This invention relates generally to the mailbox field, and more specifically to an improved system to detect and remotely signal the presence or absence of mail in a mailbox.
The following description of preferred embodiments of the invention is not intended to limit the invention to these two embodiments, but rather to enable any person skilled in the art to make and use this invention.
The invention includes a system to detect and remotely signal the presence or absence of physical items in or on a particular environment. More specifically, the invention includes a system to detect and remotely signal the presence or absence of mail in a mailbox.
As shown in
The sensor 12 of the first embodiment functions to sense the presence or absence of mail in the mailbox 20. The sensor 12 is preferably either an active sensor, which senses at predetermined intervals, or a passive sensor, which senses after a particular event. Active sensors include electromagnetic wave devices (such as a radar device) and sound wave devices (such as an echolocation device) that actively produce and sense waves. With an active sensor, the system 10 preferably includes a CPU that responds to the sensed waves. Passive sensors include IR sensors (such as certain motion detectors) and weight or pressure sensors (such as a scale) that are activated upon the occurrence of a particular event. Passive sensors may also include switches that are activated by a mail-carrier, such as switches that are activated by the opening of the mailbox. Although any suitable device may be used, the sensor 12 of the first embodiment includes an active IR sensor 12.
The sensor 12 of the first embodiment preferably consists of one or more infrared (IR) sensors arranged in one of several possible configurations. In a first variation, as shown in
As shown in
The transmitter 14 of the first embodiment preferably automatically transmits the status of the mailbox as an RF signal to a physically separate display unit. This RF signal preferably operates on a carrier wave of 315 MHz, 433 MHz, 900 MHz, or another suitable frequency. There are several possible ways to schedule these transmissions. One option is to transmit whenever a change of state is detected. For example, if mail is initially present but the mail is removed, this new state would be transmitted to the display unit. Another option is to periodically transmit the current state of the mailbox. Thus, every period, the sensor 12 would check the current state and the transmitter 14 would send that state information to the display unit. The transmitter 14 may, however, transmit the status after the occurrence of any suitable event or at any suitable period.
The transmitter 14 of the first embodiment preferably transmits a sequence of bits that is ‘known’ by the receiver 16 in the display unit. This known sequence is called the header and it is used to identify the mailbox 20, allowing the receiver 16 to differentiate between the mailbox 20 and other mailboxes that might happen to be within receiving range. The transmitter 14 may alternatively use other ways, such as frequencies, to identify the mailbox 20.
To reduce energy consumption, the receiver 16 of the first embodiment will often be in a sleep mode. In a first variation, the system 10 preferably includes a microcontroller that functions to ‘wake-up’ the receiver 16 at predetermined times so that it can receive potential transmissions from the mailbox 20. The header of the transmission is preferably preceded by a preamble, which is a longer sequence of bits used to help synchronize the transmitter 14 and the receiver 16. The microcontroller preferably wakes up the receiver 16 on a periodic cycle, which is less than the duration of the preamble in the transmission. This ensures that, if a transmission is occurring, the receiver 16 will receive at least some part of it. In a second variation, the transmitter 14 and the receiver 16 adhere to the ZigBee protocol, with the optional “beacon” mode. The ZigBee protocol, which was designed for applications with low data rates and low power consumption, is based on the IEEE 802.15.4 standard for wireless personal area networking. In the optional “beacon” mode, the transmitter 14 transmits a periodic beacon message, which wakes up the receiver 16 from sleeping mode. After awake, the receiver 16 listens for a particular header and—if appropriate—listens for a signal or message. Afterwards, the receiver 16 returns to sleep mode. The system 10, the transmitter 14, and the receiver 16 may alternatively use other methods or devices to reduce energy consumption.
The remote indicator 18 of the first embodiment functions to communicate the presence or absence of mail in the mailbox 20 to a user of the system 10 and to accept a reset command from the user. In one variation, the remote indicator 18 includes a visible light source (such as a LED), which preferably blinks or shines when mail is present in the mailbox 20. In a further development of this variation, as shown in
In another variation, the remote indicator 18 of the first embodiment includes a sound source (such as a computer speaker), which could emit a simple beep, a ring-tone playing some sort of melody, or a voice synthesizer of some kind. As a further development of this variation, the remote indicator 18 could include a sound recording mechanism so that the user can personalize the remote indicator 18 to suit their preference.
In another embodiment, the remote indicator 18 of the first embodiment includes one or more mechanical devices, such as a spring-loaded arm 32, which moves from a first position to a second position when mail is present in the mailbox. Unlike the light and sound devices of the previous variations, the mechanical device 32 could be configured to signal once until the remote indicator 18 is reset.
The remote indicator 18 of the first embodiment is preferably a desktop device, but may alternatively be a wall mounted device or a portable device, such as a wristwatch or pager-like device that clips onto the belt, which gives the user mobile access to the information. It is possible that such an implementation would include a wall mount or a desktop cradle so that the portable display unit could either be used in its portable form or be placed onto the wall or onto a desk.
As shown in
As shown in
The system 10 of either the first or second embodiment may be incorporated into a larger network by the postal system. A mail carrier could send a signal to a regional or central processing office after the delivery of mail to a particular mailbox. This information could be used to analyze the efficiency or effectiveness of the mail carrier. This information could also be used as an alternative or supplement to delivery confirmation for the sender of the mail. Further, this information could be used to prevent the needless delivery of mail to users that are on vacation and haven't checked their mail in several days. A related signal could be sent to the customer, via the internet or any other suitable network, to signal the presence or absence of mail in their mailbox.
As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications and changes can be made to the preferred embodiments of the invention without departing from the scope of this invention defined in the following claims.
This application claims the benefit of U.S. Provisional Application No. 60/510,979 filed 14 Oct. 2003, which is incorporated in its entirety by this reference.
Number | Date | Country | |
---|---|---|---|
60510979 | Oct 2003 | US |