System to measure wheel liftoff

Information

  • Patent Grant
  • 7557697
  • Patent Number
    7,557,697
  • Date Filed
    Tuesday, February 22, 2005
    19 years ago
  • Date Issued
    Tuesday, July 7, 2009
    15 years ago
Abstract
The present invention is directed to a system for determining lift-off or wheel departure of one or more wheels associated with a vehicle from a road. The system includes a sensor that measures the wheel speed of at least one wheel, and a controller that calculates the resonance frequency of the at least one wheel, calculates variations in the resonance frequency, compares the variations with a threshold, and indicates lift-off of the wheel from the road if the variations exceed a threshold.
Description
BACKGROUND

The present invention generally relates to rollover protection systems.


Dynamic control systems have been recently introduced in automotive vehicles for measuring the body states of the vehicle and controlling the dynamics of the vehicle based on the measured body states. For example, certain dynamic stability control systems known broadly as control systems compare the desired direction of the vehicle based on the steering wheel angle, the direction of travel and other inputs, and control the yaw of the vehicle by controlling the braking effort at the various wheels of the vehicle. By regulating the amount of braking torque applied to each wheel, the desired direction of travel may be maintained. Commercial examples of such systems are known as dynamic stability program (DSP) or electronic stability control (ESC) systems.


Other systems measure vehicle characteristics to prevent vehicle rollover and for tilt control (or body roll). Tilt control maintains the vehicle body on a plane or nearly on a plane parallel to the road surface, and rollover control maintains the vehicle wheels on the road surface. Certain systems use a combination of yaw control and tilt control to maintain the vehicle body horizontal while turning. Commercial examples of these systems are known as anti-rollover prevention (ARP) and rollover stability control (RSC) systems.


Typically, such control systems referred here collectively as dynamic stability control systems use dedicated sensors that measure the yaw or roll of the vehicle. However, yaw rate and roll rate sensors are costly. Therefore, it would be desirable to use a general sensor to determine, for example, the rollover propensity of the vehicle, that is, a sensor that is not necessarily dedicated to measuring the roll of the vehicle. The invention may also augment a system that includes yaw and/or roll rate sensors.


SUMMARY

In satisfying the above need, as well as overcoming the enumerated drawbacks and other limitations of the related art, the present invention provides a system and method for determining lift-off or wheel departure of one or more wheels associated with a vehicle from a road. The system includes a sensor that measures the wheel speed of at least one wheel, and a controller that calculates the resonance frequency of the at least one wheel, calculates variations in the resonance frequency, compares the variations with a threshold, and indicates lift-off of the wheel from the road if the variations exceed a threshold.


Further features and advantages of this invention will become apparent from the following description, and from the claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a vehicle with a tire lift off detection system in accordance with the invention;



FIG. 2 is a schematic of a system model for determining wheel lift-off in accordance with the invention;



FIG. 3 is a flow diagram of a sequence of steps to determine wheel lift-off;



FIG. 4A illustrates the frequency response of a front inner wheel during a double fishhook maneuver;



FIG. 4B illustrates the frequency response of a rear inner wheel during the double fishhook maneuver;



FIG. 4C illustrates the frequency response of a front outer wheel during the double fishhook maneuver;



FIG. 4D illustrates the frequency response of a rear outer wheel during the double fishhook maneuver;



FIG. 5A illustrates the frequency response of a front outer wheel during a fishhook maneuver;



FIG. 5B illustrates the frequency response of a rear outer wheel during the fishhook maneuver;



FIG. 5C illustrates the frequency response of a front inner wheel during the fishhook maneuver; and



FIG. 5D illustrates the frequency response of a rear inner wheel during the fishhook maneuver.



FIG. 6A illustrates the frequency response of a front outer wheel during another fishhook maneuver;



FIG. 6B illustrates the frequency response of a rear outer wheel during the fishhook maneuver;



FIG. 6C illustrates the frequency response of a front inner wheel during the fishhook maneuver; and



FIG. 6D illustrates the frequency response of a rear inner wheel during the fishhook maneuver.





