The subject matter disclosed herein relates generally to combustion systems and more specifically to hot gas flow.
In a typical can annular gas turbine engine, a plurality of combustors are arranged in a generally annular array about the engine. The combustors receive pressurized air from the engine's compressor, adds fuel to create a fuel/air mixture, and combusts that mixture to produce hot gases. The hot gases exiting the combustors are utilized to turn a turbine, which is coupled to a shaft that drives a generator for generating electricity.
The hot combustion gas is conveyed from the combustor liner to the turbine by a transition piece or duct. The hot combustion gas flowing through the transition piece subjects the duct structure to very high temperatures and can lead to premature deterioration that requires repair and replacement of the transition ducts. A significant crack in an otherwise relatively undamaged transition piece may require replacement of the entire transition piece.
Disclosed herein are apparatuses, methods, and systems for hot gas flow. In an embodiment, a transition piece has a surface that conforms to an approximately straight line extending lengthwise of the transition piece from approximately a forward end and an aft end of the transition piece, wherein the surface directs the flow of gases.
In an embodiment, a system comprises a surface that conforms to an approximately straight line from approximately a forward end and an aft end of the transition piece, wherein the surface helps direct the flow of gases and a stage one nozzle, wherein the stage one nozzle adjacent to the transition piece and is shaped to conform to a line path of the surface that conforms to the approximately straight line of the transition piece.
In yet another embodiment, there is a method comprising creating an approximately straight line path from a forward end for a first transition piece to an aft end for the first transition piece and creating a surface of the first transition piece that conforms to the approximately straight line path of the first transition piece, wherein the surface helps direct the flow of gases.
This Brief Description of the Invention is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Brief Description of the Invention is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Furthermore, the claimed subject matter is not limited to limitations that solve any or all disadvantages noted in any part of this disclosure.
A more detailed understanding may be had from the following description, given by way of example in conjunction with the accompanying drawings wherein:
It has been shown that the life limiting area of a transition piece often has higher temperatures placed on it than other areas of the transition piece. These higher temperatures may cause a higher strain range for every start to stop cycle of the turbine. Over time, these strain cycles may accumulate and become the transition piece's life limit. These higher temperatures may also cause oxidation of the transition piece material. Over time, this oxidation may accumulate and become the life limit of the transition piece. Regardless of the relatively undamaged nature of the other portions of the transition piece, the entire transition piece is replaced when significant damage (e.g., cracking) is done to a particular area of the transition piece.
Experimentation through computational fluid dynamics (CFD) and other analysis techniques have shown that a transition piece with a linear cross section profile located where the highest hot side heat transfer occurs, will reduce the hot gas impingement and therefore may increase the life of the transition piece. Consequently, the transition piece may have a longer life before its removal is needed. In
Peak HTC may be controlled by altering the maximum tangent line angle, therefore a straight line surface as in
In an embodiment, the straight line from the transition piece may continue so that intervening apparatuses conform to the straight line that may extend into, but then terminate within the S1N. CFD and other analysis has shown that if a straight line transition piece, as disclosed herein, is used in conjunction with a S1N that continues the top panel linear alignment; additional benefits in lengthening the life of the transition piece are gained with regard to the life of the transition piece. The straight line may start near the end of the liner interface and extend into the S1N of the hot gas path. The straight line as disclosed herein may be substantially straight and create a minimal angle between the center line and the maximum tangent line angle of the TP.
In describing preferred embodiments of the subject matter of the present disclosure, as illustrated in the Figures, specific terminology is employed for the sake of clarity. The claimed subject matter, however, is not intended to be limited to the specific terminology so selected, and it is to be understood that each specific element includes all technical equivalents that operate in a similar manner to accomplish a similar purpose. While examples disclosed herein apply to the top panel, it may apply to the sides and bottom as well.
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.
The subject matter disclosed in this patent application is related to the subject matter disclosed and claimed in the following U.S. Patent Application No. XXXX, Attorney Docket No. 257649/GEEN-0031, and U.S. Patent Application No. XXX, Attorney Docket No. 256748/GEEN-0032. Each of the above U.S. patent applications were filed on even day herewith and are incorporated by reference herein in their entirety.