This invention relates generally to revenue causality analyzer system and method to provide fast and efficient analysis of revenue causality for price management and business management. More particularly, the present invention relates to a method for analyzing changes in revenue over two time periods to attribute the components causally responsible for the change in revenue.
Between two time periods revenues change. The difference in revenues between the time periods is the change in revenue. An understanding of change in revenue causality is very important to effective price management. As such, there is a desire to accurately be able to attribute changes in revenue to causal factors. Within this application causal factors may also be referred to as causal effects or causalities. These factors include changes in product pricing, changes in the volume of products sold, changes in product mix sold, changes in costs, changes in exchange rates, and any additional factors that may play a role in revenue changes.
When revenue change is due to only one causality factor, the causality analysis is very easily determined. However, when multiple factors are involved it traditionally has been difficult, if not impossible, to attribute the amount of change of revenue to the appropriate factors. Additionally, with the more products included in the system the more complex the analysis becomes.
Currently, human intuition must be utilized to make a rough estimation of the importance of each causal factor to the change in revenue. Alternatively, computer systems may be utilized that provide some measure of revenue causality attribution, however, these current systems either make gross estimations in their computation, or are intermittently able to analyze revenue causality. Additionally, these computations may be difficult and may require large processing resources to effectuate, especially when the system includes large numbers of products
For the typical business, the above systems are still too inaccurate, unreliable, and intractable in order to be utilized effectively for price management and analysis. Businesses, particularly those involving large product sets, would benefit greatly from the ability to have accurate revenue causality characterization.
It is therefore apparent that an urgent need exists for an improved system and method for revenue causality analysis and attribution that is both accurate and efficient. This solution would replace current revenue analysis techniques with a more accurate system; thereby increasing effectiveness in downstream price management that utilizes the revenue analysis.
To achieve the foregoing and in accordance with the present invention, a method and system for a Revenue Causality Analyzer. Such a system is useful for a business to analyze revenue changes, and attribute those changes to causal effects. Such an analysis may be utilized by the business for price management.
One advantage of the present invention is that the revenue causality analyzer is capable of accurately attributing causality effects for changes in revenue quickly and efficiently. The revenue causality analyzer is useful in association with products, and comprises a selector for selecting a reference time period and a comparison time period, a receiver configured to receive transaction data including pricing data and volume data about the products at reference and comparison times, a preparer that includes a missing data exchanger and data error corrector, an attributor for attributing causality effects including a price effect, a volume effect, a mix effect, an exchange effect, a cost effect, a dividend effect, a loss effect, and an inventory appreciation effect, by analyzing transaction data through a causality equation; and an output.
The price effect comprises summing the product of the change in price for the products at the currencies by the volume of the products sold in the comparison time period across the products and currencies. The volume effect comprises the product of the change in volume by the revenue per product sold in the reference time period. The mix effect comprises the product of the percent revenue change by the volume of products sold in the comparison time period. The exchange effect comprises summing the product of the changes in price for the products at the comparison time in the currencies due to exchange rate difference and the volume of sales of the products at the comparison time period across products and currencies.
These and other features of the present invention will be described in more detail below in the detailed description of the invention and in conjunction with the following figures.
In order that the present invention may be more clearly ascertained, one embodiment will now be described, by way of example, with reference to the accompanying drawings, in which:
The present invention will now be described in detail with reference to several embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention. The features and advantages of the present invention may be better understood with reference to the drawings and discussions that follow.
To facilitate discussion,
The Data Preparer 110 is coupled to the Causality Attributor 120. The Causality Attributor 120 calculates the causality effects by utilizing causality equations. The Causality Attributor 120 couples to a User Interface 130. The User Interface 130 includes a Time Period Selector 131, a Causality Selector 132 and a Currency Selector 133. The Time Period Selector 131 enables the user to select time periods for comparison by the Causality Attributor 120. The Causality Selector 132 enables the user to select the causal effects of interest for analysis by the Causality Attributor 120. Lastly, the Currency Selector 133 enables the user to select for the currency of interest for analysis by the Causality Attributor 120.