DETAILED DESCRIPTION

Referring now to FIG. 1, a vehicle 10 includes a rollover control system 12 embodying the principles of the present invention. The system 12 identifies dynamic characteristics and conditions of the vehicle 10 to reduce the rollover propensity of the vehicle 10 in actual driving conditions. In certain implementations, the system 12 may be a component of a dynamic stability control system.


The system 12 includes a controller 14 and various sensors 16 associated with the wheels 18. In the present embodiment, the sensors 16 measure the speed of the respective wheels. This information is transmitted to the controller 14 which analyzes the information to estimate the vertical load on the tires. Specifically, each wheel 18 has a tire 22 mounted on a hub 20 and is modeled as a second order spring-mass-damper model as shown in FIG. 2 to determine a resonance frequency, ωn, of the wheel, according to the system of equations:

Θ1−Θ2s
J1{dot over (ω)}1=−KΘs  (1)
J2{dot over (ω)}2=KΘs+TL+Td

where

    • Θ1 is the rotational angle of the wheel
    • Θ2 is the rotational angle of the tire
    • Θs is the difference between Θ1 and Θ2
    • J1 is the rotational moment of inertia of the hub
    • J2 is the rotational moment of inertia of the tire
    • K is a spring constant
    • ω1 is the rotational velocity of the hub
    • ω2 is the rotational velocity of the tire
    • {dot over (ω)}1 is the rotational acceleration of the hub
    • {dot over (ω)}2 is the rotational acceleration of the tire
    • TL=FxR is the longitudinal torque on the tire
    • Fx is the longitudinal force on tire
    • R is the radius of the tire (from center of hub)
    • Td are road disturbances (i.e. “Noise”)


To linearize and simplify the system Eq. (1), a perturbation of TL at an operating point Sv=SvO is derived to yield















Δ






T
L


=





T
L





S
v





|


S
v

=

S

v





O






Δ






S
v









=

α







R
2



(


Δ






V
/
R


-

Δω
2


)

















(
2
)








where

    • Sv=V−ωR is the slip velocity
    • ω is the angular velocity of the wheel
    • V is the velocity of the vehicle
    • α is the extended brake stiffness defined as the gradient of Fx at Sv=SvO,
    • and ωn is the natural frequency of the model


      Since the inertia of the vehicle is significantly larger than that of the wheel, the assumption |Δω2|>>|ΔV/R| is made such that Eq. (2) simplifies to

      ΔTL=−αR2Δω2   (3)


From the perturbation of system (1) and Eq. (3), transfer function from the road disturbance ΔTd to wheel speed Δω1 is obtained as follows:










H


(
s
)


=

K



J
1



J
2



s
3


+


J
1


α






R
2



s
2


+


K


(


J
1

+

J
2


)



s

+

K





α






R
2








(
4
)








Since the target of the estimation is α, the second order system is enough as a vibration model. To reduce order, the 3rd order term of H(s) is estimated:










G


(
s
)


=


K



J
1


α






R
2



s
2


+


K


(


J
1

+

J
2


)



s

+

K





α






R
2




=


b
2



s
2

+


a
1


s

+

a
2








(
5
)








where







a
1

=


K


(


J
1

+

J
2


)




J
1


α






R
2










a
2

=

K

J
1









b
2

=

K


J
1


α






R
2








such that the resonance frequency, ωn, is







ω
n

=


1

2

π





K

J
1









or






ω
n

=


1

2

π





α
2








and the strength of the resonance depends on the extended brake stiffness α and the tire-road friction.


Thus, the system 12 uses a second order spring-mass-damper model as shown in FIG. 2, and the wheel speed of the wheel 20 to estimate a resonance frequency, ωn, using a filter, such as a RLS or Kalman filter. The resonance frequency, typically in the range between about 30 and 60 Hz, is correlated to the vertical force on the tire.


