCCA





TGGCCTATGCGTACGAATTTGTGGAGCACCTCGACACGTTTTATGTGAGG





GGG





V6


TCCGTTGAAGAGGCTAAAAAAAATACTCAGGAAGTTGTGACAAATGTGGA





CAATGCTGCTCTAAATCTTCAGGCCACCAATTCAAATCCGATAAGTCACT





CCTGTAGATAGTAGTAAAGCGGAGAAGGTTCCAGGAGATTCTACGCATGG





AAATGTTAACAGTGGCCAAGATAGTTCTACCACAGGTAAAGCTGTTACGG





GGGATGGTCAAAATGGAAATCAGACACCTGCAGAAAGCGATGTACAGCGA





AGTGATATTGCCGAAAGTGTAAGTGCTAAAAATGTTGATCCGCAGAAATC





TGTAAGTAAAAGAAGTGACGACACTGCAAGCGTTACAGGTATTGCCGAAG





CTGGAAAGGAAAACTTAGGCGCATCAAATAGTCGACCTTCTGAGTCCACC





GTTGAAGCAAATAGCCCAGGTGATGATACTGTGAACAGTGCATCTATACC





TGTAGTGAGTGGTGAAAACCCATTGGTAACCCCCTATAATGGTTTGAGGC





ATTCGAAAGACAATAGTGATAGCGATGGACCTGCGGAATCAATGGCGAAT





CCTGATTCAAATAGTAAAGGTGAGACGGGAAAGGGGCAAGATAATGATAT





GGCGAAGGCTACTAAAGATAGTAMAATAGTTCAGATGGTACCAGCTCTGC





TACGGGTGATACTACTGATGCAGTTGATAGGGAAATTAATAAAGGTGTTC





CTGAGGATAGGGATAAAACTGTAGGAAGTAAAGATGGAGGGGGGGAAGAT





AACTCTGCAAATAAGGATGCAGCGACTGTAGTTGGTGAGGATAGAATTCG





TGAGAACAGCGCTGGTGGTAGCACTAATGATAGATCAAAAAATGACACGG





AAAAGAACGGGGCCTCTACCCCTGACAGTAAACAAAGTGAGGATGCAACT





GCGCTAAGTAAAACCGAAAGTTTAGAATCAACAGAAAGTGGAGATAGAAC





TACTAATGATACAACTAACAGTTTAGAAAATAAAAATGGAGGAAAAGAAA





AGGATTTACAAAAGCATGATTTTAAAAGTAATGATACGCCGAATGAAGAA





CCAAATTCTGATCAAACTACAGATGCAGAAGGACATGACAGGGATAGCAT





CAAAAATGATAAAGCAGAAAGGAGAAAGCATATGAATAAAGATACTTTTA





CGAAAAATACAAATAGTCACCATTTAAAT





V7


ATACGGAATGGAAACAACCCGCAGGCATTAGTTCCTGAAAAGGGCGCTGA





CCCGAGTGGGGGCCAGAACAACCGCTCCGGAGAAAACCAAGACACGTGCG





AAATTCAAAAGATGGCCGAAGAAATGATGGAAAAAATGATGAAGGAAAAA





GACGTGTTTAGCTCCATCATGGAACCTCTCCAGAGCAAATTAACTGACGA





TCATCTGTGTTCAAAAATGAAATATACGAACATTTGTCTTCACGAAAAGG





ACAAAACTCCCTTGACCTTCCCCTGCACAAGTCCGCAGTACGAACAGCTA





ATTCATCGCTTCACTTATAAAAAGTTGTGCAACTCCAAGGTGGCCTTTAG





CAACGTCTTGCTCAAATCCTTCATCGATAAAAAAAATGAAGAAAACACAT





TTAACACGATCATACAGAATTACAAAGTTCTGTCCACTTGCATTGACGAT





GATTTGAAGGACATTTATAATGCATCCATAGAGTTATTCTCCGACATAAG





AACCTCCCTTCACAGAAATTACCGAAAAGTTGTGGTCCAAAAATATGATC





GAAGTTTTAAAGACAAGAGAGCAAACATTGCAGGCATTTTATGTGAGTTA





AGAAATGGAAATAATTCTCCCCTAGTATCGAACAGTTTTTCCTATGAAAA





TTTTGGAATTCTCAAGGTTAATTATGAGGGATTACTAAACCAGGCGTATG





CGGCCTTTTCAGACTACTATTCATACTTTCCCGCTTTTGCCATTAGCATG





TTAGAAAAGGGAGGGTTGGTCGACCGCTTGGTCGCCATCCATGAGAGCTT





GACCAACTACAGGACGAGAAATATTCTCAAGAAGATCAATGAGAAGTCCA





AAAATGAGGTCCTCAATAATGAAGAAATTATGCACAGCTTGAGCAGTTAC





AAGCACCATGCCGGGGGCACGCGTGGCGCCTTCCTGCAGTCCAGAGATGT





GCGCGAAGTTACGCAAGGAGATGTGAGCGTTGATGAGAAGGGCGACCGGG





CCACCACCGCGGGGGGCAACCAAAGCGCAAGCGTGGCTGCGGCGGCCCCG





AAGGATGCGGGCCCAACCGTGGCTGCTCCTAACACTGCTGCTACGCTCAA





AACGGCTGCTTCCCCCAACGCGGCTGCTACTAACACTGCTGCTCCCCCCA





ACATGGGTGCCACCTCCCCGCTGAGCAACCCCCTGTACGGCACCAGCTCC





