The field of the disclosure relates generally to turbomachine maintenance and, more particularly, to systems and a method for use in performing maintenance within a confined space of a turbomachine.
At least some known turbine engines include an outer case and at least one rotor that includes multiple stages of rotating airfoils, i.e., blades, which rotate with respect to the outer case. In addition, the outer case includes multiple stages of stationary airfoils, i.e., guide vanes. The blades and guide vanes are arranged in alternating stages. In at least some known rotary machines, shrouds are disposed on the radially inner surfaces of a stator to form a ring seal around tips of the blades. Together, the blades, guide vanes, and shrouds define a primary flowpath inside the compressor and turbine sections of the rotary machine. This flowpath, combined with a flowpath through the combustor, defines a primary cavity within the turbine engine.
During operation, the components of the turbine engine experience at least some material degradation as a function of the components' service history. Accordingly, for at least some known turbine engines, periodic inspections, such as borescope inspections, are performed to assess the condition of the turbine engine between service intervals. However, it may be difficult to inspect certain regions within the turbine engine with conventional borescope inspection techniques. As an alternative to conducting borescope inspections, at least some known turbine engines are at least partially disassembled from an airframe and moved to a facility to allow repair and/or replacement of damaged components at regularly scheduled service intervals. For example, damaged components the turbine engines are primarily repaired at overhaul or component repair facilities that are offsite from a location of the airframe. However, disassembling turbine engines for regular service and inspection is a costly and time-consuming endeavor.
In one aspect, a system for use in servicing a turbomachine is provided. The system includes a first tubular body including an interior channel. The first tubular body is bendable between a neutral shape or a biased shape, with the first tubular body being bent when in the neutral shape. A second tubular body includes a tip end, wherein the second tubular body is translatable within the interior channel. The second tubular body is bendable between a neutral shape and a biased shape, with the second tubular body being bent when in the neutral shape. The first tubular body and the second tubular body are rotatable to selectively orient the tip end in multiple degrees of freedom. The system also includes a steering cable extending from the tip end, wherein the steering cable is configured to bias the tip end for selective orientation in additional degrees of freedom.
In another aspect, a system for use in servicing a turbomachine is provided. The system includes a guide tube including an interior, and a tubular assembly sized for insertion within, and deployable from, the interior of the guide tube. The tubular assembly includes a first tubular body including an interior channel, and the first tubular body is bendable between a neutral shape or a biased shape, with the first tubular body being bent when in the neutral shape. A second tubular body of the tubular assembly includes a tip end. The second tubular body is translatable within the interior channel, and is bendable between a neutral shape and a biased shape, with the second tubular body being bent when in the neutral shape. The first tubular body and the second tubular body are rotatable to selectively orient the tip end in multiple degrees of freedom. The system also includes a steering cable extending from the tip end, wherein the steering cable is configured to bias the tip end for selective orientation in additional degrees of freedom, and a payload coupled to the tip end.
In yet another aspect, a method of servicing a turbomachine is provided. The method includes disassembling the turbomachine to provide access to a confined space within the turbomachine, wherein the confined space includes a maintenance location. The method also includes positioning a tubular assembly within the confined space, the tubular assembly including a first tubular body having an interior channel, and the first tubular body being bent when in a neutral shape. A second tubular body of the tubular assembly has a tip end, wherein the second tubular body is translatable within the interior channel, and the second tubular body being bent when in a neutral shape. A payload is coupled to the tip end. The method also includes rotating at least one of the first tubular body and the second tubular body to selectively orient the tip end in multiple degrees of freedom to position the payload proximate the maintenance location, biasing, with a steering cable, the tip end for selective orientation in additional degrees of freedom to position the payload proximate the maintenance location, and performing an operation at the maintenance location with the payload.
These and other features, aspects, and advantages of the present disclosure will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
Unless otherwise indicated, the drawings provided herein are meant to illustrate features of embodiments of this disclosure. These features are believed to be applicable in a wide variety of systems comprising one or more embodiments of this disclosure. As such, the drawings are not meant to include all conventional features known by those of ordinary skill in the art to be required for the practice of the embodiments disclosed herein.
