The present disclosure relates to systems and assemblies for selectively preventing undesired high speed rotation of power tongs.
The drilling and completion processes of wells requires numerous tubular sections. During the drilling process, individual sections of drill pipe are coupled together as the drill string extends into the formation. After the drilling process, various other tubulars (e.g., casing, tubing, tiebacks, etc.) may be coupled together as they are inserted into the resulting wellbore. These tubulars may be coupled together using rotational energy provided by workers on the rig, or, in many cases, through the use of power tongs. Power tongs are large-capacity, self-locking wrenches used to grip tubular sections and apply torque. While extending a tubular section into the wellbore, the power tongs are set to a makeup position. While retrieving a tubular section from the wellbore, the power tongs are set to a break out position.
Tubular running services are one of the many services provide in drilling and workover operations. Power tongs are one of many tools that may be used during tubular running services.
During operation of a power tong, an operator may either add tubular sections or remove tubular sections from a tubular string (i.e., a series of connected tubulars). Adding additional tubular sections to the tubular string may be referred to as makeup, whereas removing tubular sections from the tubular string may be referred to as break out. During makeup or break out, it may be necessary to briefly switch rotation of the power tong to break out or makeup, respectively. This may be due to cross-threading of the tubular sections or to release the catcher dies (the portion of the power tongs which grip the tubular sections before torque is applied) of the power tong from the tubular. While one or more snap lines may be used to isolate the power tong from undesirably rotating when the rotation of the power tong is switched, the one or more snap lines may not always be effective. Therefore, operators may be hesitant to switch the direction of rotation of the power tong from makeup to break out. The brief hesitation to switch direction adds up, effectively costing lengthy delays in tubular running services.
Accordingly, there is an ongoing need for systems and assemblies for preventing undesirable high speed rotation of power tongs. The present disclosure is directed to systems for selectively preventing high speed rotation of a power tong. The present disclosure is also directed to assemblies for making and breaking tubular connections. More specifically, the present disclosure may feature a rotation lever position locking element movable between a blocking position and a non-blocking position that is coupled to the speed lever of the power tong. As further described herein, undesirable high speed rotation of power tongs may efficiently be accomplished using the systems and assemblies of the present disclosure.
According to one or more aspects of the present disclosure, a system for selectively preventing high speed rotation of a power tong may include a rotation lever position locking element, and a coupling mechanism. The power tong may have a rotation lever operable to set rotation of the power tong to a makeup setting when the rotation lever is in a first position or a break out setting when the rotation lever is in a second position. The power tong may have a speed lever operable to set the rotation speed of the power tong to a low speed when the speed lever is in a low speed position or a high speed when the speed lever is in a high speed position. The rotation lever position locking element may be movable between a blocking position wherein the rotation lever position locking element blocks movement of the rotation lever between the first position and the second position and a non-blocking position wherein the rotation lever position locking element does not block movement of the rotation lever. The coupling mechanism may couple the rotation lever position locking element to the speed lever such that movement of the speed lever from the low speed position to the high speed position moves the rotation lever position locking element from the non-blocking position to the blocking position and movement of the speed lever from the high speed position to the low speed position moves the rotation lever position locking element from the blocking position to the non-blocking position.
According to one or more aspects of the present disclosure, a power tong assembly for making and breaking a tubular connection. The power tong assembly may include a first tong operable to engage a first tubular, a second tong operable to engage and rotate a second tubular relative to the first tubular to make or break the tubular connection. The second tong may include a rotation lever, a speed lever, and a system for selectively preventing high speed rotation of the power tong. The rotation lever may be operable to set rotation of the second tong to a makeup setting when the rotation lever is in a first position or a break out setting when the rotation lever is in a second position. The speed lever may be operable to set rotation speed of the second tong in a low speed position or a high speed position. The system for selectively preventing high speed rotation of the power tong may include a rotation lever position locking element and a coupling mechanism. The rotation lever position locking element may be movable between a blocking position wherein the rotation lever position locking element blocks movement of the rotation lever between the first position and the second position and a non-blocking position wherein the rotation lever position locking element does not block movement of the rotation lever. The coupling mechanism may couple the rotation lever position locking element to the speed lever such that movement of the speed lever from the low speed position to the high speed position moves the rotation lever position locking element from the non-blocking position to the blocking position and movement of the speed lever from the high speed position to the low speed position moves the rotation lever position locking element from the blocking position to the non-blocking position.
Additional features and advantages of the technology described in this disclosure will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from the description or recognized by practicing the technology as described in this disclosure, including the detailed description which follows, the claims, as well as the appended drawings.