CTGCAGCCAAAGGACGTCGCGGTGCTGGTCAGAGATCTGCTCAAGAACAC





GAACATCATCAAGTTCGAGAATAACGAACCGACTAGCCAAATGGACGATG





AAGAAATTAAGAAGCTCATTGAGAGCTCCTTTTTCGACTTGAGCGACAAC





ACCATGTTAATGCGGTTGCTCATAAAGCCGCAGGCGGCCATCTTACTAAT





CATTGAGTCCTTCATTATGATGACGCCCTCCCCCACGAGGGACGCCAAGA





CCTATTGCAAGAAAGCCCTAGTTAATGGCCAGCTAATCGAAACCTCAGAT





TTAAACGCGGCGACGGAGGAAGACGACCTCATAAACGAGTTTTCCAGCAG





GTACAATTTATTCTACGAGAGGCTCAAGCTGGAGGAGTTG





V8


AAGGAGTACTGCGACCAGCTTAGCTTTTGCGATGTGGaTTGACACACCAC





TVTGATACGTAVTGTAAGAATGACCAGTACCTGTTCGTTCACTACACTTG





TGAGGACCTCTGCAAAACGTGTGGCCCTAATTCGTCCTGCTACGGAAACA





AGTACAAACATAAGTGCCTGTGCAATAGCCCCTTCGAGAGTAAAAAGAAC





CATTCCATTTGCGAAGCACGAGGTAGCTGCGATGCACAGGTATGCGGCAA





GAATCAAATTTGCAAAATGGTAGACGCTAAAGCAACATGCACATGTGCAG





ATAAATACCAAAATGTGAATGGGGTGTGTCTACCGGAAGATAAGTGCGAC





CTTCTGTGCCCCTCAAACAAATCGTGCCTGCTGGAAAATGGGAAAAAAAT





ATGCAAGTGCATTAATGGGTTGACTCTACAGAACGGCGAGTGCGTCTGCT





CGGATAGCAGCCAAATTGAAGAAGGACACCTCTGTGTCGCCCAAGAATAA





ATGTAAACGGAAGGAGTACCAACAGCTCTGCACCAATGAGAAGGAACACT





GTGTGTATGATGAGCAGACGGACATTGTGCGGTGCGACTGCGTGGACCAC





TTCAAGCGGAACGAACGGGGAATTTGCATCCCAGTCGACTACTGCAAAAA





TGTCACCTGCAAGGAAAATGAGATTTGCAAAGTTGTTAATAATACACCCA





CATGTGAGTGTAAAGAAAATTTAAAAAGAAATACTTAACAATGAATGTGT





ATTCAATAACATCTGTGTCTTGTTAATAAAGGGAACTGCCCCATTGATTC





GGAGTGCATTTATCACGAGAAAAAAAGGCATCAGTGTTTGTGCCATAAGA





AGGGCCTCGTCGCCATTAATGGCAAGTGCGTCATGCAGGACATGTGCAGG





AGCGATCAGAACAAATGCTCCGAAAATTCCATTTGTGTAAATCAAGTGAA





TAAAGAACCGCTGTGCATATGTTTGTTTAATTATGTGAAGAGTCGGTCGG





GCGACTCGCCCGAGGGTGGACAGACGTGCGTGGTGGACAATCCCTGCCTC





GCGCACAACGGGGGCTGCTCGCCAAACGAGGTTTGCACGTTCAAAAATGG





AAAGGTAAGTTGCGCCTGCGGGGAGAACTACCGCCCCAGGGGGAAGGACA





GCCCAACGGGACAAGCGGTCAAACGGGGGGAAGCGACCAAACGGGGTGAC





GCGGGTCAGCCCGGGCAGGCGCACTCAGCAAATGAGAACGCGTGCCTGCC





CAAGACGTCCGAGGCGGACCAAACCTTCACCTTCCAGTACAACGACGACG





CGGCCATCATTCTCGGGTCCTGCGGAATTATACAGTTTGTGCAAAAGAGC





GATCAGGTCATTTGGAAAATTAACAGCAACAATCACTTTTACATTTTTAA





TTATGACTATCCATCTGAGGGTCAGCTGTCGGCACAAGTCGTGAACAAGC





AGGAGAGCAGCATTTTGTACTTAAAGAAAACCCACGCGGGGAAAGTCTTT





TACGCCGACTTTGAGTTGGGTCATCAGGGATGCTCCTACGGAAACATGTT





TCTCTACGCCCACCGGGAGGAGGCT





V9


AGCAAAAACATTATTATTCTGAACGATGAAATTACCACCATTAAAAGCCC





GATTCATTGCATTACCGATATTTATTTTCTGTTTCGCAACGAACTGTATA





AAACCTGCATTCAGCATGTGATTAAAGGCCGCACCGAAATTCATGTGCTG





GTGCAGAAAAAAATTAACAGCGCGTGGGAAACCCAGACCACCCTGTTTAA





AGATCATATGTGGTTTGAACTGCCGAGCGTGTTTAACTTTATTCATAACG





ATGAAATTATTATTGTGATTTGCCGCTATAAACAGCGCAGCAAACGCGAA





GGCACCATTTGCAAACGCTGGAACAGCGTGACCGGCACCATTTATCAGAA





AGAAGATGTGCAGATTGATAAAGAAGCCTTTTGCGAACAAAAACCTGGAA





AGCTATCAGAGCGTGCCGCTGACCGTGAAAAACAAAAAATTTCTGCTGAT





TTGCGGCATTCTGAGCTATGAATATAAAACCGCGAACAAAGATAACTTTA





