The present invention relates to an offshore transport vessel unloading system. Transferring fluids, particularly cryogenic fluids, on the open ocean in unprotected locations offers particular hazards in terms of personnel safety and damage to the vessels or facilities involved. the fluids which are transported in a transport vessel from a remote location may be delivered to either a tank in the offshore location, or by pipeline to a land-based receiving terminal. Offshore tank storage may either be floating or settled on the seafloor.
No commercially proven technology exists that allows LNG transfer in harsh open ocean conditions between a floating transport vessel such as a standard LNG Carrier (LNGC) and a floating storage vessel such as a Floating Liquefied Natural Gas (FLNG) vessel or a Floating Storage & Regas Unit (FSRU). An FSRU is a fixed asset near a market site, for storing LNG and converting the LNG to a vapor for delivery to on-shore facilities. An FLNG is a Floating LNG production vessel. It is a fixed asset at a production field, and converts natural gas to LNG and then stores it until it can be loaded onto an LNGC for delivery to market. For floating storage vessels to become technically and commercially viable, a reliable LNG transfer system is necessary, one that provides a high LNGC berth availability to ensure that gas delivery commitments can be met.
Conventionally, LNG transfer to/from a floating transport vessel is accomplished thru articulated hard-pipe loading arms, which require a relatively benign, sheltered location for the LNG transfer system to work. Virtually all operational LNG terminals are located onshore, in harbors or in waters that are sheltered from harsh ocean conditions. Requiring protected LNG transfer sites limits the number of potential sites for new terminals, and in many regions a suitable site simply is not available. On the other hand, public pressure is forcing LNG transfer facilities increasingly further offshore. For the US West Coast, few shallow water sites are available and the Pacific Ocean Meteorological & Oceanographic (metocean) conditions (sea states, currents & winds) complicate the problem and further limit the number of potential solutions.
Applying articulated loading arm technology in an open ocean location has been contemplated by many LNG Terminal Projects. In shallow water locations with milder metocean conditions, a gravity based structure (GBS) is a technically feasible solution. It basically serves as a breakwater, thus allowing loading arms to be used in a side-by-side berthing layout.
In deeper water applications, a floating storage vessel that is single point moored (SPM) allows the vessel to weathervane into the dominant metocean conditions, thus generally minimizing floating storage vessel motions. Loading arms have been proposed for side-by-side berthing arrangements. However, being able to predict the relative motions between the floating storage vessel and the floating transport vessel with the necessary high degree of certainty has proven to be difficult. Unlike a GBS, a floating storage vessel does not serve as a breakwater, and the tug boat operational problems are further compounded by the berthing approach layout. Additional concerns include damage to the floating transport vessel and floating storage vessel due to high relative motions of the vessels, and floating transport vessel breakout due to high loads on the mooring lines. All these issues combine to produce significant concerns over vessel berth availability of the various proposed offshore LNG terminal concepts, and thus exacerbate concerns with being able to meet gas delivery commitments.
Development work to date on new offshore LNG transfer systems has centered on aerial (in-air) systems, and recently work has started on floating hose systems. It has been found that these systems require the use of dedicated floating transport vessels and the resulting systems are overly complicated, often utilize too much new technology and are considerably expensive. Other ‘in-water’ bottom founded systems have been conceptualized, as well as a variety of platform based concepts, all of which utilize either loading arms or aerial hoses and have the same problems or concerns as stated above. Furthermore, most of these systems do not include LNG storage, which places them at a severe disadvantage.
More recently, the industry has renewed interest in floating hose based transfer systems and started development work. The appeal of a floating hose based system is that it mimics tandem ship-to-ship oil transfer systems, which are well understood and have a long, well proven history of safe, successful operation. Manufacturers have worked to develop a cryogenic floating hose based on a layered fabric (labyrinth) design with inner and outer wire reinforcements. Other designs utilize an insulated stainless “bellows-in-bellows” (BIB).