In step 220, Transaction Data 105 for each time period selected in step 210 may be input for further processing. Input may be preformed manually, with the user entering transaction data. Alternatively, in some embodiments, Transaction Data 105 may be electronically compiled through point-of-sales data from a cash register, invoice compilation, or electronic bookkeeping software. Transaction Data 105 includes, but is not limited to, products, the price of each product, volume of each product sold, cost data and exchange rate data. Cost data may include costs per product, or cost estimations. In some embodiments, product, price and volume is the only data required in order to perform a comprehensive revenue causality analysis of price effect, volume effect and mix effect. These data are routinely recorded by most businesses, and thus the present invention enables extensive, accurate revenue causality analysis with minimal data collection effort from the business.
In step 230, the inputted Transaction Data 105 is prepared for analysis. Preparation may include entering missing data values and correcting data errors. Such errors may exist due to changes in the product line, data input errors, software glitches or human errors.
In step 240, the prepared data is run through causality equations, which determine the amount of revenue attributable to each causality effect.
In step 250, the results of the causality equations are outputted for user consumption. Results may then be used in downstream applications and for raw consumption for price management purposes. The output may be in terms of a dollar amount, wherein the summation of all the causal effects is equal the change in revenue between the reference time period and the comparison time period. Additionally, the output may be a function of marginal changes.
Then, in step 260, the user may choose to interact with the outputted results in order to make alterations to transaction data, hone in on specific results or otherwise segregate the outputted results in order to increase their functionality. If the user decides to interact with the outputted data then the process returns to step 240, where the causality equations are run again. The outputted results may then be updated, in step 250, to incorporate the interactions. Next, the user again is given the option to interact with the outputted results, in step 260. Otherwise, if the user does not choose to interact with the results the process ends.
Individual steps of the revenue causality analysis 200 will be discussed separately in more detail below.
Even in immaculately maintained business records, data will be missing when a product is introduced or discontinued during or between the reference and comparison time periods. An example of such a situation is shown in the exemplary data chart illustrated in
Otherwise, if the missing data point is pricing data, in step 503, an inquiry is made as to if the missing data point is from the reference data set, in step 505. If the missing data point is a reference data point, then the missing data point is replaced with the pricing data for the same product from the comparison time period data set, in step 506. After the data is replaced the process returns to step 502, to determine if there are any remaining missing data points.
Else, if the missing data point is not a reference data point (comparison data point), then the missing data point is replaced with the pricing data for the same product from the reference time period data, in step 507. After the data is replaced the process returns to step 502, to determine if there are any remaining missing data points.
As previously noted, in some embodiments, data preparation may include Correction of Data Errors 332. Obvious data discrepancies, such as negative price data, may be corrected in this step. In some embodiments, data values greater than an expected values by a predetermined value may also be corrected. For example, in some embodiments, if sales volume data is greater than two standard deviations from the expected sales volume, the data point may be corrected to reflect the expected value instead of the erroneous value.
Moreover, in some embodiments, where Transaction Data 105 includes redundant data, conflicting data may be corrected. For example, if Transaction Data 105 includes price, volume and aggregate revenue data, a comparison may be made between the transaction revenue data and the calculated revenue found by multiplying together price and volume data. If a discrepancy exists, the data may be combed in order to identify and correct the erroneous transaction data.
After Transaction Data 105 has been Prepared 230 it may be analyzed by the causality equations to determine to what extent each causal effect contributes to the change in revenue.
Causality equation includes component equations known as effects. Said effects include a price effect, a volume effect, a mix effect, an exchange effect and a cost effect. Additional effects exist, and may be included within the causality equation as needs dictate. For most business applications, however, the above list of effects is sufficient for rapid and accurate Revenue Causality Analysis 200. The said effects may be summed to provide for the change in revenue.
The following notation is helpful in the understanding of the following equations:
Subscript—i: Product, where products are items with common UPC numbers, model numbers or SKU numbers.
Subscript—k: Currency
N: total number of products.
M: total number of currencies.
pilk: the price of product i in the reference time period (time period 1), in currency k.
pi2k: the price of product i in the comparison time period (time period 2), in currency k.
vilk: the volume of product i sold in the reference time period (time period 1), in currency k.
vi2k: the volume of product i sold in the comparison time period (time period 2), in currency k.
elk: the exchange rate in the reference time period (time period 1), in currency k. Assume the elk for the base currency is always 1.
e2k: the exchange rate in the reference time period (time period 2), in currency k. Assume the e2k for the base currency is always 1.
The change in Revenue may be given as part of the transaction data, or may be calculated from the price and volume data.