TTAGCTGCGTGGCGAGCGAAGATAAAGGCCGCACCTGGGGCACCAAAATT





CTGATTAACTATGAAGAACTGCAGAAAGGCGTGCCGTATTTTTATCTGCG





CCCGATTATTTTTGGCGATGAATTTGGCTTTTATTTTTATAGCCGCATTA





GCACCAACAACACCGCGCGCGGCGGCAACTATATGACCTGCACCCTGGAT





GTGACCAACGAAGGCAAAAAAGAATATAAATTTAAATGCAAACATTTGAG





CCTGATTAAACCGGATAAAAGCCTGCAGAACGTGGCGAAACTGAACGGCT





ATTATATTACCAGCTATGTGAAAAAAGATAACTTTAACGAATGCTATCTG





TATTATACCGAACAGAACGCGArrGTGGTGAAACCGAAAGTGCAGAACGA





TGATCTGAACGGCTGCTATGGCGGCAGCTTTGTGAAACTGGATGAAAGCA





AAGCGCTGTTTATTTATAGCACCGGCTATGGCGTGCAGAACATTCATACC





CTGTATTATACCCGCTATGAT













TABLE 6







references associated with proteins










Protein
5′ position
amino acid



Code
to 3′ (bp)
position
reference





X1
 (4-1845)

Lu J Proteomics 2014


X2
(67-1161)

Lu J Proteomics 2014


X3
(70-555) 

Lu J Proteomics 2014


X4
(4-948)

Lu J Proteomics 2014


X5
(73-1659)

Lu J Proteomics 2014


X6
(73-1074)

Lu J Proteomics 2014


X7
(1384-2190) 

Lu J Proteomics 2014


X8
(559-2871) 

Lu J Proteomics 2014


X9
(4-660)

Lu J Proteomics 2014


X10
(4-342)

Lu J Proteomics 2014


X11
(1264-3261) 

Lu J Proteomics 2014


X12
(1957-3702) 

Lu J Proteomics 2014


V1

140 to 1275
Hietanen 2015 Infection and





Immunity PMID: 26712206


V2

160 to 1135
Hietanen 2015 Infection and





Immunity PMID: 26712206


V3

161 to 1454
Hietanen 2015 Infection and





Immunity PMID: 26712206


V4

501 to 1300
Hietanen 2015 Infection and





Immunity PMID: 26712206


V12

160 to 1170
Hietanen 2015 Infection and





Immunity PMID: 26712206


V5

161-641
Franca 2017 Elife PMID:





28949293


V11

Region II
Franca 2017 Elife PMID:





28949293


V10

Region II


V13

Region II


V6
(1522-2697) 


V7
(29-551) 


V8
(552-1075) 


V9
(30-366) 









Appendix IIIA



















Area Under Curve (1 antigen)
Top 1% of 2 antigen combis
Top 1% of 3 antigen combis
Top 1% of 4 antigen combis
(<9m GMT)/(12m GMT)
(<9m GMT)/(-ve control GMT)


























Thailand
Brazil
Solomons
Thailand
Brazil
Solomons
Thailand
Brazil
Solomons
Thailand
Brazil
Solomons
Thailand
Brazil
Solomons
Thailand
Brazil
Solomons





RBP2a

text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed



L01

text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed


text missing or illegible when filed



L31
0.805
0.762
0.766
0
0
0
2.6
2.6
2.3
5
2.7
3.7
3.9
3.05
2.56
8.62
12.32
5.1


X087885
0.807
0.748
0.697
5.9
0
0
16.7
4.7
7
20.3
9.2
14.6
4.28
1.79
1.2
9.82
34.44
15.93


PvEBP
0.747
0.739
0.707
0
0
0
1.8
1.8
1.8
5
2.4
3.1
6.53
5.18
2.01
21.12
8.91
2.61


L55
0.79
0.781
0.643
5.9
5.9
0
14.6
12.3
1.5
17.2
20.9
2.6
4.94
4.42
1.95
7.9
7.91
1.19


PvRipr
0.754
0.772
0.646
0
0
5.9
1.8
5.6
2
3
9.1
3.1
5.01
4.32
2.57
7.02
7.89
1.07