Several significant concerns exist for any floating hose system. By the nature of the design the hose floats at or near the high energy zone at the water surface. Thus the hose will experience significant wave loadings, movement and fatigue cycles, particularly if left in the water between LNG liftings. Hose manufacturers have only recently begun work to explore ways to retrieve/deploy the hose between liftings, but difficulties remain with all of these concepts. The typical manufacturing processes limit the hose sections to between 10 and 50 meters in length, perhaps 100 meters at the most. This necessitates that several flanged connections be incorporated into the hose string, which act as stiff points (stress risers). The flanged connections must further be insulated and sealed from heat and seawater ingress. A typical transfer system will include 2 to 3 LNG delivery hose strings, and possibly 1 vapor return hose string. Significant concerns exist over hose clashing, which is exacerbated by having several flanged connection in each hose string. Physical separation of the hose strings has been considered, but this limits hose movement which induces additional hard points and raises additional fatigue concerns. Finally, the means of lifting the hoses out of the water and connecting them to the floating transport vessel manifold is problematic and has yet to be defined.
EP1462358 describes an apparatus for mooring a tanker for transporting liquid natural gas. The apparatus is described as including a semi-submersible floating dock, a single point mooring system, and at least one rigid arm. Fluids from the ship are passed to the single point mooring system through flexible hoses. The flexible hoses are said to take a catenary form, and are further said to be either held above the water or partially in contact with the water.
U.S. Pat. No. 6,915,753 describes a similar assembly for passing fluid from one floating vessel to another.
U.S. Pat. No. 6,923,225 describes articulated hard-pipe loading arms for transferring liquid natural gas between a tanker vessel and a processing vessel.
U.S. Pat. No. 4,718,459 describes an underwater cryogenic pipeline system for transporting liquefied natural gas in underwater locations between an onshore production or storage facility and an offshore vessel.
US2004/0011424 teaches a system for transferring a fluid product between a carrying vessel and a fixed installation. A tubular conveying arrangement is described, comprising a connection device and a flexible transfer pipe connected to the installation. The free end of the flexible transfer tube is provided with handling means to move the free end between a connection position to the connection device and a disengaged storage position.
However, the current methods for transferring LNG in the open ocean have limited effectiveness. Aerial designs require dedicated floating transport vessels that are significantly modified versions of standard carriers, and are overly complicated and expensive. Floating hose systems, which lie in the wave zone, are subject to severe fatigue cycling as well as mechanical damage and abrasion from contact between hose strings. What is required is a LNG transfer system that provides safe operation, high berth availability, universal applicability, regardless of ship design, and conduit handling methods to substantially reduce conduit damage for offshore LNG transfer between floating vessels.
The present invention relates to a flexible conduit for transferring cryogenic fluid in a body of water. In one embodiment, the transfer takes place between two floating vessels, with the conduit being connected at each end to one of the floating vessels. In another embodiment, the transfer takes place between a fixed liquid transfer system in a body of water and a floating vessel. The flexible conduit is substantially submerged in the water, and is further constrained to minimize contact with the bottom of the body of water, the floating vessels or the fixed system which are involved in the transfer of fluid, or other conduits which are involved in the transfer. In one embodiment, each conduit in the present system is suspended in the water in such as way as to assume a catenary configuration.
Accordingly, a system is provided for transferring a cryogenic fluid in a body of water, the system comprising a flexible conduit supported at a first end and at a second end and having a catenary configuration, wherein the conduit is substantially submerged in the body of water.
In a separate embodiment, the present invention provides a system for transferring a cryogenic fluid, comprising: a pipe spool having a connection means for attaching to a floating transportation vessel; at least one conduit having: a first end which is swivably connected to the pipe spool; and a second end which is swivably connected to a connection means for attaching to a floating storage vessel.
Further to the invention, a cryogenic fluid delivery system is provided, the system comprising: a cryogenic fluid floating transportation vessel; a cryogenic fluid floating storage vessel; a pipe spool having a first connection means for attaching to the transportation vessel; and at least one conduit having: a first end which is swivably connected to the pipe spool; and a second end which is swivably connected to a second connection means for attaching to the storage vessel.