In the following specification and the claims, reference will be made to a number of terms, which shall be defined to have the following meanings.
The singular forms “a”, “an”, and “the” include plural references unless the context clearly dictates otherwise.
“Optional” or “optionally” means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event occurs and instances where it does not.
Approximating language, as used herein throughout the specification and claims, may be applied to modify any quantitative representation that could permissibly vary without resulting in a change in the basic function to which it is related. Accordingly, a value modified by a term or terms, such as “about”, “approximately”, and “substantially”, are not to be limited to the precise value specified. In at least some instances, the approximating language may correspond to the precision of an instrument for measuring the value. Here and throughout the specification and claims, range limitations may be combined and/or interchanged, such ranges are identified and include all the sub-ranges contained therein unless context or language indicates otherwise.
Embodiments of the present disclosure relate to systems and a method for use in performing maintenance within a confined space of a turbomachine, such as a turbine engine. In the exemplary embodiment, the systems described herein include a tubular assembly including a first tubular body and a second tubular body. The second tubular body is sized for insertion within the first tubular body. The first tubular body is rotatable relative to its longitudinal axis when positioned within the confined space, and the second tubular body is rotatable and translatable relative to the first tubular body. In addition, the first and second tubular bodies are each bendable between a neutral shape and a biased shape. The bodies are bent when in the neutral shape, such that a tip end of the second tubular body is selectively orientable in multiple degrees of freedom by rotating one or both of the first and second tubular bodies. A steering cable extending from the tip end may also be used to bias the tip end for selective orientation in additional degrees of freedom. A payload may be coupled to the tip end. As such, the tubular assembly enables the payload to be maneuvered around obstacles within the turbine engine for positioning the payload proximate a maintenance location. The payload may then perform an operation at the maintenance location such as, but not limited to, an inspection operation. As such, the systems and method described herein enable in-situ inspection of turbine engine components that are positioned in confined or hard-to-reach locations.
In operation, some of the air entering turbine engine 10 through inlet 32 is channeled through fan assembly 12 towards booster compressor assembly 14. Compressed air is discharged from booster compressor assembly 14 towards high-pressure compressor assembly 16. Highly compressed air is channeled from high-pressure compressor assembly 16 towards combustor assembly 18, mixed with fuel, and the mixture is combusted within combustor assembly 18. High temperature combustion gas generated by combustor assembly 18 is channeled through turbine assemblies 20 and 22. Combustion gas is subsequently discharged from turbine engine 10 via core exhaust 34 and a fan exhaust 38.
System 100 is positionable within confined space 106 to facilitate performing the maintenance operation at maintenance location 110. For example, system 100 may be routed from exterior of outer case 102, through access point 104, and through turbine engine 10 to be positioned within confined space 106. In some embodiments, system 100 is coupleable to attachment point 108 to facilitate positioning and stabilizing system 100 within turbine engine 10, and for enabling performance of the operation by system 100 within confined space 106. In the exemplary embodiment, attachment point 108 is defined by blades 112 within turbine engine 10. As will be described in more detail below, system 100 couples to attachment point 108 by being mounted directly to one of blades 112, or by wedging itself between adjacent blades 112, for example.
Alternatively, tubular assembly 116 is partially or fully retractable within interior 126 of guide tube 114. As noted above, system 100, and more specifically tubular assembly 116, is positionable within confined space 106 (shown in
Tubular assembly 116 includes a first tubular body 128 and a second tubular body 130. First tubular body 128 has an interior channel 132, and second tubular body 130 is translatable and rotatable within interior channel 132. First tubular body 128 and second tubular body 130 are fabricated from a flexible material such as, but not limited to, a superelastic material such as nitinol, or a polymeric material. As such, first tubular body 128 and second tubular body 130 are bendable between a neutral shape and a biased shape. The biased shape is formed when a biasing force is applied to first tubular body 128 and/or second tubular body 130, and the neutral shape is formed when the biasing force is removed therefrom. In one embodiment, the biasing force is applied by second portion 122 of guide tube 114 when first tubular body 128 and second tubular body 130 are retracted therein. The neutral shape is formed when first tubular body 128 is deployed from guide tube 114 by a predetermined distance, and when second tubular body 130 is deployed from first tubular body 128 by a predetermined distance. For example, first tubular body 128 includes a first section 134, a second section 136, and a first bend 138 defined therebetween such that first section 134 and second section 136 are oriented obliquely or perpendicularly relative to each other when in the neutral shape. Second tubular body 130 includes a first section 140, a second section 142, and a second bend 144 defined therebetween such that first section 140 and second section 142 are oriented obliquely or perpendicularly relative to each other when in the neutral shape.