L54
0.79
0.727
0.654
5.9
0
0
3.5
2.6
1.8
5.6
4.4
3.1
4.4
2.98
1.88
5.39
3.82
1.3


L07
0.747
0.765
0.599
0
0
0
2.3
4.7
1.8
3.1
5.3
2.5
2.56
3.11
1.45
4.3
6.29
1.35


L30
0.732
0.61
0.609
0
0
0
1.2
2.3
2.9
2.3
3.8
5.4
4.14
1.53
1.55
13.36
2.24
1.79


PVDBPII
0.74
0.773
0.639
0
0
5.9
0.6
3.2
3.2
1.7
2.6
4
2.76
4.89
1.79
5.14
15.42
1.34


L34
0.767
0.746
0.67
0
0
0
3.8
7.3
0.6
4.5
16.6
2.2
3.22
2.99
1.84
3.87
4.78
1.46


X092995
0.792
0.703
0.642
5.9
0
0
13.7
1.5
2
11.5
1.9
5.6
2.88
1.41
1.03
4.64
8.55
4.19


L12
0.755
0.731
0.637
5.9
0
0
3.2
3.8
1.8
3.5
6.1
2.9
3.19
2.73
1.46
3.81
3.47
1.8


rBP1b
0.533
0.578
0.525
5.9
5.9
0
17.5
4.1
1.2
24.1
4.7
2.5
1.23
1.44
1.11
0.67
0.79
0.84


L23
0.759
0.753
0.text missing or illegible when filed
0
0
0
1.5
7
1.2
4
14.8
2.9
2.95
2.67
1.86
4.3
5.09
1.59


L02
0.746
0.724
0.677
0
0
0
1.5
2.3
2.3
2.7
3.7
3.9
3.7
3
1.76
3.89
4.07
1.82


L32
0.705
0.651
0.text missing or illegible when filed
0
0
5.9
1.8
1.2
17
3.7
1.9
30.2
2.79
3.17
1.61
2.24
0.81
0.31


L28
0.759
0.755
0.667
5.9
0
0
2.6
1.2
1.2
3.8
2.5
2.6
2.92
2.44
1.43
5.74
5.24
2.14


L19
0.758
0.67
0.654
0
0
0
1.5
0.9
3.2
2.6
2.3
6.5
3.66
2.18
1.09
6.58
3.11
4.89


L36
0.727
0.698
0.682
0
0
0
1.5
0.9
2
3.2
1.8
2.8
2.95
2.44
1.99
3.28
3.2
1.8


L41
0.702
0.66
0.686
0
0
0
1.5
0.6
2
2.3
1.7
3.8
2.12
1.91
1.72
4.99
3.03
1.9


X088820
0.723
0.666
0.633
5.9
0
0
4.4
0.6
3.8
4
1.8
6.7
1.9
1.28
0.99
4.04
8.58
5.87


PvDBP.Sa
0.716
0.751
0.616
0
0
5.9
0.3
2.6
8.8
1.7
2.6
7.2
3.01
4.78
1.85
3.96
12.35
0.83


RBP2a
0.692
0.731
0.662
0
0
0
3.5
1.2
0.9
5.4
1.8
1.6
2.42
2.49
1.47
2.46
4.6
1.5


L18
0.736
0.663
0.622
0
0
0
2.3
2
2.3
3.1
4.5
3.8
2.22
1.41
0.93
2.53
2.33
4.31


RBP2cNB
0.744
0.7
0.551
0
0
5.9
1.5
1.2
11.1
3.6
1.9
6.6
3.02
2.3
1.57
3.87
3.23
0.64


L27
0.735
0.663
0.585
0
0
5.9
2.9
1.5
2
4.5
2.4
2.7
2.34
2.24
1.66
1.67
1.2
0.63


L42
0.697
0.632
0.593
0
0
0
1.5
0.9
2
2.9
1.8
3
2.81
1.91
1.85
4.44
2.89
1.19


L14
0.701
0.637
0.581
0
0
0
3.5
1.2
1.5
4.1
2
3.1
1.94
1.51
1.33
2.85
2.23
1.07


X099930
0.71
0.63
0.573
5.9
0
0
3.8
0.9
1.5
4.1
1.7
2.5
1.75
1.27
0.94
2.85
3.15
2.07


PvDBP.R3
0.685
0.67
0.554
0
0
5.9
2
1.2
2.6
4.1
3
2.7
2.51
2.19
1.73
2.57
3.11
0.51


L22
0.725
0.622
0.562
0
5.9
0
2.3
4.1
1.5
3
5.6
2.4
1.98
1.25
0.99
2.28
2.13
1.3


RBP1a
0.668
0.669
0.565
5.9
0
0
0
1.5
0.9
1.2
2.7
1.9
2.4
2.32
2.49
1.45
2.06
2.59