Further to the invention is a process for transferring a cryogenic fluid between a transportation vessel to a storage vessel, comprising: providing a cryogenic fluid transfer assembly having: at least one pipe spool supported on a floating support vessel; at least one conduit having a first end which is swivably connected to the pipe spool, and a second end which is swivably connected to a floating storage vessel; and transferring the at least one pipe spool to a cryogenic fluid transportation vessel, and connecting the pipe spool to a connection means comprising a quick release connection.
In an embodiment of the invention, the conduit in a flexible catenary hose.
One object of the present invention is to provide a system and a method for transferring a cryogenic fluid such as LNG in the open ocean. Another object of the present invention is to provide a system comprising a flexible conduit for transferring a cryogenic fluid in the open ocean, while minimizing the stresses placed on the flexible conduit during its use. Thus, in one embodiment, the flexible conduit connects to the midship manifold of the transport vessel, optionally through a pipe spool, for transferring LNG to and from the vessel.
The present invention is directed to a flexible conduit system comprising a flexible conduit. In this disclosure, the terms conduit means, conduit, pipe and hose are used interchangeably in reference to the conduit means of this invention. For purposes of this disclosure, these terms are deemed to be equivalent, unless otherwise indicated.
For purposes of this disclosure, a cryogenic fluid is a liquid phase fluid which must be maintained at sub-ambient temperatures (i.e. temperatures less than 25° C.) and/or at a super-ambient pressure (i.e. at a pressure greater than 15 psia) to remain in the liquid phase. Liquefied natural gas (LNG) is a cryogenic fluid comprising predominately methane with decreasing amounts of C2+ hydrocarbons. Liquefied heavy gas (LHG) is a cryogenic fluid comprising predominately C2+ hydrocarbons. Liquefied petroleum gas (LPG) is a cryogenic fluid comprising predominately C3+ hydrocarbons. Any or all of these fluids, when maintained in the cryogenic state, can be transferred in the process and in the system of this invention.
In the process of the invention, a cryogenic fluid is transferred between floating vessels designed for handling, processing and, or transporting the fluid, in sufficiently deep water to permit use of the catenary conduit of this invention. In one embodiment, one of the vessels is a transportation vessel for transporting the cryogenic fluid from one location, such as the location where the fluid is prepared, to a second location, such as near to or connected with a market site for the fluid. A second floating vessel may be a floating storage vessel for the fluid, located at or near the site where the cryogenic fluid is prepared, or at or near the site where the cryogenic fluid is delivered to a market. Further, the second floating vessel may have on-board facilities for converting the fluid from the liquid phase to the vapor phase (i.e. by re-gasification), and optionally for preparing the vapor phase fluid for passage into a delivery system such as a pipeline for transport to a market location. Methods for regasifying a cryogenic fluid are well known. In another embodiment, the second vessel may be primarily a transfer vessel for transferring LNG from a floating vessel to on-shore storage and/or regasification facilities.
In a separate embodiment, the cryogenic fluid is transferred between a floating transportation vessel and a fixed deepwater assembly, for delivering the cryogenic fluid to a land-based facility. The fixed assembly for delivering the cryogenic fluid is located in sufficiently deep water to permit use of the catenary conduit of this invention, and is anchored to the bottom of the seafloor to make it sufficient stationary and robust for locating in the sea.
The flexible conduit system of the present invention will connect to any connection means provided for this purpose on each of the vessels or the fixed deepwater assembly. For example, a floating transport vessel for transporting a cryogenic fluid is generally equipped with a midship manifold for use in off-loading the fluid. The present system permits the flexible conduit system to connect directly into this midship manifold without requiring the extensive specialized structures needed with conventional off-loading systems. In one embodiment, the flexible conduit connects directly to the midship manifold. In another embodiment, the flexible conduit system comprises at least one flexible conduit, and a connection means which is connected to one end of the flexible conduit and further connected to the vessel, the connection means comprising one or more connectors, connected together in any order, and selected from the group consisting of a swivel connector, an emergency release system, a pipe spool and a quick connect/disconnect coupling.