The change in revenue is given by:
To calculate the change in revenue, the price of each product in the comparison time period at a certain currency (pi2k) is multiplied by the volume of the product sold in the comparison period in that currency (vi2k), thus providing the revenue for each product in the comparison time period in that currency. All product revenues for the comparison time period in that currency are divided by the exchange rate at the comparison time period for that currency (e2k), to produce relative product revenues for the comparison time period. The relative product revenues for the comparison time period are summed for each product, thus providing the total revenue for the comparison time period for a currency. The total revenue for the comparison time period for each currency is then summed across each currency to produce the total revenue for the comparison time period.
Then, the price of each product in the reference time period at a certain currency (pilk) is multiplied by the volume of the product in the reference period in that currency (vilk), thus providing the revenue for each product in the reference time period in that currency. All product revenues for the reference time period in that currency are divided by the exchange rate at the reference time period for that currency (elk), to produce relative product revenues for the reference time period. The relative product revenues for the reference time period are summed for each product, thus providing the total revenue for the reference time period for a currency. The total revenue for the reference time period for each currency is then summed across each currency to produce the total revenue for the reference time period.
The total revenue for the reference time period is subtracted from the total revenue for the comparison time period, thereby providing the change in revenue.
The price effect calculates the quantity of revenue change that is attributable to changes in pricing.
The price effect is given by:
To calculate the price effect, the price of each product at the reference time period in a certain currency (pilk) is subtracted from the price of the same product at the comparison time period in the currency (pi2k), thus providing the change in price for each product at the currency. The change in price for each product at the currency is divided by the exchange rate for the currency at the reference time period (elk), to produce the relative change in price for each product at that currency.
The relative change in price for each product at that currency is multiplied by the volume of the same product sold during the comparison time period at that currency (vi2k). This provides the price effect per product at that currency.
The price effects for each product at that currency are summed across all products to provide the price effect at that currency. The price effect at that currency is summed across all currencies to produce the price effect.
The volume effect calculates the quantity of revenue change that is attributable to changes in volumes sold.
The volume effect is given by:
To calculate the volume effect, the volumes of all products sold for the reference time period in a currency (vilk), are summed across the products, resulting in the total volume for the reference time period in a currency. Then, total volume for the reference time period in a currency is summed across all currencies to produce the total volume for the reference time period.
Likewise, the volumes of all products sold for the comparison time period in a currency (vi2k), are summed across the products, resulting in the total volume for the comparison time period in a currency. Then, total volume for the comparison time period in a currency is summed across all currencies to produce the total volume for the comparison time period. The total volume for the comparison time period is subtracted by the total volume for the reference time period to determine the change in volume.
The total revenue for the reference time period is calculated. The price of each product in the reference time period at a certain currency (pilk) is multiplied by the volume of the product in the reference period in that currency (vilk), providing the revenue for each product in the reference time period in that currency. All product revenues for the reference time period in that currency are divided by the exchange rate at the reference time period for that currency (elk), to produce relative product revenues for the reference time period at that currency. The relative product revenues for the reference time period at that currency are summed for each product, thus providing the total revenue for the reference time period for that currency. The total revenue for the reference time period for each currency is then summed across each currency to produce the total revenue for the reference time period.
The total revenue for the reference time period is then divided by the total volume sales for the reference time period. Total revenue divided by total volume produces a value of the revenue per product sold in the reference time period. As stated above, the total volume sales of the reference time period is found by summing the volumes of all products sold for the reference time period in a currency (vilk), across the products, resulting in the total volume for the reference time period in a currency. Then, total volume for the reference time period in a currency is summed across all currencies to produce the total volume for the reference time period.
Lastly, the revenue per product sold in the reference time period is multiplied by the change in volume to compute the volume effect.
The mix effect calculates the quantity of revenue change that is attributable to changes in the mix of products sold.
The mix effect is given by:
To calculate the mix effect, the volumes of all products sold for the comparison time period in a currency (vi2k), are summed across the products, resulting in the total volume for the comparison time period in a currency. Then, total volume for the comparison time period in a currency is summed across all currencies to produce the total volume for the comparison time period.
Similarly, the volumes of all products sold for the reference time period in a currency (vilk), are summed across the products, resulting in the total volume for the reference time period in a currency. Then, total volume for the reference time period in a currency is summed across all currencies to produce the total volume for the reference time period.