The following detailed description of specific embodiments of the present disclosure can be best understood when read in conjunction with the following drawings, where like structure is indicated with like reference numerals and in which:
Reference will now be made in greater detail to various embodiments of the present disclosure, some embodiments of which are illustrated in the accompanying drawings. Whenever possible, the same reference numerals will be used throughout the drawings to refer to the same or similar parts.
The present disclosure is directed to systems for selectively preventing high speed rotation of a power tong. The power tong may include a rotation lever operable to set rotation of the power tong to a makeup setting when the rotation lever is in a first position or a break out setting when the rotation lever is in a second position. The power tong may also include a speed lever operable to set the rotation speed of the power tong to a low speed when the speed lever is in a low speed position or a high speed when the speed lever is in a high speed position. The systems may include a rotation lever position locking element. The rotation lever position locking element may be movable between a blocking position wherein the rotation lever position locking element blocks movement of the rotation lever between the first position and the second position and a non-blocking position wherein the rotation lever position locking element does not block movement of the rotation lever. The system may further include a coupling mechanism coupling the rotation lever position locking element to the speed lever such that movement of the speed lever from the low speed position to the high speed position may move the rotation lever position locking element from the non-blocking position to the blocking position. Movement of the speed lever from the high speed position to the low speed position may move the rotation lever position locking element from the blocking position to the non-blocking position.
The present disclosure is also directed to power tong assemblies for making and breaking a tubular connection. The power tong assemblies may include a first tong operable to engage a first tubular, a second tong operable to engage and rotate a second tubular relative to the first tubular to make or break the tubular connection. The second tong may include a rotation lever operable to set rotation of the power tong to a makeup setting when the rotation lever is in a first position or a break out setting when the rotation lever is in a second position. The second tong may also include a speed lever operable to set rotation speed of the second tong in a low speed position or a high speed position. The power tong assemblies for making and breaking a tubular connection may also include a system for selectively preventing high speed rotation of the power tong comprising a rotation lever position locking element and a coupling mechanism. The rotation lever position locking element may be movable between a blocking position wherein the rotation lever position locking element blocks movement of the rotation lever between the first position and the second position and a non-blocking position wherein the rotation lever position locking element may not block movement of the rotation lever. The coupling mechanism may couple the rotation lever position locking element to the speed lever such that movement of the speed lever from the low speed position to the high speed position moves the rotation lever position locking element from the non-blocking position to the blocking position and movement of the speed lever from the high speed position to the low speed position may move the rotation lever position locking element from the blocking position to the non-blocking position.
The various systems and assemblies for selectively preventing high speed rotation of the power tong may provide increased efficiency for making and breaking tubular connections. That is, the various systems and assemblies may provide reassurance for operators that no undesirable rotation of the power tong will occur due to the rotation being changed while the power tong is in the high speed setting. The systems and assemblies of the present disclosure may increase efficiency during tubular running services.
As used throughout the present disclosure, the term “power tong” may refer to a large-capacity, self-locking wrench used to grip drillstring components (e.g., tubulars) and apply torque. Power tongs are typically used in opposing pairs.
As used throughout the present disclosure, the term “tubular connection” may refer to any threaded or non-threaded union or joint that connects two tubular components. The tubular components may include drill pipes, casings, tubings, or tiebacks.
Reference is made in the present disclosure to makeup and break out settings. As used in the present disclosure, “makeup” may refer to the process of joining tubular components. “Break out” may refer to the process of disjoining tubular components.
Referring to
Systems 100 of the present disclosure for selectively preventing high speed rotation of a power tong 110 may be implemented with any conventional or yet to be developed power tong 110. A person having ordinary skill in the art will appreciate the applicability of the systems 100 of the present disclosure to any power tong 110 having a rotation lever 112 and a speed lever 114.
Referring still to
The power tong 110 may also include one or more snap lines 118. The snap line 118 may be fixed to the power tong 110 and tied off at a snap point (not shown) that is independent and separate from the power tong 110. The snap line 118 may prevent undesirable rotation of the power tong 110. Due to limited space on many rig floors, it is not uncommon that only one snap line 118 may be used. While in the makeup setting, the snap line 118 may prevent the power tong 110 from rotating away from the operator. However, when only one snap line 118 is used, a change from the makeup setting to the break out setting with the speed lever 114 in the high speed position may cause the power tong 110 to rotate towards the operator. The assemblies and systems 100 of the present disclosure may prevent undesirable rotation of the power tong 110. The assemblies and systems 100 of the present disclosure may require that the speed lever 114 be switched to the low speed positon prior to changing the rotation of the power tong 110, such that the power tong 110 cannot undesirably rotate towards the operator at a high rate of speed. It is contemplated that the assemblies and systems 100 of the present disclosure may not eliminate rotation of the power tong 110 toward the operator entirely, but the assemblies and systems 100 of the present disclosure may reduce the rate of speed at which the power tong 110 may rotate towards the operator.