PvCYRPA
0.779
0.563
0.532
0
0
5.9
0.6
0.9
14
2
1.9
10.3
2.37
1.25
1.46
4.55
1.59
0.31


L10
0.719
0.588
0.553
0
5.9
0
1.2
6.1
1.2
2.4
9.3
2.3
2.14
1.31
1.04
3.61
1.39
1.43


L24
0.656
0.595
0.605
0
5.9
0
5.3
2.9
1.2
5.5
5.6
2.8
2.01
1.33
0.88
1.75
1.71
5.03


L21
0.653
0.597
0.602
0
0
0
1.5
1.8
1.8
3
2.6
4.1
2
1.55
0.93
1.47
1.35
3.08


L51
0.679
0.625
0.547
5.9
0
5.9
4.1
1.8
3.5
6.2
3.7
5.4
1.85
1.48
1.31
2.04
1.74
0.89


L25
0.67
0.593
0.58
0
5.9
0
0.9
2.5
0.9
2.1
6
2.8
1.61
1.14
0.96
2.04
1.76
2.05


L33
0.65
0.608
0.584
0
0
0
1.8
1.2
0.9
3.7
3.1
1.6
1.83
1.43
1.37
1.63
1.82
1.05


L20
0.674
0.619
0.544
0
0
0
1.5
1.2
1.5
2.7
2.1
2.9
1.71
1.31
1.23
2.2
2.08
0.82


X114330
0.666
0.594
0.577
0
0
0
1.5
1.2
1.5
2.2
2.6
3
1.44
1.15
1.03
2.35
2.2
1.78


L50
0.713
0.604
0.494
0
5.9
5.9
1.2
6.4
11.1
2.9
8.6
7.3
2.15
1.55
1.4
2.53
1.34
0.45


L06
0.686
0.583
0.54
0
0
0
1.5
1.8
1.2
2.5
3.1
2.3
1.91
1.33
0.92
2.23
1.41
1.57


L05
0.686
0.607
0.499
0
0
0
2
2.3
2
3.9
4.7
3.4
2.23
1.44
1.03
2.1
1.9
0.72


X080665
0.678
0.595
0.522
0
5.9
0
1.5
3.8
1.2
2.1
6.2
3.6
1.8
1.25
0.9
2.64
1.8
1.21


L39
0.673
0.56
0.537
5.9
0
0
4.1
1.2
1.5
4
2.4
2.8
1.64
1.12
0.96
2.96
1.57
1.5


X094350
0.641
0.602
0.516
0
0
0
1.5
2
1.8
2.7
3.2
4.2
1.47
1.3
0.96
1.79
1.7
1.15


L11
0.652
0.594
0.49
0
5.9
5.9
3.8
4.4
5
5.3
7.7
10.7
1.58
1.29
0.96
1.67
1.29
0.92


L38
0.64
0.543
0.552
0
5.9
0
1.2
5.3
1.5
3
6.3
2.6
1.59
1.2
1.19
1.18
1
0.89


L37
0.628
0.608
0.487
0
5.9
5.9
2.6
2
3.2
5.1
3.7
4.9
1.54
1.6
1.15
1.17
0.92
0.73


PvGAMA
0.646
0.57
0.495
0
0
5.9
2.3
1.2
6.7
5.3
2.5
6.5
1.64
1.49
1.32
1.45
0.74
0.53


L49
0.577
0.532
0.6
0
5.9
5.9
1.8
19.6
8.2
2.5
11.9
13.6
1.26
1.08
0.89
1.24
0.4
0.34


L47
0.641
0.513
0.539
0
5.9
5.9
0.9
5.8
4.7
1.9
6.8
4.8
1.52
1.29
1.21
1.73
0.51
0.38


L48
0.552
0.586
0.523
5.9
0
0
2.9
1.2
1.2
4.8
2.4
2.7
1.16
1.23
0.98
1.3
1.56
1.23


RBP2.P2
0.596
0.544
0.515
5.9
5.9
5.9
5
14.6
17
6.5
8.9
24.9
1.48
1.34
1.16
0.94
0.66
0.46


L03
0.579
0.503
0.566
5.9
5.9
0
2.6
2.3
2
3.8
4.1
4.4
1.59
1.14
0.93
0.82
0.8
0.51


L52
0.526
0.562
0.524
5.9
5.9
5.9
4.4
4.7
4.1
4.9
4.8
6.3
1.29
1.4
1.07
0.56
0.6
0.58


L40
0.564
0.55
0.495
0
0
0
1.8
1.5
1.2
3.3
2.7
3.2
1.23
1.01
0.91
1.08
1.79
1.09






text missing or illegible when filed indicates data missing or illegible when filed







Appendix IIIB

















(<9m) > (>12m GMT +
(<9m) > (-ve cont GMT +





2*ds(>12m)
2*sd(-ve ctext missing or illegible when filed )
age trend
age trend (P value)




















Thailand
Brazil
Solomons
Thailand
Brazil
Solomons
Thailand
Brazil
Solomons
Thailand
Brazil
Solomons






