To provide a means of safety to the vessel, the manifold provided on the transport vessel for off-loading the cryogenic fluid does not generally extend beyond the hull of the vessel. Accordingly, the present system comprises a pipe spool for attaching the flexible conduit to the vessel, while maintaining the end of the conduit in a generally vertical orientation, such that the conduit is permitted to hang from the pipe spool in a catenary configuration, without physically contacting the vessel along the length of the conduit. Thus, the pipe spool reduces the amount of abrasion damage or bending stresses to the flexible conduit. When the conduit is not in use and is being moved from its connection on the storage or transport vessel to the conduit transfer vessel, the pipe spool may remain connected to the conduit. Alternatively, the pipe spool may be stored separately from the conduit on one of the vessels involved in the present process.
Conventional LNG transfer hoses float on the surface of water, whether empty or being used to transfer LNG. Among other factors, the present invention is based on the discovery that weighting an LNG delivery hose, which is suspended from each end such that the hose is substantially submerged in a catenary configuration during transfer of LNG in a body of water, minimizes the affects of the surface wave zone on the hose, allows the hose to be stored in the water between LNG transfers, permits transfer of the cryogenic fluid using the midship manifold of the floating transport vessel and reduces the amount of specialized hardware required for transferring LNG and other cryogenic fluids. Further to the discovery is that a conduit assembly comprising a multiplicity of flexible conduits, each suspended from the two ends and weighted to permit the conduit to be substantially submerged in a catenary configuration, can be used in close proximity to each other without damaging each other through contact.
In an embodiment of the invention, a cryogenic fluid such as a Liquefied Natural Gas (LNG) is transferred between a floating transport vessel such as a Liquefied Natural Gas Carrier (floating transport vessel) and a floating storage vessel, such as a Floating Storage & Regas Unit (floating storage vessel). A conduit transfer vessel is utilized to support the first end of the conduit between transfers and is “parked” at the stern of the floating storage vessel. In this position the hoses hang in a relatively tight, but deeper catenary and move in unison with the floating storage vessel and the conduit transfer vessel. Prior to arrival of the floating transport vessel, the conduit transfer vessel moves away from the floating storage vessel with the hoses, which allows the floating transport vessel to tandem moor to the floating storage vessel by a conventional hawser system. The conduit transfer vessel moves to the floating transport vessel and moors along side at the midship manifold. Once in place a crane on the conduit transfer vessel lifts a hose off a hanger rack and transfers it to the floating transport vessel where it is guided into the correct position and the quick connect/disconnect coupling (QC/DC) locks the hose onto the floating transport vessel manifold. This process is repeated until all hose strings (typically 3 to 4) are connected and secured. At that point cool-down of the system commences and the conduit transfer vessel backs away from the floating transport vessel to allow LNG transfer and vapor return operations to proceed.
Once LNG transfer operations are completed, the conduit transfer vessel moves back and moors into position near the floating transport vessel, the first hose string is removed, then hung back and secured into position on the conduit transfer vessel hose rack. Once all hoses have been removed and secured, the conduit transfer vessel backs away from the floating transport vessel, which un-berths and departs, at which point the conduit transfer vessel moves back into the “parked” position on the stern of the floating storage vessel.
Throughout all operations the hoses remain in a catenary configuration, and are essentially aligned in the same vertical plane. The hoses are different lengths so that a suitable separation distance is maintained between the hoses, particularly at the bottom, or low point of the catenary. This configuration essentially eliminates concerns over the clashing of hoses as they will remain parallel as they move thru the water, e.g. they remain aligned as they follow the motions of the floating storage vessel, the conduit transfer vessel and the floating transport vessel.