Referring to
Referring again to
In embodiments, the system 100 may include a coupling mechanism guide 106. The coupling mechanism guide 106 may be operable to route the coupling mechanism 104 between the rotation lever position locking element 102 and the speed lever 114. In embodiments, the coupling mechanism guide 106 may include one or more hollow members, such as a channel, one or more pipes, one or more pulleys 206 (see
In an embodiment, the coupling mechanism guide 106 comprises a hollow member and the coupling mechanism 104 comprises a cable. Referring to
It is contemplated that various other components or tools may be added to the system 100 for selectively preventing high speed rotation of a power tong 110 as necessary. Depending on, for example, the power tong 110, a person having ordinary skill in the art may recognize that additional components or tools may be beneficial to add to the systems 100 of the present disclosure.
Referring again to
As previously described in the present disclosure, the rotation lever 112 may be operable to set rotation of the power tong 110 to a makeup setting or a break out setting. The rotation lever 112 may be operable to set rotation of the power tong 110 to the makeup setting when the rotation lever 112 is in a first position. The rotation lever 112 may be operable to set rotation of the power tong 110 to the break out setting when the rotation lever 112 is in a second position. The speed lever 114 may be operable to set rotation speed of the second tong 130 in a low speed position or a high speed position. The system 100 for selectively preventing high speed rotation of the power tong 110 may include a rotation lever position locking element 102 and a coupling mechanism 104. The rotation lever position locking element 102 may be movable between a blocking position and a non-blocking position. In the blocking position, the rotation lever position locking element 102 may block movement of the rotation lever 112 between the first position and the second position. In the non-blocking position, the rotation lever position locking element 102 may not block movement of the rotation lever 112. The coupling mechanism 104 may couple the rotation lever position locking element 102 to the speed lever 114. Movement of the speed lever 114 from the low speed position to the high speed position may move the rotation lever position locking element 102 from the non-blocking position to the blocking position. Movement of the speed lever 114 from the high speed position to the low speed position may move the rotation lever position locking element 102 from the blocking position to the non-blocking position.
A coupling mechanism guide 106 may be attached to the second tong 130. The second tong 130 may refer to the power tong 110 in general as previously discussed with respect to the system of the present disclosure. That is, the coupling mechanism guide 106 may be attached to the power tong 110 that is operable to engage and rotate a second tubular relative to the first tubular to make or break the tubular connection, which includes the rotation lever 112 and the speed lever 114.
One or more aspects of the present disclosure are described herein. A first aspect of the present disclosure may include a system for selectively preventing high speed rotation of a power tong. The power tong may have a rotation lever operable to set rotation of the power tong to a makeup setting when the rotation lever is in a first position or a break out setting when the rotation lever is in a second position. The power tong may have a speed lever operable to set the rotation speed of the power tong to a low speed when the speed lever is in a low speed position or a high speed when the speed lever is in a high speed position. The system may include a rotation lever position locking element movable between a blocking position wherein the rotation lever position locking element blocks movement of the rotation lever between the first position and the second position and a non-blocking position wherein the rotation lever position locking element does not block movement of the rotation lever. The system may include a coupling mechanism coupling the rotation lever position locking element to the speed lever such that movement of the speed lever from the low speed position to the high speed position moves the rotation lever position locking element from the non-blocking position to the blocking position and movement of the speed lever from the high speed position to the low speed position moves the rotation lever position locking element from the blocking position to the non-blocking position.
A second aspect of the present disclosure may include the first aspect, wherein the rotation lever position locking element in the blocking position prevents movement of the rotation lever when the speed lever is in the high speed position.
A third aspect of the present disclosure may include either the first or second aspect, wherein the system further comprises a coupling mechanism guide operable to route the coupling mechanism between the rotation lever position locking element and the speed lever.
A fourth aspect of the present disclosure may include the third aspect, wherein the coupling mechanism guide is attached to the power tong.
A fifth aspect of the present disclosure may include either the third or fourth aspect, wherein the coupling mechanism guide comprises a hollow member and the coupling mechanism comprises a cable.
A sixth aspect of the present disclosure may include any one of the third through fifth aspects, wherein the coupling mechanism guide comprises one or more pipes.
A seventh aspect of the present disclosure may include any one of the third through sixth aspects, wherein the coupling mechanism guide comprises one or more gears.
