A wind-chimney and a solar-smelter create hot, compressed and high velocity ambient-air to drive a rotating-helix, turbine or Archimedes screw.
Melting metal with solar energy is a known art and science. The basic principles of a heat engine are a known art and science. The use of wind energy is also a known art and science.
Nix (U.S. Pat. No. 8,360,052, issued Jan. 29, 201) illustrates the use of a parabolic-half-shell, with a planar reflector, rotating in four degrees of freedom. The sun's energy is focused safely towards the ground, towards a stationary focus. The high temperatures created thus are able to smelt metals, glass or cook food.
Nix (U.S. patent application Ser. No. 12/459,719. Filing date Jul. 7, 2009. Pub. No. US 2012/0037152 A9 Feb. 16, 2012) illustrates a parabolic-half-shell with also a curved-overhang. The curved-overhang protects the crucible from snow and rain. The sun's energy is reflected from a planar reflector which is on a turntable, or heliostat. The sun's light is reflected towards the crucible. Stray rays are captured by tiles. Surrounding the crucible is a solar-absorbing-thermal-mass, with embedded-pipe. The embedded-pipe transport hot air, hot water, steam, or a transfer fluid. Thus, heat can be utilized 24 hours a day, 7 days a week. Nix does show a flat reflective curved-overhang attached to the half-shell-parabolic at the 45 degree tangent.
Nix (U.S. Pat. No. 5,308,187, issued May 3, 1994) utilizes a parking lot surface, with a transparent top, to transfer heat to an underground system of pipes. The pipes create hot air for combustion to a fossil fuel burner.
Unlike the invented device, Nix, Nix, and Nix do not show a parabolic-overhang extending beyond the 45 degree tangent to the 65 degree tangent. Nor do Nix, Nix, and Nix show the use of a wind-chimney used in conjunction with a solar-smelter.
Convery (U.S. Pat. No. 8,344,305, issued Jan. 1, 2013) illustrates the technology of heliostats. The invented device utilizes heliostats to make the sun's light horizontal.
Naskali, et. al. (U.S. Pat. No. 7,344,353, issued Mar. 18, 2008) illustrates the manufacture of a helical-wind rotor.
Jaakkola (U.S. Pat. No. 6,428,275, issued Aug. 6, 2002) also illustrates the manufacture of a helical-wind rotor.
Yangpichit (European patent application Ser. No. EP 2524137, Filing date Dec. 13, 2010. Pub. No. EP2524137 A1, Nov. 21, 2012) best illustrates state of the art wind-chimney technology. Vertical axis turbines and an exhaust turbine capture the upward draft of wind. Solar energy, via heat exchangers, is used. An air compressor is used to capture and store energy. Shock absorbers, vanes and flaps are used to control the flow of air.
Bonomi, et. al. (European patent application Ser. No. EP 1589221, Filing date Apr. 14, 2005. Pub. No. EP1589221 A2. Oct. 26, 2005) illustrates state of the art wind-chimney technology. A microprocessor controls the air inlet, so as to keep the electrical generator at a constant speed. Solar heat is used via a greenhouse effect. A plurality of solar collectors is utilized.
Tebuev (European patent application Ser. No. WO 2009008763, Filing date Oct. 23, 2007. Pub. No. WO2009008763 A1. Jan. 15, 2009) uses a noiseless Archimedes screw located inside the wind-chimney that is integrated as part of building structure. A helical turbine is attached to a shaft for rotational energy.
By combining a wind-chimney with solar heat, ambient-air is made hot, compressed and high velocity. A rotating-helix, such as an Archimedes screw or turbine, inserted inside a wind-chimney, thus is able to capture that ambient-air and translate into rotational energy. The technology for utilizing wind energy in a wind-chimney is not new and novel. Nor is the technology for utilization of preheated solar hot air for a wind-chimney. Nor is the technology for controlling the air flow velocity of ambient-air. Capturing the sun's light via solar collectors is not new and novel. By combining both wind and solar energy it creates rotational energy 24 hours a day, 7 days a week, thus is not new and novel.
However, the utilization of a solar-smelter for preheating air to a wind-chimney is new and novel. A solar-smelter creates hotter air, and stores the sun's concentrated energy in melted lava, as inside a crucible. This change-of-phase material thus has greater energy density. Plus, the higher temperatures create greater Carnot efficiency. The higher temperatures, approaching 2,000 degrees F., thus create greater expansion of ambient-air, and thus more velocity. None of the above art discusses the utilization of solar-smelters to manufacture hot, compressed, and high velocity ambient-air for rotational energy. Thus is new and novel.
A system comprising of a rotating-air-compressor, a over-spin-valve, a solar-smelter, a wind-chimney, a rotating-helix, and a rotating-shaft manufacture rotational energy from concentrated sunlight and from wind energy. The rotational energy thus can power a rotating-machine, such as an electric generator, or a pump, or a compressor.
A rotating-air-compressor, such as a centrifuge fan, compresses and blows ambient-air into the solar-smelter. The solar-smelter utilizes a solar-absorbing-thermal-mass with an embedded crucible. At the embedded crucible is a focus of the parabolic-half-shell. The parabolic-half-shell is reflective on the interior, receiving horizontal sunlight from a heliostat. The heliostat tracks the sun, and makes sunlight horizontal to the reflective interior of the parabolic-half-shell.
The parabolic-half-shell focuses the sun's light unto the crucible. The crucible can make material hot, such as melted glass, or melted metal. The sun's energy is thus stored in the melted materials. The crucible's heat transfers to a solar-absorbing-thermal-mass. The solar-absorbing-thermal-mass is surrounded by an insulating-foundation, and an under-laying-insulation, and is topped by tiles. Thus, heat from the crucible is trapped.