Additionally, the volume of each product sold in the reference time period in a currency (vilk) is divided by the total volume for the reference time period, thus calculating the percent of sales volume for the product in the reference time period in the currency.
The volume of each product sold in the comparison time period in a currency (vi2k) is divided by the total volume for the comparison time period, thus calculating the percent of sales volume for the product in the comparison time period in the currency.
The percent of sales volume for the product in the reference time period in the currency is then subtracted from the percent of sales volume for the product in the comparison time period in the currency, to give the change in percent of sales volume for the product in the currency.
The price of the product for the reference time period in the currency (pilk) is divided by the exchange rate at the reference time period for that currency (elk), to produce relative price of the product for the reference time in the currency.
The relative price of the product for the reference time in the currency is then multiplied by the change in percent of sales volume for the product in the currency, thus calculating the percent revenue change of the product in the currency. The percent revenue change of the product in the currency is summed across all products, thus producing a total percent revenue change in the currency. The total percent revenue change in the currency is summed across all currencies, thus producing a total percent revenue change.
The total percent revenue change is multiplied by the total volume for the comparison period, thus giving the mix effect.
The exchange effect calculates the quantity of revenue change that is attributable to exchange rates.
The exchange effect is given by:
To calculate exchange effect, the price of the product for the comparison time period in the currency (pi2k) is divided by the exchange rate at the comparison time period for that currency (e2k), to produce the relative price of the product for the comparison time in the currency.
The price of the product for the comparison time period in the currency (pi2k) is divided by the exchange rate at the reference time period for that currency (elk), to produce the price of the product for the comparison time in the currency at the reference rate.
By subtracting the price of the product for the comparison time in the currency at the reference rate from the relative price of the product for the comparison time in the currency, a change in price for the product at the comparison time in a currency due to exchange rate difference is calculated.
The change in price for the product at the comparison time due to exchange rate difference is multiplied by the volume of sales of a product at the comparison time period at the currency (vi2k) to calculate the change in revenue for the product at the comparison time in a currency due to exchange rate difference.
The change in revenue for the product at the comparison time in a currency due to exchange rate difference is summed across all products to calculate change in revenue at the comparison time in a currency due to exchange rate difference. The change in revenue at the comparison time in a currency due to exchange rate difference is summed across all currencies to calculate the exchange effect.
By combining the foregoing equations a causality equation may be derive. The causality equation includes the sum of the effects, equal to the change in revenue. The causality equation is shown below:
In some embodiments, alternate effects may be included within the causality equation. For example, cost effects, dividend gains, stock sales, inventory appreciation/depreciation, and theft/loss may be included as additional causal effects. It should be noted, as is well known to those skilled in the art, that with the inclusion of a cost effect the analysis becomes a marginal change causality analysis.
These alternate effects may in turn require additional transaction data. For example, in embodiments including cost effects, Transaction Data 105 may include cost data associated with each product. Alternatively, in some embodiments, the cost data may be estimated using industry standards. Moreover, in some embodiments, both real data may be included when available, and missing cost data may be estimated in the data preparation step 230. As such, the causality equation is intended to be flexible enough to meet business needs, without placing any burden upon the business data collection practices.
Another example of the flexibility of the causality equation includes a business which utilizes one currency, thus eliminating the need for exchange effects. By assuming that the exchange rate for the base currency is one (elk=e2k=1) as stated above, the causality equation may be seen as reducing to a simpler form, as shown below:
An example of the output for the Causality Equation Application 240 may be seen as what is referred to as a causality waterfall.
In some embodiments, the user may Interact 260 with the output by honing into individual subgroups. The Transaction Data 105 from the subgroups may then be analyzed by Applying the Causality Equation 240 to determine the causality effects of the individual subgroup. In this way, the user may develop a greater understanding of the causal effects on revenue for every level of the business. As such, a refined and detailed business plan may be implemented in order to most effectuate a business goal.
Processor 922 is also coupled to a variety of input/output devices, such as Display 904, Keyboard 910, Mouse 912 and Speakers 930. In general, an input/output device may be any of: video displays, track balls, mice, keyboards, microphones, touch-sensitive displays, transducer card readers, magnetic or paper tape readers, tablets, styluses, voice or handwriting recognizers, biometrics readers, or other computers. Processor 922 optionally may be coupled to another computer or telecommunications network using Network Interface 940. With such a Network Interface 940, it is contemplated that the Processor 922 might receive information from the network, or might output information to the network in the course of performing the above-described Revenue Causality Analyzer 100. Furthermore, method embodiments of the present invention may execute solely upon Processor 922 or may execute over a network such as the Internet in conjunction with a remote CPU that shares a portion of the processing.