During transfer of the cryogenic fluid, each hose is in the vertical position, which reduces the wave loadings on it compared to a floating hose. Where the upper end of the hose passes thru the wave zone (and is also handled by the crane) the hose could be stiffened to further alleviate these concerns. Alternately, a hard pipe section could be utilized at the upper end of the hose to eliminate any fatigue and handling concerns.
In the connected position to the floating transport vessel, the hose is located in the vertical, outboard of the floating transport vessel rail. This dictates that a 90 degree pipe spool be utilized to connect the hose to the floating transport vessel manifold. This pipe spool is typically attached to the hose and carried with the hose on the conduit transfer vessel. The floating transport vessel may optionally be fitted with hard points to support the weight of the pipe spool and hose, and stabbing guides to facilitate alignment of the pipe spool to the manifold flange. Alternately, a temporary alignment and support skid may be utilized to support the conduit loads and to facilitate alignment of the pipe spool to the manifold flange. Once aligned, the QC/DC would latch onto the manifold flange, minimizing the need for operator intervention.
An Emergency Release System (ERS) may be an element of the connection means. This places the ERS in the vertical run outside the floating transport vessel rail so that it simply drops the hose into the water if actuated. The hoses would be designed with slight positive buoyancy so as to ‘ride’ out of the water in this free-floating state. The hoses may be connected together with short cables, and a tag line provided back to the conduit transfer vessel so that the hose bundle can be winched away from the floating transport vessel. This allows the floating transport vessel to depart under the emergency conditions while minimizing the potential for damage to the transfer hoses.
Reference is now made to an embodiment of the invention illustrated in
The embodiment illustrated in
It is desirable to always maintain each conduit in a catenary configuration to the extent possible, since deviations from this configuration will add stress to the conduit and potentially shorten its useful life. According to the invention, each of the conduits in the delivery conduit assembly assumes a catenary configuration, with each end of the conduit being supported by a support means, and with the submerged length of the conduit between the ends being permitted to hang in a generally vertical plane under the attraction of gravity. Conventional conduits tend to be buoyant, and some will be expected to float. Therefore, in one embodiment of the invention, the flexible conduit is selectively weighted such that the conduit is substantially submerged in the body of water during transfer of the cryogenic fluid through the conduit. The conduit may be uniformly weighted along its length, or a portion thereof, to achieve the desired buoyancy to maintain the catenary configuration. Alternatively, the conduit may be weighted at the bottom of the catenary to compensate for buoyancy effects. The catenary hose, therefore, retains its shape during use in transferring the cryogenic fluid, reducing the detrimental effects of any bending stresses to the conduit.
The conduit of the invention may be further weighted such that each end of the conduit can be easily retrieved should the end of the conduit become free of any connection or support. In one embodiment, the conduit can be selectively weighted and designed, such that, if released into the body of water without connection or external support, it will assume a vertical catenary configuration, with the ends floating on the surface of the body of water and the remainder of the conduit hanging in vertical configuration below the floating ends.
The conduit maintains a catenary configuration while remaining substantially submerged in the body of water. In one embodiment, only the ends of the conduit are exposed above the water, and the conduit enters the wave zone in essentially a vertical orientation. In another embodiment, greater than 60%, and preferably greater than 75% of the conduit hangs below the water's surface. Conduit lengths of 300 feet or greater are expected to be useful for most applications.
In
The connection means for attaching the conduit to the storage vessel may be located on the midship manifold, which is intended for delivering the cryogenic liquid to the various tanks in the storage vessel. Any connection means with which the storage vessel is supplied is suitable for use in the present invention. Example connection means which are useful include a flanged connector or a quick connect/disconnect connector. An in-line swivel is desirably provided on each hose to allow the hose to rotate, thus eliminating any torsional concerns imparted in the hose during connection, during use, or during transfer from one vessel to another.
