The invention generally relates to a system to connect conduit sections in a subterranean well, and more particularly, the invention relates to a system to form a releasable connection between conduit sections and to limit movement of the conduit sections with respect to each other when connected together.
Several different conduit members typically are present in a subterranean well for purposes of communicating well fluids, hydraulic fluids, etc. Some of these conduit members may be formed from connected conduit sections. More particularly, one end of each conduit section may form a female connector, and the other end of the conduit section may form a male connector. The female connector of each conduit section mates with the male connector of an adjacent conduit section so that the conduit sections may be connected in an end-to-end fashion to form the tubular member. An example of a connection between two such conduit sections is depicted in
Referring to
As depicted in
In a conventional well system, the conduit sections 12 and 14 may form part of a hydraulic conduit string that is used, as its name implies, for purposes communicating hydraulic fluid downhole. This hydraulic conduit string may be located inside or outside of a production tubing string (not shown) of the well. Thus, each conduit section 12,14 may be associated with and located inside or outside of a production tubing section (not shown). As a more specific example, the lower conduit section 12 may be located inside or outside of a lower production tubing section, and the upper conduit section 14 may be located inside or outside of an upper production tubing section. Adjacent production tubing sections (that form part of the production tubing string) may be connected together concurrently with the connection of the associated adjacent conduit sections (that form part of the hydraulic conduit string).
A potential difficulty with the above-described system is the criteria that for establishing an acceptable connection between the production tubing sections may be significantly different than the criteria for establishing an acceptable connection between the conduit sections 12 and 14. More specifically, the acceptable gap between adjacent ends of the production tubing sections may be significantly larger than the acceptable gap between the upper 20 and lower 21 ends of the conduit sections 12 and 14. By way of example, it may be acceptable for a gap of 0.75 inches or less (as an example, for comparison) to exist between the lower end of an upper production tubing section and the upper end of an adjacent lower production tubing section. This acceptable gap between production tubing sections may be significantly larger than the acceptable gap of 0.025 inches or less (as an example, for comparison) between the upper 20 and lower 21 ends of the conduit sections 12 and 14. Due to forces that are exerted on the conduit sections 12 and 14 by the production tubing sections, a movement between the production tubing sections may cause a relatively large movement (i.e., a movement greater than 0.025 inches, for example) between the adjacent ends of the conduit sections 12 and 14 and thus, may impair the seal between the conduit sections 12 and 14.
Thus, there is a continuing need for a better system for connecting tubular sections in a subterranean well.
In an embodiment of the invention, an apparatus that is usable with a subterranean well includes a latch and an engagement mechanism. The latch is adapted to form a releasable connection between a first conduit section and a second conduit section in response to engagement of an actuator of the latch and maintain a first distance between an end of the first conduit section and an end of the second conduit section. The engagement mechanism is adapted to continuously engage the actuator to cause the latch to connect the first conduit section and the second conduit section despite the movement of the engagement mechanism between a first position and a second position. The second distance between the first position and the second position is greater than the first distance.
Advantages and other features of the invention will become apparent from the following drawing, description and claims.
Referring to
As a more specific example, when the latch assembly 70 is engaged, the assembly 70 sealably and mechanically connects the upper conduit section 45a to the lower conduit section 94a, and sealably and mechanically connects the upper conduit section 45b to the lower conduit section 94b. As described below, in this engaged state, the assembly 70 maintains the sealed connections between the upper 45 and lower 94 conduit sections by limiting the relative movement between the upper 45 and lower 94 conduit sections.
For purposes of placing the latch assembly 70 in its engaged state, the system 30 includes an engagement mechanism, such as a sleeve 40 (in accordance with some embodiments of the invention), that is generally coaxial with the longitudinal axis of the latch assembly 70. As described further below, after the lower end 50 of each upper conduit section 45 has been inserted into corresponding passageways of the latch 70, the lower end of the sleeve 40 slides over the outer surface of the latch assembly 70 to engage an actuator (described below) of the assembly 70 to place the assembly 70 in the engaged state.