In addition, embodiments of the present invention further relate to computer storage products with a computer-readable medium that have computer code thereon for performing various computer-implemented operations. The media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well known and available to those having skill in the computer software arts. Examples of computer-readable media include, but are not limited to: magnetic media such as hard disks, floppy disks, and magnetic tape; optical media such as CD-ROMs and holographic devices; magneto-optical media such as floptical disks; and hardware devices that are specially configured to store and execute program code, such as application-specific integrated circuits (ASICs), programmable logic devices (PLDs) and ROM and RAM devices. Examples of computer code include machine code, such as produced by a compiler, and files containing higher level code that are executed by a computer using an interpreter.
Although the present invention has been described in considerable detail with reference to exemplary embodiments, modifications and variations may be made to the disclosed embodiments while remaining within the subject and spirit of the invention. Therefore, the spirit and scope of the appended claims should not be limited to the description of the versions contained herein.
Number | Name | Date | Kind |
---|---|---|---|
3806711 | Cousins, Jr. | Apr 1974 | A |
5053957 | Suzuki | Oct 1991 | A |
5224034 | Katz et al. | Jun 1993 | A |
5461708 | Kahn | Oct 1995 | A |
5497489 | Menne | Mar 1996 | A |
5537590 | Amado | Jul 1996 | A |
5590269 | Kruse et al. | Dec 1996 | A |
5670984 | Robertson et al. | Sep 1997 | A |
5689287 | Mackinlay et al. | Nov 1997 | A |
5710887 | Chelliah et al. | Jan 1998 | A |
5740448 | Gentry et al. | Apr 1998 | A |
5758327 | Gardner et al. | May 1998 | A |
5808894 | Wiens et al. | Sep 1998 | A |
5870717 | Wiecha | Feb 1999 | A |
5873069 | Reuhl et al. | Feb 1999 | A |
5878400 | Carter, III | Mar 1999 | A |
5946666 | Nevo et al. | Aug 1999 | A |
6009407 | Garg | Dec 1999 | A |
6075530 | Lucas et al. | Jun 2000 | A |
6078901 | Ching | Jun 2000 | A |
6151031 | Atkins et al. | Nov 2000 | A |
6211880 | Impink, Jr. | Apr 2001 | B1 |
6320586 | Plattner et al. | Nov 2001 | B1 |
6336094 | Ferguson et al. | Jan 2002 | B1 |
6434533 | Fitzgerald | Aug 2002 | B1 |
6536037 | Guheen et al. | Mar 2003 | B1 |
6553350 | Carter | Apr 2003 | B2 |
6665577 | Onyshkevych et al. | Dec 2003 | B2 |
6678695 | Bonneau et al. | Jan 2004 | B1 |
6785664 | Jameson | Aug 2004 | B2 |
6801201 | Escher | Oct 2004 | B2 |
6812926 | Rugge | Nov 2004 | B1 |
6851604 | Girotto et al. | Feb 2005 | B2 |
6856967 | Woolston et al. | Feb 2005 | B1 |
6856972 | Yun et al. | Feb 2005 | B1 |
6907403 | Klein et al. | Jun 2005 | B1 |
6988076 | Ouimet | Jan 2006 | B2 |
7015912 | Marais | Mar 2006 | B2 |
7046248 | Perttunen | May 2006 | B1 |
7076463 | Boies et al. | Jul 2006 | B1 |
7080026 | Singh et al. | Jul 2006 | B2 |
7092929 | Dvorak et al. | Aug 2006 | B1 |
7133848 | Phillips et al. | Nov 2006 | B2 |
7149716 | Gatto | Dec 2006 | B2 |
7155510 | Kaplan | Dec 2006 | B1 |
