1. Field of the Invention
This invention relates generally to the construction of concrete slabs. More particularly, the invention relates to an improved joint edge assembly that protects the joint edges, permits more accurate alignment of the joint edge assembly members, and allows the joint edges to both self-open and move laterally with respect to the opposite joint edge as the concrete shrinks during hardening.
2. Related Art
For logistical and technical reasons, concrete floor slabs are made up of a series of individual blocks. The interface where one block meets another is termed a joint. Freshly placed concrete shrinks considerably as it hardens as the chemical reaction between the cement and the water occurs, i.e., hydration. As the concrete shrinks, tensile stress accumulates in the concrete. Therefore, the joints should be free to open and thus allow shrinkage to occur without damaging the slab.
The joint openings, however, create discontinuities in the slab surface, which can cause the wheels of forklift trucks and other vehicles to impact the joint edges and chip small pieces of concrete from the edge of each slab, particularly if the joint edges are not aligned. This damage to the edges of slabs is commonly referred to as “joint spalling.” Joint spalling often interrupts the normal working operations of many facilities by slowing down forklift and other truck traffic, and/or causing damage to trucks and the carried products. Severe joint spalling and uneven joints can even cause loaded forklift trucks to be overturned and can be dangerous to employees. Moreover, joint spalling can be very expensive to repair.
For these reasons, it is advantageous to protect the joint edges against spalling with steel bars or angles. Commonly used details illustrating the use of hot rolled steel bars (or angles) are shown in the American Concrete Industry (ACI) technical manuals 302 and 360. However, the standard installation procedure for these steel bars or angles is both time-consuming and expensive. The conventional procedures typically includes the following steps: (1) a temporary edge form is erected; (2) the first bar (or angle) is attached to the edge form; (3) the first concrete slab is cast; (4) the form is removed; (5) the second bar (or angle) is tack welded to the first; (6) the second concrete slab is cast; and (7) the tack welds are removed by grinding. Importantly, the quality control of the tack welding and the timing of the tack weld grinding are critical to the joint performance. If a weld is not completely removed by grinding, or if grinding is not completed shortly after the second slab is cast, then the joint remains locked together and tensile stress accumulates in the slabs, which often leads to unacceptable slab cracking. Furthermore, if the joint edge members are not evenly aligned during the tack welding, a permanent slab discontinuity may result in the finished product, which may also lead to increased impact with the joint edges.
For at least the foregoing reasons, an improved joint edge assembly that protects the joint edges of the concrete slab, permits more accurate alignment of the joint edge assembly members, and allows the joint edges to both self-open and move laterally with respect to the opposite joint edge as the concrete shrinks during hardening would be desirable.
The invention is an improved joint edge assembly that protects the joint edges of concrete slabs, permits more accurate alignment of the joint edge assembly members, and allows the joint edges to both self-open and move laterally with respect to the opposite joint edge as the concrete shrinks during hardening. The apparatus comprises a longitudinal joint rail, made up of two elongated joint edge members. The elongated joint edge members are typically steel bar sections, but can be any similar suitable material. The sections are connected to one another along their length by a set of interference-type connectors. The connectors remain throughout the concrete pouring operation and include release elements that allow the joint edge members to release from each other under the force of the slabs shrinking during hardening, thus allowing the joint to open as well as move laterally with respect to the opposite joint edge. Moveover, the interference-type connectors ensure the flush, i.e., level, alignment of the elongated joint edge members. The joint rail may be either supported above the ground surface by permanent formwork seated on the ground surface, or by a mounting bracket attached to temporary formwork seated on the ground surface. A plurality of studs extends from the elongated joint edge members into the region where the slab is to be poured such that, upon hardening of the concrete slab, the studs are integrally cast within the body of the slab. One or more dowel aligners may be integrated into the form assembly to allow dowels to be accurately positioned within the adjacent slab sections. Alternatively, a base and sleeve may be used where a load plate is employed between adjacent slabs rather than dowels.
When the first of the adjacent slab sections is poured, the claimed form assembly restrains the wet concrete. Preferably, studs extending from the longitudinal joint rail become embedded in the concrete slab, providing a positive mechanical connection between the slab and the form assembly when the concrete hardens. Before pouring the adjacent slab, the dowels or load plates are placed, if desired, using the aligners that were cast into the first concrete slab. After pouring the adjacent slab, the studs extending from the longitudinal joint rail into the adjacent slab region become embedded in the adjacent concrete slab, providing a positive mechanical connection between the adjacent slab and the form assembly. As the chemical reaction between the cement and the water occurs, i.e., hydration, the concrete hardens and shrinks. As the slabs shrink away from one another, the self-release elements allow the elongated joint edge members to separate from one another as well as move laterally with respect to the opposite joint edge. If desired, the gap formed by the separated joint edge members may be filled with a sealant.