Second tubular body 130 includes a tip end 146, and payload 118 is coupled to tip end 146. Payload 118 is any device, mechanism, or object that enables system 100 to maintain turbine engine 10, such as at maintenance location 110. Example payloads include, but are not limited to, a sensor, such as an eddy current sensor, a repair tool, a dispense tool (e.g., a spray or paste dispenser), and the like. In the exemplary embodiment, system 100 also includes a camera 148 coupled to tip end 146. Camera 148 is operable to provide real-time visual feedback to an operator, for example, to facilitate routing tubular assembly system 100 through turbine engine 10, and to facilitate positioning payload 118 proximate maintenance location 110.
System 100 also includes an anchoring mechanism 150 coupled to tubular assembly 116. Anchoring mechanism 150 is any device that enables tubular assembly 116 to be coupled to attachment point 108 within turbine engine 10 (both shown in
In operation, first tubular body 128 and second tubular body 130 are rotatable to selectively orient tip end 146 in multiple degrees of freedom. For example, when deployed, first tubular body 128 is rotatable relative to a first rotational axis 154, and second tubular body 130 is rotatable relative to a second rotational axis 156. First rotational axis 154 and second rotational axis 156 are oriented obliquely or perpendicularly relative to each other. In addition, in one embodiment, second tubular body 130 is dependently rotatable with first tubular body 128, and is independently rotatable relative to first tubular body 128. As such, the orientation of tip end 146 is selected based on the rotation of first tubular body 128 and second tubular body 130.
In the exemplary embodiment, second tubular body 130 includes a plurality of slots 162. The plurality of slots 162 are positioned in a location along second tubular body 130 that facilitates the selective orientation of tip end 146 in the additional degrees of freedom. Slots 162 facilitate decreasing the stiffness of select regions of second tubular body 130 to enable second tubular body 130 to be elastically bendable upon application of tensile biasing force 160 via steering cable 158. Thus, slots 162 are positioned proximate tip end 146 to facilitate selectively orientating tip end 146 by pulling steering cable 158 with varying force.
In the exemplary embodiment, anchoring mechanism 150 facilitates coupling tubular assembly 116 to blades 112 of turbine engine 10, and tubular assembly 116 is oriented to extend in a substantially radial direction relative to centerline 36 to reach maintenance location 110. However, tubular assembly 116 is orientatable in any direction relative to centerline 36. In one embodiment, tubular assembly 116 is anchored on a rotor of turbine engine 10, and the rotor is turned to circumferentially position tubular assembly 116 proximate to maintenance location 110, positioned at a different circumferential location relative to centerline 36. In such an embodiment, second longitudinal sections 166 and 170 detach from first longitudinal sections 164 and 168, and travel with the rotating stage as it is rotated. Thus, system 100 may be used to deliver payload 118 and/or perform maintenance within turbine engine 10 without having to remove and then re-route system 100 through turbine engine 10.
An exemplary technical effect of the systems and methods described herein includes at least one of: (a) enabling in-situ delivery of a maintenance payload within a turbine engine; (b) increasing the accessibility of difficult-to-reach locations within a turbine assembly for inspection and/or in-situ repair; (c) reducing the time that turbine engines are out of service for maintenance; and (d) reducing unplanned service outages for a turbine engine.
Exemplary embodiments of methods and systems for use in delivering a maintenance payload within turbine engines are not limited to the specific embodiments described herein, but rather, components of systems and/or steps of the methods may be utilized independently and separately from other components and/or steps described herein. For example, the methods and systems may also be used in combination with other systems requiring inspection and/or repair of components, and are not limited to practice with only the systems and methods as described herein. Rather, the exemplary embodiment can be implemented and utilized in connection with many other applications, equipment, and systems that may benefit from using a service apparatus for inspection and/or repair.