7218325 | Buck | May 2007 | B1 |
7233928 | Huerta et al. | Jun 2007 | B2 |
7254584 | Addison, Jr. | Aug 2007 | B1 |
7308421 | Raghupathy et al. | Dec 2007 | B2 |
7315835 | Takayasu et al. | Jan 2008 | B1 |
7343355 | Ivanov et al. | Mar 2008 | B2 |
7360697 | Sarkar et al. | Apr 2008 | B1 |
20010003814 | Hirayama et al. | Jun 2001 | A1 |
20020007323 | Tamatsu | Jan 2002 | A1 |
20020032610 | Gold et al. | Mar 2002 | A1 |
20020042782 | Albazz et al. | Apr 2002 | A1 |
20020052817 | Dines et al. | May 2002 | A1 |
20020059229 | Natsumeda et al. | May 2002 | A1 |
20020072993 | Sandus et al. | Jun 2002 | A1 |
20020099596 | Geraghty | Jul 2002 | A1 |
20020107819 | Ouimet | Aug 2002 | A1 |
20020116348 | Phillips et al. | Aug 2002 | A1 |
20020128953 | Quallen et al. | Sep 2002 | A1 |
20020152133 | King et al. | Oct 2002 | A1 |
20020152150 | Cooper et al. | Oct 2002 | A1 |
20020156695 | Edwards | Oct 2002 | A1 |
20020165726 | Grundfest | Nov 2002 | A1 |
20020165760 | Delurgio et al. | Nov 2002 | A1 |
20020178077 | Katz et al. | Nov 2002 | A1 |
20020188576 | Peterson et al. | Dec 2002 | A1 |
20020194051 | Hall et al. | Dec 2002 | A1 |
20030009411 | Ram et al. | Jan 2003 | A1 |
20030028451 | Ananian | Feb 2003 | A1 |
20030033240 | Balson et al. | Feb 2003 | A1 |
20030095256 | Cargill et al. | May 2003 | A1 |
20030110066 | Walser et al. | Jun 2003 | A1 |
20030115129 | Feaver et al. | Jun 2003 | A1 |
20030126053 | Boswell et al. | Jul 2003 | A1 |
20030130883 | Schroeder et al. | Jul 2003 | A1 |
20030167209 | Hsieh | Sep 2003 | A1 |
20030191723 | Foretich et al. | Oct 2003 | A1 |
20030191832 | Satyavolu et al. | Oct 2003 | A1 |
20030195810 | Raghupathy et al. | Oct 2003 | A1 |
20030200185 | Huerta et al. | Oct 2003 | A1 |
20030225593 | Ternoey et al. | Dec 2003 | A1 |
20030229552 | Lebaric et al. | Dec 2003 | A1 |
20040024715 | Ouimet | Feb 2004 | A1 |
20040049470 | Ouimet | Mar 2004 | A1 |
20040078288 | Forbis et al. | Apr 2004 | A1 |
20040117376 | Lavin et al. | Jun 2004 | A1 |
20040128225 | Thompson et al. | Jul 2004 | A1 |
20040133526 | Shmueli et al. | Jul 2004 | A1 |
20040193442 | Kimata et al. | Sep 2004 | A1 |
20040267674 | Feng et al. | Dec 2004 | A1 |
20050004819 | Etzioni et al. | Jan 2005 | A1 |
20050096963 | Myr et al. | May 2005 | A1 |
20050187852 | Hwang | Aug 2005 | A1 |
20050197857 | Avery | Sep 2005 | A1 |
20050197971 | Kettner et al. | Sep 2005 | A1 |
20050240601 | Lyons et al. | Oct 2005 | A1 |
20050256778 | Boyd et al. | Nov 2005 | A1 |
20050267831 | Esary et al. | Dec 2005 | A1 |
20050278227 | Esary et al. | Dec 2005 | A1 |
20060004861 | Albanese et al. | Jan 2006 | A1 |
20060031178 | Lehrman et al. | Feb 2006 | A1 |
20060031179 | Lehrman | Feb 2006 | A1 |
20060047574 | Sundaram et al. | Mar 2006 | A1 |
20060069585 | Springfield et al. | Mar 2006 | A1 |
20060241923 | Xu et al. | Oct 2006 | A1 |
20070294192 | Tellefsen | Dec 2007 | A1 |
20080059280 | Tellefsen et al. | Mar 2008 | A1 |
20080126264 | Tellefsen et al. | May 2008 | A1 |
Number | Date | Country |
---|---|---|
WO 9960486 | Nov 1999 | WO |
WO 0029995 | May 2000 | WO |
WO 2005119500 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
60890777 | Feb 2007 | US |