Shown in FIG. 3 is a preferred process 100 that illustrates the operation of the system 10. A measured signal 102, such as the wheel speed, may be pre-filtered 104 before the resonance frequency is estimated to remove noise and unwanted information from the signal 102. A RLS or Kalman filter 108 receives the signal from the pre-filter 104 and employs a model 106, for example, as described by the system of Eq. (1), to calculate the parameters of interest α1 and α2 which module 110 employs to calculate the resonance frequency ωn. If variations in the resonance frequency exceed a threshold, the system 10 can indicate to the roll over prevention system or the driver that a wheel has lifted off the ground.


The pre-deviations in the estimated resonance frequency during a validity window indicates a deviation of the vertical load on the tire. When the resonance frequency reaches a pre-determined threshold, the algorithm indicates a wheel lift status condition. The status of all four wheels can be monitored continuously. Alternatively, only the outer wheels can be monitored to conserve processing resources. The wheel lift status condition from the monitored wheels can be combined to provide more detailed wheel lift indication, such as no-wheel-lift, single-wheel-lift, two-wheel-lift, or single-wheel-lift with impending two-wheel-lift.


FFT processing of wheel speed data from an implementation of the system 10 are illustrated in the following examples. FIG. 4 shows the characteristics of a vehicle in a double-fishhook maneuver. In these figures, the x-axis is the frequency spectrum and the y-axis is the signal power.



FIGS. 4A and 4B show the behavior of the front inner wheel and the rear inner wheel, respectively, and FIGS. 4C and 4D show the behavior of the front outer wheel and the rear outer wheel, respectively. As shown in FIGS. 4A, 4B, and 4C, the symbols FIG, RIG, and FOG represent the data for when all the tires are grounded (i.e. when some load greater than zero is being applied to the tire) prior to the test event for the front inner wheel, the rear inner wheel, and the front outer wheel, respectively. The symbols FIL, RIL, and FOL represent the data for the tires during the test event when one or more tires is lifted off the ground (i.e. when a zero normal load is being applied to the tire) for the front inner wheel, the rear inner wheel, and the front outer wheel, respectively. As shown in FIG. 4D, the difference between the lifted and the grounded data for the rear outer wheel is barely perceptible. Thus, FIG. 4 demonstrates that the system 10 can detect the difference between the characteristics of a lifted tire and that of a grounded tire.



FIGS. 5 and 6 illustrate the characteristics of a vehicle in two different fishhook maneuvers. FIGS. 5A and 6A refer to the front outer wheel and FIGS. 5B and 6B refer to the rear outer wheel in the two tests, which show that there is minor difference between the lifted and grounded characteristics of the outer wheels. Referring to FIGS. 5C, 5D, 6C, and 6D, the symbols FIG and RIG indicated that the signals for the front inner grounded and the rear inner grounded wheels are barely perceptible. On the other hand, the symbols FIL and RIL indicated that there are noticeable spectra for the front inner lifted and the rear inner lifted wheels during the fishhook maneuver.


In other embodiments, other conditions may be monitored, including the wheel speed, suspension travel, and sidewall torsion (i.e. smart tire). When the suspension travel is measured, a quarter-car model describing the suspension-tire characteristic and the measured suspension travel is employed to estimate the resonance frequency of the tire, which is correlated to the vertical force on the tire.


As a person skilled in the art will readily appreciate, the above description is meant as an illustration of an implementation of the principles this invention. This description is not intended to limit the scope or application of this invention in that the invention is susceptible to modification, variation and change, without departing from spirit of this invention, as defined in the following claims.