Although specific features of various embodiments of the disclosure may be shown in some drawings and not in others, this is for convenience only. In accordance with the principles of the disclosure, any feature of a drawing may be referenced and/or claimed in combination with any feature of any other drawing.
This written description uses examples to disclose the embodiments, including the best mode, and also to enable any person skilled in the art to practice the embodiments, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the disclosure is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.
Number | Name | Date | Kind |
---|---|---|---|
3841764 | Snell et al. | Oct 1974 | A |
4298312 | MacKenzie et al. | Nov 1981 | A |
4659195 | D'Amelio et al. | Apr 1987 | A |
5155941 | Takahashi et al. | Oct 1992 | A |
6749560 | Konstorum et al. | Jun 2004 | B1 |
6943570 | Duffy | Sep 2005 | B2 |
7371210 | Brock | May 2008 | B2 |
7721435 | Stokes | May 2010 | B2 |
7854738 | Lee et al. | Dec 2010 | B2 |
8400501 | Heyworth | Mar 2013 | B2 |
8425408 | Boulais et al. | Apr 2013 | B2 |
8535336 | Trovato | Sep 2013 | B2 |
8715226 | Webster et al. | May 2014 | B2 |
9011318 | Choset et al. | Apr 2015 | B2 |
9282993 | Cohen et al. | Mar 2016 | B1 |
9333650 | Bajo et al. | May 2016 | B2 |
9492234 | Comber et al. | Nov 2016 | B2 |
9539726 | Simaan et al. | Jan 2017 | B2 |
9895163 | Trovato et al. | Feb 2018 | B2 |
9946979 | Trovato et al. | Apr 2018 | B2 |
20050090809 | Cooper et al. | Apr 2005 | A1 |
20080064921 | Larkin et al. | Mar 2008 | A1 |
20110015490 | Trovato et al. | Jan 2011 | A1 |
20110201887 | Greenblatt et al. | Aug 2011 | A1 |
20110245625 | Trovato et al. | Oct 2011 | A1 |
20110251455 | Popovic | Oct 2011 | A1 |
20110270040 | Popovic et al. | Nov 2011 | A1 |
20110295199 | Popovic et al. | Dec 2011 | A1 |
20120029288 | Greenblatt et al. | Feb 2012 | A1 |
20120312103 | Hannott et al. | Dec 2012 | A1 |
20130199040 | Dudeck et al. | Aug 2013 | A1 |
20150080907 | Herrell et al. | Mar 2015 | A1 |
20150088161 | Hata et al. | Mar 2015 | A1 |
20150223832 | Swaney et al. | Aug 2015 | A1 |
20160016319 | Remirez et al. | Jan 2016 | A1 |
20160030124 | Kishi | Feb 2016 | A1 |
20160296267 | Neimat et al. | Oct 2016 | A1 |
20160346513 | Swaney et al. | Dec 2016 | A1 |
20170095299 | Hendrick et al. | Apr 2017 | A1 |
20170143436 | Lathrop et al. | May 2017 | A1 |
20170312920 | Yipc et al. | Nov 2017 | A1 |
20180232951 | Alterovitz et al. | Aug 2018 | A1 |
Number | Date | Country |
---|---|---|
10052679 | May 2001 | DE |
1811136 | Jul 2007 | EP |
2623731 | Aug 2013 | EP |
2186213 | Jan 1974 | FR |
2011057031 | May 2011 | WO |
2011058008 | May 2011 | WO |
2013026012 | Feb 2013 | WO |
2017120516 | Jul 2017 | WO |
Entry |
---|
Burgner-Kahrs et al., “Continuum Robots for Medical Applications: A Survey”, IEEE Robotics and Automation Society, vol. 31, Issue: 06, pp. 1261-1280, Dec. 2015. |
Vasilyev et al., “Tissue Removal Inside the Beating Heart Using a Robotically Delivered Metal MEMS Tool”, International Journal of Robotics Research, pp. 1-13, Sep. 4, 2014. |
Number | Date | Country | |
---|---|---|---|
20210108536 A1 | Apr 2021 | US |