RBP2a
34.7
19
47
70.8
64.4
45.7
1.02
0.63
1.06
0
0
0


L01
36.1
0
24.3
51.4
56.6
14.3
0.39
0.52
0.24
0
0
0.0043


L31
22.2
0
7.8
25
38
7.4
0.41
0.34
0.23
0
0
3.00E−04


X087885
15.3
7.8
5.7
41.7
81
50.9
0.53
0.13
−0.1
0
2.00E−04
0.0466


PvEBP
26.4
22.9
20
55.3
41
7.8
1.08
0.59
0.21
0
0
0


L55
27.8
17.1
13.9
38.9
29.8
3.5
0.48
0.46
0.44
0
0
0


PvRipr
25
15.1
23.5
31.9
29.3
4.8
0.55
0.42
0.2
0
0
0.0013


L54
23.6
16.1
14.3
26.4
19
2.2
0.48
0.33
0.24
0
0
0


L07
22.2
0
8.3
27.8
41.5
3.9
0.22
0.34
0.19
0
0
4.00E−04


L30
23.6
9.8
10.9
47.2
11.7
9.6
0.85
0.16
0.05
0
2.00E−04
0.4217


PVDBPII
15.3
19
10.4
20.8
47.3
3.5
0.4
0.63
0.1
0
0
0.076


L34
15.3
12.2
10.9
12.5
19
3.9
0.35
0.35
0.18
0
0
2.00E−04


X092995
12.5
3.4
1.7
15.3
34.1
10
0.33
0.09
−0.03
0
0.0034
0.4924


L12
23.6
12.7
5.2
16.7
15.1
3
0.36
0.22
−0.07
0
0
0.1928


rBP1b
2.8
4.4
4.3
0
0
0
−0.12
0.12
−0.06
0.001
1.00E−04
0.1077


L23
9.7
13.7
11.7
12.5
19.5
5.7
0.29
0.22
0.1
0
0
0.0824


L02
15.3
10.7
7.4
15.3
13.7
2.6
0.31
0.4
0.02
0
0
0.6554


L32
13.9
20.5
10
4.2
3.9
0.4
0.15
0.31
0.25
0.0016
0
1.00E−04


L28
18.1
12.7
8.3
45.8
33.2
9.1
0.46
0.32
0.26
0
0
0


L19
20.8
9.8
3.9
33.3
19.5
10.9
0.62
0.31
−0.14
0
0
0.0036


L36
18.1
14.6
11.3
36.1
22
10.4
0.63
0.36
0.3
0
0
0


L41
9.7
9.3
7.8
29.2
17.6
8.3
0.39
0.41
0.32
0
0
0


X088820
12.5
0
0
15.3
35.6
14.8
0.17
0.07
−0.02
0
0.0032
0.5905


PvDBP.Sa
18.1
16.6
11.3
16.7
36.6
1.3
0.39
0.61
0.18
0
0
0.0016


RBP2a
18.1
13.2
9.1
18.1
22.4
3.5
0.3
0.34
0.1
0
0
0.0144


L18
15.3
3.4
4.3
11.1
6.3
10.4
0.11
0.08
−0.17
0.0022
0.0106
1.00E−04


RBP2cNB
23.6
16.6
10
18.1
17.6
1.7
0.43
0.35
0.44
0
0
0


L27
15.3
13.2
10
0
0
0
0.1
0.3
0.15
0.0021
0
3.00E−04


L42
16.7
12.7
16.1
29.2
20
7
0.5
0.3
0.27
0
0
0


L14
12.5
3.9
5.2
9.7
5.9
1.3
0.05
0.18
0.02
0.1401
0
0.6094


X099930
5.6
6.8
1.7
8.3
17.6
6.1
0.06
0.02
−0.06
0.0734
0.4923
0.1513


PvDBP.R3
13.9
9.8
8.7
13.9
11.2
0.9
0.36
0.33
0.16
0
0
0.0047


L22
9.7
3.4
3
4.2
5.9
2.6
0.11
0.16
−0.08
0.0012
0
0.0611


RBP1a
18.1
16.1
10.4
8.3
18
1.3
0.36
0.44
0.12
0
0
0.0239


PvCYRPA
16.7
0
4.8
29.2
11.7
0
0.43
−0.02
0.15
0
0.6208
0.0046


L10
8.3
4.4
3
12.5
4.4
1.3
0.47
0.16
−0.17
0
0
3.00E−04


L24
9.7
6.8
3.9
4.2
7.3
7
0.12
0.14
−0.21
0.0069
3.00E−04
0


L21
8.3
6.3
3.5
2.8
6.3
6.1
0.04
0.13
−0.19
0.3593
4.00E−04
0


L51
4.2
3.9
4.8
2.8
3.9
2.6
0.25
0.22
0.31
0
0
0


L25
11.1
2.4
0.9
6.9
4.9
3.9
0.04
0.04
−0.15
0.3008
0.232
0.0025


L33
11.1
4.9
5.2
6.9
5.9
0.9
0.21
0.22
0.24
0
0
0


L20
9.7
0
4.3
0
0
0
0.01
0.11
0.02
0.7715
1.00E−04
0.7011


X114330
5.6
5.9
3
8.3
10.7
4.3
0.11
0.05
−0.09
4.00E−04
0.103
0.054


L50
11.1
5.4
6.5
5.6
4.4
0.9
0.13
0.27
0.2
6.00E−04
0
0


L06
6.9
4.4
1.7
2.8
3.4
0.4
−0.03
0.01
−0.35
0.4684
0.6901
0


L05
12.5
8.8
3.5
5.6
9.8
0.4
0.13
0.15
−0.11
0.0018
1.00E−04
0.0232