Claims
  • 1. A method of determining wheel departure from a road comprising: measuring the wheel speed of four wheels;calculating a resonance frequency of the four wheels based at least in part on wheel speed;calculating variations in the amplitude of the resonance frequency;comparing the variations in the amplitude of the resonance frequency with a threshold;indicating a complete lift-off condition of a wheel from the road if the variations exceed a threshold, the wheel being lifted off of a contact surface leaving an air gap between the wheel and the contact surface in the lift-off condition; anddetermining and providing a wheel lift status condition that provides whether the complete lift-off condition is no-wheel lift, single-wheel lift, two-wheel lift or single-wheel lift. with impending two-wheel lift.
  • 2. The method of claim 1 wherein the measuring provides a signal that is subsequently filtered in a filter.
  • 3. The method of claim 2 wherein the filter employs a second order spring-mass-damper model of the wheel to generate parameters of interest.
  • 4. The method of claim 3 wherein the parameters of interest are input data to calculate the resonance frequency.
  • 5. The method of claim 2 wherein the filter is a Recursive Least Squares (RLS) filter.
  • 6. The method of claim 2 wherein the filter is a Kalman filter.
  • 7. The method of claim 2 wherein the signal is transmitted to a pre-filter before the filter to remove noise and unwanted information.
  • 8. The method of claim 1, further comprising correlating the resonance frequency to a vertical force on the wheel.
  • 9. The method of claim 1, wherein the at least one wheel comprises four wheels, and further comprising the step of providing a wheel lift status condition.
  • 10. The system of claim 1, further comprising the step of providing a second order spring-mass-damper model of the wheel, and wherein the step of calculating the resonance frequency includes calculating the resonance frequency based on the wheel speed and the second order spring-mass-damper model.
  • 11. A system for determining wheel departure from a road comprising: a sensor that measures the wheel speed of four wheels; anda controller that calculates a resonance frequency of the wheels based at least in part on the wheel speed, calculates variations in the amplitude of the resonance frequency, compares the variations with a threshold to determine whether a complete lift-off condition of the wheel from the road occurred, and whether the complete lift-off condition is no-wheel lift, single-wheel lift, two-wheel lift or single-wheel lift with impending two-wheel lift and indicates the specific lift-off condition if the variations exceed the threshold.
  • 12. The system of claim 8 further comprising a filter that filters a signal associated with the wheel speed.
  • 13. The system of claim 12 wherein the filter employs a second order spring-mass-damper model of the wheel to generate parameters of interest.
  • 14. The system of claim 13 wherein the parameters of interest are input data to calculate the resonance frequency.
  • 15. The system of claim 12 wherein the filter is a Recursive Least Squares (RLS) filter.
  • 16. The system of claim 12 wherein the filter is a Kalman filter.
  • 17. The system of claim 12 further comprising a pre-filter wherein the signal is transmitted to a pre-filter to remove noise and unwanted information.
  • 18. The system of claim 11, the controller correlating the resonance frequency to a vertical force on the wheel.