In some embodiments of the invention, the upper conduit sections 45 may extend along the outside of an upper production tubing section 96, and the lower conduit sections 94 may extend along the outside of a lower production tubing section 97. More specifically, the upper conduit sections 45 may be slidably connected to the sleeve 40, and the sleeve 40 may, in turn, be secured to the outside of the upper production tubing 96. The upper conduit sections 45 may be located inside the sleeve 40 in some embodiments of the invention. More specifically, referring also to
It is noted that in other embodiments of the invention, the orientation of the sleeve 40 with respect to the upper production tubing section 96 may be different from that shown in
Referring to
The ability of the upper conduit sections 45 to slide with respect to the sleeve 40 and upper production tubing section 96 permits 1. the upper conduit sections 45 to engage the latch assembly 70 (as described below) for purposes of forming connections and 2. once the conduit sections are connected together permits the upper production tubing section 96 to slide with respect to the upper conduit sections 45. This latter feature permits a greater degree of up and down travel between the upper production tubing section 96 and the lower production tubing section 97 relative to the degree of up and down travel that the latch assembly 70 permits between the upper 45 and lower 94 conduit sections.
The latch assembly 70 is secured to the lower production tubing section 97 and may be located on the outside of the production tubing section 97, in some embodiments of the invention. As described below, in some embodiments of the invention, the assembly including the upper production tubing section 96, sleeve 40 and upper conduit sections 45 is lowered downhole until the upper conduit sections 45 slide into the latch assembly 70. Referring also to
Referring to
The sliding of the upper production tubing section 96 with respect to the upper conduit sections 45, however, may produce frictional forces that may tend to force the conduit sections 45 and 94 (when connected) apart. However, as described below, the connection that is formed by the latch assembly 70 limits the degree of movement between the upper 45 and lower 94 conduit sections to preserve seal integrity between these sections 45 and 94. As a more specific example, in some embodiments of the invention, the connection that is formed by latch assembly 70 ensures that the lower end 50 of each upper conduit section 45 does not move beyond 0.025 inches from the upper end 98 of the associated lower conduit section 94. Other travel limits are possible.
In some embodiments of the invention, the upper 96 and lower 97 production tubing sections may form portions of a production tubing that extends into the well. In some embodiments of the invention, the upper 45 and lower 94 conduit sections may form portions of two hydraulic conduit strings that extend into the well inside or outside of the production tubing string. As a more specific example, in some embodiments of the invention, one or both hydraulic conduit strings may be used for purposes of pumping an optical fiber downhole via fluid drag, as described further in U.S. Reissue Pat. No. 37,283.
Although only one latch assembly 70 is depicted in the figures, it is understood that one latch assembly may be located at the union of each conduit section in the assembled hydraulic conduit string. Furthermore, although portions of two hydraulic conduit strings are depicted in the figures, it is understood that a single hydraulic conduit string or more than two hydraulic conduit strings may be installed downhole via the latch assembly 70 at each conduit section connection.
The two hydraulic conduit string arrangement that is depicted in
The optical fibers referred to herein may be used for purposes of forming a distributed temperature measurement (DTS) system and/or a Fiber Bragg Grating temperature measurement system, as described in U.S. patent application Ser. No. 10/317,556; and U.S. Pat. Nos. 5,798,521 and 6,246,048, as just a few examples.
In some embodiments, of the invention, the lower end of the upper production tubing section 96 may have a male connector (not shown) that stabs a female connector in the upper end of the lower production tubing section 96. The upper production tubing section 96 may have a tendency to significantly move (relating to movement between an upper conduit section 45 and a lower conduit section 94 to which the section 45 is connected) with respect to the lower production tubing section 97 after the two sections 96 and 97 are joined together. Furthermore, because, in some embodiments of the invention, the sleeve 40 is attached to or is part of the upper production tubing section 96, longitudinal movement of the upper production tubing section 96 may cause a corresponding longitudinal movement in the sleeve 40.
As a more specific example, the upper production tubing section 96 may be part of a seal bore so that the upper production tubing 96 (and thus the sleeve 40) may significantly move with respect to the lower production tubing 97 after the production tubing sections 96 and 97 mate and the conduit sections 45 and 94 mate. As another example, the upper production tubing 96 may be coiled conduit that has sufficient slack in the wellbore to permit the upper production tubing 96 to significantly move within the wellbore. Other variations are possible. The production tubing sections 96 and 97 maintain their connections even with this movement. As described above, the movement of the upper production section 96 tends to exert forces on the upper conduit sections 45, and these forces may be directed to separating the upper conduit sections 45 from the lower conduit sections 94.
However, regardless of the degree in which the production tubing sections 96 and 97 move relative to each other, the latch assembly 70, in its engaged state, limits movement of the upper 45 and lower 94 hydraulic conduit sections, relative to each other.