X080665
4.2
4.4
1.3
2.8
4.4
0.4
0.14
0.08
−0.09
7.00E−04
0.0263
0.0757


L39
6.9
3.9
3.5
6.9
4.4
3.5
0.04
0.07
−0.15
0.2562
0.053
0.0064


X094350
2.8
0
1.3
0
0
0
0.01
0.12
0.11
0.7336
0
0.0116


L11
6.9
3.4
2.6
1.4
2.4
0
0.16
0.1
−0.1
0
0.0027
0.0126


L38
6.9
3.4
3.9
0
0
0
−0.03
0.1
0.06
0.465
0.0011
0.0898


L37
2.8
4.9
3.9
0
2.4
1.3
−0.03
0.16
0.05
0.3436
0
0.2103


PvGAMA
9.7
6.8
9.1
6.9
2.9
0.9
0.19
0.14
0.05
0
0
0.1987


L49
9.7
3.9
3
0
0
0
−0.09
0
−0.21
0.0088
0.9079
2.00E−04


L47
12.5
4.4
5.2
5.6
1
0
0.02
0.15
−0.06
0.5816
0
0.3004


L48
0
0
3.5
0
0
0
−0.08
0
−0.14
0.0173
0.9939
0.0011


RBP2.P2
5.6
4.9
4.3
0
0
0
−0.01
0.13
−0.02
0.7196
0
0.5467


L03
2.8
0
3
1.4
4.4
0.4
−0.03
0.03
−0.16
0.4053
0.3609
2.00E−04


L52
1.4
5.9
3
0
0.5
0
−0.15
0.15
0.01
2.00E−04
0
0.8287


L40
9.7
0
0
0
0
0
−0.09
0.04
−0.15
0.0058
0.1846
0.0018






text missing or illegible when filed indicates data missing or illegible when filed







Any and all references to publications or other documents, including but not limited to, patents, patent applications, articles, webpages, books, etc., presented in the present application, are herein incorporated by reference in their entirety.


Example embodiments of the devices, systems and methods have been described herein. As noted elsewhere, these embodiments have been described for illustrative purposes only and are not limiting. Other embodiments are possible and are covered by the disclosure, which will be apparent from the teachings contained herein. Thus, the breadth and scope of the disclosure should not be limited by any of the above-described embodiments but should be defined only in accordance with claims supported by the present disclosure and their equivalents. Moreover, embodiments of the subject disclosure may include methods, systems and apparatuses which may further include any and all elements from any other disclosed methods, systems, and apparatuses, including any and all elements corresponding to target particle separation, focusing/concentration. In other words, elements from one or another disclosed embodiments may be interchangeable with elements from other disclosed embodiments. In addition, one or more features/elements of disclosed embodiments may be removed and still result in patentable subject matter (and thus, resulting in yet more embodiments of the subject disclosure). Correspondingly, some embodiments of the present disclosure may be patentably distinct from one and/or another reference by specifically lacking one or more elements/features. In other words, claims to certain embodiments may contain negative limitation to specifically exclude one or more elements/features resulting in embodiments which are patentably distinct from the prior art which include such features/elements.