Embedded in the solar-absorbing-thermal-mass are embedded-pipe for the ambient-air. The rotating-air-compressor compresses into the embedded-pipe. The embedded-pipe absorbs heat from the solar-absorbing-thermal-mass, thus making the ambient-air hot. Temperatures on upwards to 2,000 degrees F. can be achieved. It is common knowledge that when air is heated, it expands. Thus, the expanding air creates pressure and velocity.
Unique is a parabolic-overhang. Attached to the parabolic-half-shell, at the 45 degree tangent, the parabolic-overhang helps to protect the crucible from rain and snow. It is also angled so as to concentrate more sunlight downwards from the horizontal light created by the heliostat. This addition of a parabolic-overhang adds additional concentrated sunlight to the crucible, making the crucible hotter. Thus, more heat is transferred to the solar-absorbing-thermal-mass, and thus more heat is transferred to the embedded-pipe, and thus more heat is added to the ambient-air.
The heated ambient-air from the solar-absorbing-thermal-mass goes into a wind-chimney. A wind-chimney creates a vacuum from the movement of wind. When wind strikes the top of the wind-chimney, the wind moves upwards, thus creating a vacuum. This vacuum then draws the heated ambient-air from the solar-absorbing-thermal-mass upwards, creating velocity.
In the cavity of the wind-chimney is a rotating-helix. This rotating-helix is much like an Archimedes screw. As the heated ambient-air moves upwards, it strikes the blades of the rotating-helix, thus causing the rotating-helix to rotate. This rotational energy is transferred to a rotating-shaft. The rotating-shaft is attached to a rotating-machine, such as an electric generator, pump, or air compressor. The rotating-shaft is also attached to the rotating-air-compressor. As the ambient-air gets hotter, and as the wind blows stronger, the rotating-shaft rotates faster. Thus the rotating-air-compressor compresses more ambient-air. The net result is the use of solar and wind energy to create rotational energy.
In the event of a storm, when wind may cause the rotating-helix to over rotate, or in the event, the crucible overheats the ambient-air, an over-spin-valve can close. This constricts the amount of ambient-air entering the solar-absorbing-thermal-mass and also the wind-chimney. Thus, the over-spin-valve prevents the rotating-helix from over spinning.
The combination of both wind and solar energy is advantageous. Often times wind energy is available when solar energy isn't. Often times solar energy is available when wind energy isn't. Wind energy is often available in winter. Solar energy is often available in the summer. Wind energy is often available at night. Solar energy is often available in the day. By combining wind and solar energy it helps to keep the shaft rotating 24 hours a day, 7 days a week, year round.
Shown also is the parabolic-half-shell (1) and parabolic-overhang (2). The parabolic-half-shell (1) extends from the zero degree tangent (5), to the 45 degree tangent (4). Attached to the half-circle (23) formed by the 45 degree tangent (4) is the parabolic-overhang (2). The parabolic-overhang (2) extends from the 45 degree tangent (4) to the 65 degree tangent (3).
Shown also is the parabolic-half-shell (1), which extends from the zero degree tangent (5) to the 45 degree tangent (4). Attached to the half-circle (23) formed by the 45 degree tangent (4) is a parabolic-overhang (2). The parabolic-overhang (2) extends from the 45 degree tangent (4) to the 65 degree tangent (3).
Number | Name | Date | Kind |
---|---|---|---|
3979597 | Drucker | Sep 1976 | A |
4275309 | Lucier | Jun 1981 | A |
4331042 | Anderson | May 1982 | A |
4335544 | Manson | Jun 1982 | A |
5308187 | Nix | May 1994 | A |
6016015 | Willard | Jan 2000 | A |
6089021 | Senanayake | Jul 2000 | A |
6428275 | Jaakkola | Aug 2002 | B1 |
6590300 | Santiago | Jul 2003 | B1 |
6772593 | Dunn | Aug 2004 | B2 |
7026723 | Moreno | Apr 2006 | B2 |
7344353 | Naskali et al. | Mar 2008 | B2 |
7821151 | Le et al. | Oct 2010 | B2 |
8344305 | Convery | Jan 2013 | B2 |
8360052 | Nix | Jan 2013 | B2 |
8534068 | Yangpichit | Sep 2013 | B2 |
8552579 | Richter | Oct 2013 | B2 |
8776785 | Nix | Jul 2014 | B2 |
8776795 | Bathe et al. | Jul 2014 | B2 |
20060016182 | Comandu et al. | Jan 2006 | A1 |
20080156315 | Yangpichit | Jul 2008 | A1 |
20100283254 | Richter et al. | Nov 2010 | A1 |
20110173980 | Yangpichit | Jul 2011 | A1 |
20110204648 | Wilson | Aug 2011 | A1 |
20120037152 | Nix | Feb 2012 | A9 |
20120055160 | Peng | Mar 2012 | A1 |
20120139249 | Peng | Jun 2012 | A1 |
Number | Date | Country |
---|---|---|
2524137 | Apr 2002 | EP |
1589221 | Oct 2005 | EP |
WO 9427094 | Nov 1994 | WO |
WO 2009008763 | Jan 2009 | WO |
WO2013189504 | Dec 2013 | WO |
Entry |
---|
U.S. Appl. No. 12/459,719, filed Feb. 16, 2002, Nix. |
Number | Date | Country | |
---|---|---|---|
20140338658 A1 | Nov 2014 | US |