  • 19. The system of claim 11, further comprising an indicator that provides a wheel lift status condition, the wheel lift status condition being provided as at least one of the following: no-wheel lift, single-wheel lift, two-wheel lift, and single-wheel lift with impending two-wheel lift.
  • 20. The system of claim 11, the system being a component of a dynamic stability control system.
US Referenced Citations (79)
Number Name Date Kind
4203612 Feikema May 1980 A
4927173 Clifton, Jr. May 1990 A
5553491 Naito et al. Sep 1996 A
5610575 Gioutsos Mar 1997 A
5723768 Ammon Mar 1998 A
5742918 Ashrafi et al. Apr 1998 A
5742919 Ashrafi et al. Apr 1998 A
5787375 Madau et al. Jul 1998 A
5790966 Madau et al. Aug 1998 A
5809434 Ashrafi et al. Sep 1998 A
5825284 Dunwoody et al. Oct 1998 A
5826207 Ohashi et al. Oct 1998 A
5852787 Fodor et al. Dec 1998 A
5948027 Oliver, Jr. et al. Sep 1999 A
5971503 Joyce et al. Oct 1999 A
6002974 Schiffmann Dec 1999 A
6053583 Izumi et al. Apr 2000 A
6065558 Wielenga May 2000 A
6122568 Madau et al. Sep 2000 A
6142026 Ohashi et al. Nov 2000 A
6158274 Guo et al. Dec 2000 A
6169939 Raad et al. Jan 2001 B1
6185497 Taniguchi et al. Feb 2001 B1
6220095 Fennel et al. Apr 2001 B1
6233505 Kranz et al. May 2001 B1
6249721 Lohberg et al. Jun 2001 B1
6263261 Brown et al. Jul 2001 B1
6278361 Magiawala et al. Aug 2001 B1
6282474 Chou et al. Aug 2001 B1
6321141 Leimbach Nov 2001 B1
6324446 Brown et al. Nov 2001 B1
6327526 Hagan Dec 2001 B1
6330496 Latarnik et al. Dec 2001 B1
6332104 Brown et al. Dec 2001 B1
6338012 Brown et al. Jan 2002 B2
6347541 Maleki Feb 2002 B1
6351694 Tseng et al. Feb 2002 B1
6353777 Harmison et al. Mar 2002 B1
6356188 Meyers et al. Mar 2002 B1
6364435 Gronau et al. Apr 2002 B1
6366844 Woywod et al. Apr 2002 B1
6374163 Lou et al. Apr 2002 B1
6397127 Meyers et al. May 2002 B1
6409286 Fennel Jun 2002 B1
6424907 Rieth et al. Jul 2002 B1
6434451 Lohberg et al. Aug 2002 B1
6435626 Kostadina Aug 2002 B1
6438464 Woywod et al. Aug 2002 B1
6471218 Burdock et al. Oct 2002 B1
6477480 Tseng et al. Nov 2002 B1
6496758 Rhode et al. Dec 2002 B2
6526334 Latarnik et al. Feb 2003 B1
6526342 Burdock et al. Feb 2003 B1
6529803 Meyers et al. Mar 2003 B2
6554293 Fennel et al. Apr 2003 B1
6556908 Lu et al. Apr 2003 B1
6593849 Chubb et al. Jul 2003 B2
6614343 Fennel et al. Sep 2003 B1
6631317 Lu et al. Oct 2003 B2
6644108 Inoue Nov 2003 B2
6654674 Lu et al. Nov 2003 B2
6658342 Hac Dec 2003 B1
6671595 Lu et al. Dec 2003 B2
6759952 Dunbridge et al. Jul 2004 B2
6799092 Lu et al. Sep 2004 B2
7031816 Lehmann et al. Apr 2006 B2
20010008986 Brown et al. Jul 2001 A1
20020056582 Chubb et al. May 2002 A1
20020139599 Lu et al. Oct 2002 A1
20030065430 Lu et al. Apr 2003 A1
20030100979 Lu et al. May 2003 A1
20030116373 Miller et al. Jun 2003 A1
20030130775 Lu et al. Jul 2003 A1
20030130778 Hrovat et al. Jul 2003 A1
20030163231 Meyers et al. Aug 2003 A1
20040041358 Hrovat et al. Mar 2004 A1
20040111208 Meyers et al. Jun 2004 A1
20040199314 Meyers et al. Oct 2004 A1
20050000278 Haralampu et al. Jan 2005 A1
Foreign Referenced Citations (12)
Number Date Country
3600708 Jul 1987 DE
4242788 Jul 1993 DE
63116918 May 1988 JP
WO 9747485 Dec 1997 WO
WO 9930941 Jun 1999 WO
WO 9930942 Jun 1999 WO
WO 0003887 Jan 2000 WO
WO 0003900 Jan 2000 WO
WO 0112483 Feb 2001 WO
WO 0236401 Mar 2002 WO
WO 02100696 1 Dec 2002 WO
WO 03002392 Jan 2003 WO
Related Publications (1)
Number Date Country
20060190143 A1 Aug 2006 US