The storage vessel is generally anchored at, for example, a single point mooring anchorage, near the market location for liquefied natural gas. As such, the storage vessel is generally equipped with means for the cryogenic liquid to be gasified (converted from a liquid to a vapor phase) in a regasification facility installed on the storage vessel prior to delivery to a receiving station for distribution to one or more natural gas customers. Alternatively, the storage vessel can be equipped with means for delivering liquefied natural gas to a market location, to another land-based or sea-based transport vessel, to a refinery, to a power plant or to a gasification facility for converting the cryogenic liquid into vapor.
In one embodiment of the practice of the invention, the conduit is permitted to hang at both ends from a transfer vessel. Prior to attachment, the transfer vessel moves the first end of the conduit into place on one vessel and moves the second end of the conduit into place on a second vessel, in preparation for transferring the cryogenic fluid from one vessel to another.
In another embodiment, the conduit remains connected to one vessel (normally the floating storage vessel) during a sequence of fluid transfer operations. In this case, one step in the process of the invention involves attaching the free end of the conduit to a second vessel (normally the floating transport vessel) for transfer of the fluid from one vessel to another. As shown in
In the practice of the invention, a crane (40) will be used for lifting the second end of the conduit from the conduit transfer vessel to the transport vessel. The crane may be located on the transport vessel, on the conduit transfer vessel, or on a separate vessel. In order to maintain a safe operation while permitting a wide range of different transport vessels to unload LNG in the use of the invention, the crane is preferably positioned on the conduit transfer vessel (20).
After the transport vessel is positioned and secured to the storage vessel, the conduit transfer vessel moves into place and transfers each conduit from the support position on the transfer vessel to the connection means on the transport vessel. When all of the conduits (25) are connected to the transport vessel, the conduit transfer vessel is moved away from the transport vessel. The fact that the conduit transfer vessel does not remain attached to the transport vessel during cryogenic fluid transfer, but moves a distance away, greatly improves the safety of the cryogenic fluid transfer operations.
During fluid transfer, the flexible conduit system is connected at one end to a floating vessel and at the other end to a floating vessel or to a fixed deepwater connection means for transferring the fluid to (or from) on-shore facilities. Each end of the flexible conduit may be connected directly to the transfer manifold provided on each vessel. Alternatively, a connection means may be included in the connection between a vessel and one end of the conduit. Thus, the flexible conduit system comprises a connection means which is connected to one end of the flexible conduit and further connected to one of the vessels, the connection means comprising one or more connectors, connected together in any order, and selected from the group consisting of a swivel connector, an emergency release system, a pipe spool and a quick connect/disconnect coupling.
In the process of transferring cryogenic fluid, the connection means is attached at one end to the flexible conduit and at the other to the vessel, from (or to) which the cryogenic fluid is transferred.
The transfer manifold refers to the means provided with the vessel, through which and with which the cryogenic fluid is transferred while the vessel is loading or unloading its cargo. Often the transfer manifold comprises a flanged connector for connecting to the conduit system. The vessel may be designed with a transfer manifold located anywhere within the vessel. A common transfer manifold is termed the mid-ship manifold. In general, the flexible conduit system provides a connection means for attaching the flexible conduit to the transfer manifold, regardless of the design or location of the manifold.
The embodiment illustrated in
The embodiment illustrated in
As shown in
Further reference is made to
In another embodiment, illustrated in
When transfer of cryogenic fluid is complete, the conduit is removed in a reverse of the steps described above. Thus, the crane (40) is positioned to support the weight of the conduit and connection means by attachment to the lifting eyes (210). The quick connect/disconnect coupling (205) is released and the connection means and conduit are swung out of the way of the transport vessel and returned to the support on the conduit transfer vessel. The transfer vessel then moves away from the transport vessel, to permit the transport vessel to move from the area and return for another load of cryogenic fluid.
This application is a continuation of U.S. patent application Ser. No. 11/303,216, filed on Dec. 16, 2005, which claims the benefit of U.S. provisional patent application Ser. No. 60/716,742 filed on Sep. 12, 2005 the disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60716742 | Sep 2005 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11303216 | Dec 2005 | US |
Child | 12465527 | US |