In some embodiments of the invention, the latch assembly 70 is generally attached to the upper ends of the lower conduit sections 94. The latch assembly 70 may be formed from a generally circularly cylindrical housing 73 that is coaxial with the longitudinal axis of the well. The housing includes a generally dome-shaped top surface 71 that includes two openings 72, each of which receives the lower end 50 of one of the upper conduit sections 45. Each opening 72 provides an entry port into an associated longitudinal passageway 74 of the latch assembly 70. Thus, each longitudinal passageway 74 receives the lower end 50 of one of the upper conduit sections 45 when the upper sections 45 are lowered into the latch assembly 70. As depicted in
When the latch 70 is not engaged (
Each female connector 90 guides the lower end 50 of the upper conduit section 45 into an associated lower conduit section 94. In some embodiments of the invention, the female connectors 90 may be part of the latch assembly 70. In some embodiments of the invention, each passageway 74 is coaxial with a central passageway 91 of the associated female connector 90. Each female connector 90, in turn, is connected to the upper end 98 of the associated lower conduit section 94. The female assembly 90 receives the lower end 50 of the upper conduit section 45 and includes seals that closely circumscribe the lower end 50 to form a sealed connection between the upper conduit section 45 and the lower conduit section 90. When the two conduit sections 45 and 94 meet inside the female connector 90, the upper 45 and lower 94 conduit sections may move apart by a relatively small distance, and the latch assembly 70 controls this distance to ensure that the gap between the mating ends of the upper 45 and lower 94 conduit sections does not exceed a predetermined maximum distance (a 0.025 inch maximum distance, for example) apart. Regulating this gap to ensure the gap does not exceed a certain distance maintains the integrity of the sealed connection between these conduit sections. In embodiments of the invention in which an optical fiber is pumped through the conduit that is formed the conduit sections 45 and 94, at least one of the reasons to confine the gap to a maximum distance and preserve seal integrity is to ensure proper pumping of the optical fiber.
Because the conduit sections 45 and 94 are slidably connected to production tubing sections, relative movement of these production tubing sections may impart separation forces on the conduit sections 12 and 14, and these forces may move the hydraulic sections farther apart, if not for the securement of the conduit sections by the latch assembly 70. More specifically, it may be acceptable for the production tubing sections 96 and 97 to move a relatively larger distance apart (0.075 inches, for example), as compared to the acceptable distance by which the ends 50 and 98 of the conduit sections 45 and 94 may be separated. Therefore, relative movement of the production tubing sections 96 and 97 with respect to each other may, if not for the features of the latch assembly 70, cause an undesirable separation between the conduit sections 45 and 94.
To limit any potential travel, or separations between the conduit sections 45 and 94, in some embodiments of the invention, the lower end 50 of the upper conduit section 45 includes a profile, or notch 51, that is engaged by one or more dogs 78 of the latch assembly 70 when the lower end 50 of the upper conduit section 45 is lowered into the corresponding passageway 91 of the female connector 90 and the latch assembly 70 is engaged, as depicted in
The dogs 78 are each biased to remain outside of the passageway 74, and thus, the dogs 78 do not engage the notches 51 upon mere insertion of the upper conduit sections 45 into the female connectors 90. However, as depicted in
Referring to
As depicted in
To disengage the latch assembly 70, an upward force is exerted on the upper production tubing section 96 from the surface of the well, and the production tubing section 96 is moved upwardly to raise the sleeve 40 also in an upwardly direction. This state is generally depicted in
Other variations are within the scope of the following claims. For example, in some embodiments of the invention, the hydraulic conduits, latch assembly 70 and sleeve 40 may be located inside the production tubing. As another example, in some embodiments of the invention, the locking of the latch assembly may be performed in response to power that is supplied by an external power source, instead of occurring in response to a mechanical action.
As another example of another embodiment of the invention,
Although orientational terms such as “up,” “down,” etc. may have been used for purposes of simplifying the preceding discussion, it is understood that other orientations of the system 30 are possible. For example, although a vertical well is depicted in the drawings, it is understood that the system 30 may be used in a lateral wellbore, for example. Other variations are possible.
While the present invention has been described with respect to a limited number of embodiments, those skilled in the art, having the benefit of this disclosure, will appreciate numerous modifications and variations therefrom. It is intended that the appended claims cover all such modifications and variations as fall within the true spirit and scope of this present invention.
Number | Name | Date | Kind |
---|---|---|---|
5526888 | Gazewood | Jun 1996 | A |
6213206 | Bakke | Apr 2001 | B1 |
6460900 | Bakke | Oct 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040238182 A1 | Dec 2004 | US |