An eighth aspect of the present disclosure may include any one of the third through seventh aspects, wherein the coupling mechanism comprises a wire, a chain, or a combination of these.
A ninth aspect of the present disclosure may include any one of the third through eighth aspects, wherein the rotation lever position locking element comprises an elongate body pivotally attached to the power tong.
A tenth aspect of the present disclosure may include any one of the third through ninth aspects, wherein the rotation lever position locking element, the coupling mechanism, or both are formed from stainless steel.
An eleventh aspect of the present disclosure may include a power tong assembly for making and breaking a tubular connection. The power tong assembly may include a first tong operable to engage a first tubular and a second tong operable to engage and rotate a second tubular relative to the first tubular to make or break the tubular connection. The second tong may include a rotation lever operable to set rotation of the second tong to a makeup setting when the rotation lever is in a first position or a break out setting when the rotation lever is in a second position. The second tong may include a speed lever operable to set rotation speed of the second tong in a low speed position or a high speed position. The second tong may include a system for selectively preventing high speed rotation of the power tong comprising a rotation lever position locking element and a coupling mechanism. The rotation lever position locking element may be movable between a blocking position wherein the rotation lever position locking element blocks movement of the rotation lever between the first position and the second position and a non-blocking position wherein the rotation lever position locking element does not block movement of the rotation lever. The coupling mechanism may couple the rotation lever position locking element to the speed lever such that movement of the speed lever from the low speed position to the high speed position moves the rotation lever position locking element from the non-blocking position to the blocking position and movement of the speed lever from the high speed position to the low speed position moves the rotation lever position locking element from the blocking position to the non-blocking position.
A twelfth aspect of the present disclosure may include the eleventh aspect, wherein in the system for selectively preventing high speed rotation of the power tong further comprises a coupling mechanism guide operable to route the coupling mechanism between the rotation lever position locking element and the speed lever.
A thirteenth aspect of the present disclosure may include the twelfth aspect, wherein the coupling mechanism guide is attached to the second tong.
A fourteenth aspect of the present disclosure may include either the twelfth or thirteenth aspect, wherein the coupling mechanism guide is welded to the second tong.
A fifteenth aspect of the present disclosure may include any one of the twelfth through fourteenth aspects, wherein the coupling mechanism guide comprises a hollow member and the coupling mechanism comprises a cable.
A sixteenth aspect of the present disclosure may include any one of the twelfth through fifteenth aspects, wherein the coupling mechanism guide comprises one or more pipes.
A seventeenth aspect of the present disclosure may include any one of the eleventh through sixteenth aspects, wherein the coupling mechanism guide comprises one or more gears.
An eighteenth aspect of the present disclosure may include any one of the twelfth through seventeenth aspects, wherein the coupling mechanism comprises a wire, a chain, or a combination of these.
A nineteenth aspect of the present disclosure may include any one of the eleventh through eighteenth aspects, wherein the rotation lever position locking element comprises an elongate body pivotally attached to the power tong.
A twentieth aspect of the present disclosure may include any one of the eleventh through nineteenth aspects, wherein the rotation lever position locking element, the coupling mechanism, or both are formed from stainless steel.
It is noted that one or more of the following claims utilize the term “where” as a transitional phrase. For the purposes of defining the present technology, it is noted that this term is introduced in the claims as an open-ended transitional phrase that is used to introduce a recitation of a series of characteristics of the structure and should be interpreted in like manner as the more commonly used open-ended preamble term “comprising.”
Having described the subject matter of the present disclosure in detail and by reference to specific embodiments, it is noted that the various details described in this disclosure should not be taken to imply that these details relate to elements that are essential components of the various embodiments described in this disclosure, even in cases where a particular element is illustrated in each of the drawings that accompany the present description. Rather, the claims appended hereto should be taken as the sole representation of the breadth of the present disclosure and the corresponding scope of the various embodiments described in this disclosure. Further, it will be apparent that modifications and variations are possible without departing from the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4593584 | Neves | Jun 1986 | A |
7281451 | Schulze Beekinghausen | Oct 2007 | B2 |
9995095 | Thibodeaux | Jun 2018 | B2 |
10006260 | Webre | Jun 2018 | B2 |
11613941 | Webre | Mar 2023 | B2 |
20200284107 | Webre et al. | Sep 2020 | A1 |
20210239206 | Al Harthi | Aug 2021 | A1 |
Number | Date | Country |
---|---|---|
202140048 | Feb 2012 | CN |
107191144 | Sep 2018 | CN |
107165588 | Oct 2018 | CN |
107386997 | Dec 2018 | CN |
Number | Date | Country | |
---|---|---|---|
20220298873 A1 | Sep 2022 | US |