Preferred designs for a form assembly made in accordance with the claimed invention are shown in the drawings. In
In a preferred embodiment for use with temporary formwork, holes 410 (shown in
The mounting bracket 230 for the temporary formwork shown in
Also shown in
Ideally, the form assembly 200 shown in
To use the assembly, the factory assembled form assembly 200 is secured to the temporary formwork 235 in the field by any suitable means. The temporary formwork is aligned and fixed in position with stakes 236 or any other suitable member. As in any concrete slab construction, the alignment of the formwork is necessary to insure the desired finished product. One or more dowel aligners 242 (see
Once the form assembly 200 is properly secured and aligned, the first concrete slab 250 is poured. The studs 220 extending from the first joint edge member 202 become embedded in the wet concrete, and provide a positive mechanical connection between the concrete slab 250 and the joint edge member 202 when the concrete hardens. Once the concrete slab 250 has hardened sufficiently, the connectors 212 or 450 are removed followed by the stakes 236, the mounting brackets 230, the temporary formwork 235, and the dowel support members 241. After positioning the dowels 340 in the dowel sleeves 240, the adjacent concrete slab 350 is poured and finished such that the studs 226 extending from the second joint edge member 203 become embedded in the wet concrete of the adjacent concrete slab 350.
In
In a preferred embodiment for use with the permanent formwork, holes 410 (shown in
One or more dowel aligners 242 (see
Ideally, the form assembly 550 shown in
As the chemical reaction between the cement and the water in the adjacent concrete slab 350 occurs, i.e., hydration, the concrete hardens and shrinks. This chemical reaction is ongoing in the first concrete slab 250 also, as the process continues for an extended period of time. As the slabs 250, 350 shrink away from one another, the self-release elements in the interference-type connectors allow the elongated joint edge members 202, 203 to separate from one another as well as move laterally with respect to each other. If desired, the gap formed by the separated joint edge members 202, 203 can be filled with an appropriate sealant.
In the preferred embodiment, the interference-type connectors 710, 800 that allow the joint edge members 202, 203 to self-release under the force of the concrete slabs 250, 350 shrinking during hardening are comprised of a malleable material such as nylon or other suitable material. The nylon components are suitably chosen according to the design tensile strength of the concrete such that the components yield under the shrinkage stress. Note that the design tensile strength is variable according to the conditions and application of the concrete slabs 250, 350. As the concrete slabs 250, 350 shrink, the studs 220, 225, which are embedded in the concrete slabs 250, 350 pull the joint edge members 202, 203 apart. Differential shrinkage and loading may also cause the joint edge members to move laterally with respect to each other. In the properly compatible design configuration, the nylon connectors yield under the shrinkage stress of the concrete to allow relative movement of the joint edge members.
While in the foregoing, there have been described various preferred embodiments of the present invention, it should be understood to those skilled in the art that various modifications and changes can be made without departing from the scope of the invention as recited in the claims. An effort has been made to prepare claims commensurate in scope with this description without any failure to claim any described embodiment and within the best abilities of the inventors to foresee any modifications or changes.
This application is a continuation-in-part of, and claims benefit of, U.S. application Ser. No. 10/885,823, filed Jul. 7, 2004, now abandoned, incorporated herein by reference, which is a continuation of, and claims benefit of, U.S. application Ser. No. 10/210,464, filed Jul. 31, 2002, now U.S. Pat. No. 6,775,952, incorporated herein by reference, which is based on, and claims the benefit of, U.S. Provisional Application Ser. No. 60/309,397, filed on Aug. 1, 2001, entitled “System of Protecting the Edges of Cast in Place Concrete Slab on Ground, Construction Joints.
Number | Name | Date | Kind |
---|---|---|---|
3372521 | Thom | Mar 1968 | A |
3527009 | Nyquist | Sep 1970 | A |
3745726 | Thom et al. | Jul 1973 | A |
4021984 | Honegger | May 1977 | A |
4548009 | Dahowski | Oct 1985 | A |
4804292 | DeLuca | Feb 1989 | A |
6145262 | Schrader et al. | Nov 2000 | A |
20020047280 | Burton | Apr 2002 | A1 |
Number | Date | Country |
---|---|---|
3424362 | Jan 1986 | DE |
EP0410079 | Apr 1991 | DE |
1389648 | Feb 2004 | EP |
2 785 632 | Nov 1998 | FR |
Number | Date | Country | |
---|---|---|---|
20060075706 A1 | Apr 2006 | US |
Number | Date | Country | |
---|---|---|---|
60309397 | Aug 2001 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10210464 | Jul 2002 | US |
Child | 10885823 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10885823 | Jul 2004 | US |
Child | 11112431 | US |