Claims
  • 1. A diagnostic test for Plasmodium vivax or Plasmodium ovale, to determine a likelihood of a specific timing of infection by P. vivax or P. ovale in a subject by determining a level of antibodies to a plurality of antigens in a sample from the subject, wherein the level is measured of at least one antibody to a protein selected from the group consisting of PVX_099980 (L01), PVX_112670, PVX_087885, PVX_082650, PVX_088860, PVX_112680, PVX_112675, PVX_092990, PVX_091710, PVX_117385, PVX_098915, PVX_088820, PVX_117880, PVX_121897, PVX_125728, PVX_001000, PVX_084340, PVX_090330, PVX_125738, PVX_096995, PVX_097715, PVX_094830, PVX_101530, PVX_090970, PVX_084720, PVX_003770, PVX_112690, PVX_003555, PVX_094255, PVX_090265, PVX_099930, PVX_123685, PVX_002550, PVX_082700, PVX_097680, PVX_097625, PVX_082670, PVX_082735, PVX_082645, PVX_097720, PVX_000930, PVX_094350, PVX_000930, PVX_114330, PVX_088820, PVX_080665, PVX_092995, PVX_087885, PVX_003795, PVX_087110, PVX_087670, PVX_081330, PVX_122805, RBP1b (P7) , RBP2a (P9), RBP2b (P25) (PVX_094255), RBP2cNB (M5), RBP2-P2 (P55), PvDBP R3-5, PvGAMA, PvRipr, PvCYRPA, Pv DBPII (AH), PvEBP, RBP1a (P5) and Pv DBP (SacI).
  • 2. (canceled)
  • 3. The test of claim 1, wherein the protein is selected from the group consisting of: (a) PVX_099980 (L01), PVX_112670, PVX_087885, PVX_082650, PVX_088860, PVX_112680, PVX_112675, PVX_092990, PVX_091710, PVX_117385, PVX_098915, PVX_088820, PVX_117880, PVX_121897, PVX_125728, PVX_001000, PVX_084340, PVX_090330, PVX_125738, PVX_096995, PVX_097715, PVX_094830, PVX_101530, PVX_090970, PVX_084720, PVX_003770, PVX_112690, PVX_003555, PVX_094255, PVX_090265, PVX_099930 and PVX_123685;(b) PVX_099980, PVX_112670, PVX_087885, PVX_082650, PVX_096995, PVX_097715, PVX_094830, PVX_101530, PVX_090970, PVX_084720, PVX_003770, PVX_112690, PVX_003555, PVX_094255, PVX_090265, PVX_099930 and PVX_123685;(c) PVX_099980, PVX_112670, PVX_087885 and PVX_082650;(d) RBP2b (PVX_094255) and PVX_099980 (L01); and(e) PVX_099980 (L01), PVX_112670, PVX_087885, PVX_096995, PVX_097715, PVX_094255, PVX_097625, PVX_097720, PVX_000930, PVX_092995, PvDBP R3-5, PvRipr, and PvEBP.
  • 4. The test of claim 3, wherein the protein is selected from the group consisting of PVX_099980 (L01), PVX_112670, PVX_087885, PVX_096995, PVX_097715, PVX_094255, PVX_097625, PVX_097720, PVX_000930, PVX_092995, PvDBP R3-5, PvRipr, and PvEBP.
  • 5. (canceled)
  • 6. (canceled)
  • 7. (canceled)
  • 8. (canceled)
  • 9. (canceled)
  • 10. The test of claim 1, comprising determining a level of a plurality of antibodies that bind to a plurality of antigens in a blood sample taken from the subject.
  • 11. The test of claim 10, comprising determining a level of 2 to 17 antibodies.
  • 12. (canceled)
  • 13. The test of claim 1, wherein dynamics of the measured antibodies preferably include a combination of short-lived and long-lived antibodies.
  • 14. The test of claim 1, wherein the level of antibodies is measured at one time point, or at a plurality of time points.
  • 15. (canceled)
  • 16. The test of claim 1, wherein antibody levels are measured in the subject according to a technology providing a continuous measurement of antibody.
  • 17. The test of claim 16, wherein the technology is selected from the group consisting of bead-based assays (e.g. AlphaScreen® or Luminex® technology), the enzyme linked immuosorbent assay (ELISA), protein microarrays and the luminescence immunoprecipitation system (LIPS).
  • 18. An apparatus for diagnosis of P. vivax or P. ovale, comprising the diagnostic test of claim 1 and a reader for reading results of the diagnostic test, optionally adapted for portable use.
  • 19. (canceled)
  • 20. The apparatus of claim 18, further comprising a transmitter for transmitting said results.
  • 21. A system for diagnosis of P. vivax or P. ovale, comprising the apparatus of claim 18 and an analyser for analysing the results of the diagnostic test.
  • 22. A method for diagnosis of P. vivax or P. ovale, comprising performing the diagnostic test of claim 1 to thereby identify individuals with a high probability of being infected with liver-stage hypnozoites.
  • 23. The test of claim 1, wherein said specific timing relates to an infection occurring within an elapsed time period of 0 to 12 months.
  • 24. (canceled)
  • 25. The test of claim 23, wherein said time period is differentiated by month, by week, or by day.
  • 26. (canceled)
  • 27. (canceled)
  • 28. The test of claim 1, wherein a particular time period is determined as a binary decision of a more recent or an older infection, with each time point as a cut-off.
  • 29. The test of claim 28, wherein said cut off determines whether an infection in a subject was within the past 9 months or later than the past 9 months.
  • 30. (canceled)
  • 31. The test of claim 1, comprising further determining an estimate of the time since last P. vivax or P. ovale blood-stage infection according to the time since last PCR-detectable blood-stage parasitemia, or as the time since last infective mosquito bite.
  • 32. (canceled)
  • 33. The test of claim 31 method, test, apparatus or comprising determining a frequency of infections during a particular time period and/or time since last infection.
  • 34. The test of claim 1 for detecting a presymptomatic or asymptomatic infection by P. vivax or P. ovale.
  • 35. The test of claim 1 for detecting a dormant infection, wherein P. vivax or P. ovale is present in the liver but is not present at significant levels in the blood.
  • 36. The test of claim 1 for detecting antibodies to malarial proteins that are present in the blood that indicate a high degree of probability of liver-stage infection.
  • 37. The test of claim 1 for determining progression of infection by P. vivax or P. ovale in a population of a plurality of subjects.
  • 38. (canceled)
  • 39. The test of claim 1 for determining whether the infection is starting or whether the infection has reached a peak in terms of exposure of individuals who are naïve to the particular strain of P. vivax or P. ovale causing the infection.
  • 40. The test of claim 1 for measuring antibodies in the blood of the subject at a plurality of time points to determine decay in the level of each antibody in the blood; and fitting such decay to a suitable model to determine at least one infection parameter.
  • 41. (canceled)
  • 42. The test of claim 40, wherein decay in the level of a plurality of different antibodies is determined and the different antibodies are selected to have a range of different half-lives.
  • 43. The test of claim 40, wherein from two up to twenty different antibodies are measured.
  • 44. (canceled)
  • 45. The test of claim 1, wherein a model for determining at least one parameter about the infection in the subject is selected from the group consisting of linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), combined antibody dynamics (CAD), decision trees, random forests, boosted trees and modified decision trees.
  • 46. (canceled)
PCT Information
Filing Document Filing Date Country Kind
PCT/IB2017/001776 12/21/2017 WO 00
Provisional Applications (1)
Number Date Country
62438963 Dec 2016 US