The present disclosure is generally related to methods and systems that provide secure, captured data in a customer center.
Security is fast becoming a primary concern as private information is communicated during interactions between a customer and a business, particularly at a customer center. Some interactions are captured and stored in a recording system for evaluation of an agent and visualization of performance of the customer center, for example. Some captured interactions have private information such as credit card information, social security number, and date of birth. Clearly, this type of information could be subject to identity theft and unlawful access.
Systems and methods are disclosed for providing secure, captured data in a customer center. In one embodiment, the method comprises: capturing data with a recording system; receiving a request to retrieve electronic keys for encrypting the data; responsive to receiving the request, transmitting the electronic keys to the recording system; encrypting the data using the electronic keys; associating the electronic keys with the encrypted data; and storing the encrypted data in the recording system.
Systems and methods are disclosed for retrieving and playing back a secure, captured data in a customer center. In another embodiment, the method comprises: transmitting a request by a retrieval component to retrieve stored, encrypted data from a recording subsystem; establishing a secure communication between the retrieval component and the recording subsystem to retrieve the stored, encrypted data; receiving the stored, encrypted data by the retrieval component; transmitting a request to retrieve electronic keys for decrypting the stored, encrypted data; receiving the electronic keys by the retrieval component; decrypting the stored, encrypted data using the electronic keys; and playing back the decrypted data.
Systems and methods are disclosed for providing electronic keys that are used to encrypt and decrypt secure, captured data in a customer center. In one embodiment, the method comprises the steps of: establishing a secure communication over a network between the key management system and a retrieval component; transmitting a duplicate copy of at least one electronic key to a cache that is electrically coupled to the retrieval component; receiving a request to retrieve the electronic keys; and transmitting the retrieved electronic keys for decrypting the stored data.
Many aspects of the invention can be better understood with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the present invention. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the several views.
Disclosed herein are systems and methods for providing secure, captured data in a customer center. Customer center includes, but is not limited to, outsourced contact centers, outsourced customer relationship management, customer relationship management, voice of the customer, customer interaction, contact center, multi-media contact center, remote office, distributed enterprise, work-at-home agents, remote agents, branch office, back office, performance optimization, workforce optimization, hosted contact centers, and speech analytics, for example. In particular, embodiments of such a system incorporate a key management system, which can be located at the customer center, that provides secure, captured data during collection, recording and transmission of the captured data. The key management system provides electronic keys for encrypting and decrypting data. By encrypting the data, even if a hacker breaks through all other protection mechanisms (e.g., firewalls) and gains access to encrypted data, the hacker is prevented from being able to read the data without further breaking the encryption.
The communication devices 105, 117 can include, but not limited to, an Internet Protocol (IP) soft phone, a TDM phone, and a computing device. The communication device 117 can communicate with the communication devices 105 or other communication devices 117 via the IP/data network 110 and switch 108. If the communication devices are IP soft phones or computing devices, the communication devices 105, 117 can decrypt incoming data from the switch 108 and transmits outgoing data to the switch 108.
Additionally or alternatively, the communication device 117 can encrypt its outgoing data and transmit the outgoing data to the switch 108. The switch 108 decrypts the outgoing data for the communication device 105. The encryption of the data at the switch 108 and the communication device 117 provides security to the data of the interactions between users of the communication devices 105, 117 or users of the communication device 117 in the company premises 112.
The switch 108 and/or the communication device 117 transmit encrypted or unencrypted data to one or more recording systems 120. The data is related to, but is not limited to, TDM, conferencing, duplicative, and passive, for example. Each recording system 120 includes a centralized key management system 115, one or more recording subsystems, and one or more playback components, all of which are coupled to a network 133. The recording subsystem 135 includes, but is not limited to, an active-recording buffer, an online-network storage, and an archival system, for example. The recording subsystem 135 receives captured data from the switch 108 and/or the communication device 117. The recording subsystem 135 further receives metadata that includes information related to the interaction, such as agent identification and call time, for example. In general, the metadata is transmitted with the data to the recording subsystem 135. In this regard, “data” includes metadata of an interaction along with the captured audio, video, screen capture, and text messaging signals.
If the data are encrypted, the recording subsystem 135 decrypts the data from the switch 108 and/or the communication device 117 using electronic keys from the switch 108 and/or the communication device 117, respectively. Either the recording subsystem 135 decrypts the data or receives unencrypted data, the recording subsystem 135 then transmits a request to the centralized key management system 115 for an electronic key to encrypt the data. The recording subsystem 135 generates a unique identifier, which can be calculated based on a checksum or hash value of the data, for example. The recording subsystem 135 associates the unique identifier with the captured data. The request can include, but not limited to, unique identifiers associated with the captured data and authentication information.
Unique identifiers are codes used to identify the captured data that are unique within a given context. There are three ways, among others, of generating unique identifiers: 1) serial numbers, allocated in sequence, 2) random numbers selected from a number space much larger than the expected number of objects to be identified, and 3) meaningful names or codes allocated by choice which are forced to be unique by keeping a central registry. All of the above methods can be combined hierarchically, singly or in combination with one another, to create scalable schemes for creating unique identifiers. In many cases, the captured data may have more than one unique identifier, each of which identifies it for a different purpose.
Hash value is computed from a base input number using a hashing algorithm. Essentially, the hash value is a summary of the original value. The hash value is nearly impossible to derive the original input number without knowing the data used to create the hash value.
The centralized key management system 115 receives the request from the recording subsystem 135 and determines whether the recording subsystem 135 has authentication via an authentication system 128 to retrieve electronic keys. The centralized key management system 115 generates electronic keys for decrypting and encrypting data. The electronic keys can be used as active keys, inactive keys, and random, semi-random, and sequential rotations of keys. The centralized key management system 115 can generate key identification associated with the generated electronic keys based on a checksum or hash value of the data.
Responsive to the recording subsystem 135 having authentication, the centralized key management system 115 selects an electronic key for encrypting the captured data. The centralized key management system 115 generates a key identification for each electronic key and associates the key identification with the electronic key. Additionally or alternatively, the centralized key management system 115 associates the electronic keys with the unique identifier. The generated keys are maintained until the associated data are removed from the encrypted recording environment 100. The unique identifier can be used to obtain the electronic key from the centralized key management system 115. The structure of the electronic key is described in relation to
The centralized key management system 115 transmits the electronic keys to the recording subsystem 135. The recording subsystem 135 receives the electronic keys and encrypts the captured data using the electronic keys. Alternatively or additionally, the recording subsystem 135 can associate the key identification with the encrypted data. The key identification can be used to obtain the electronic key from the centralized key management system 115. The encrypted data are stored in the recording subsystem 135. Additionally or alternatively, the recording subsystem includes 135 a database of metadata and key identifications. The recording subsystem 135 uses the metadata to retrieve the stored, encrypted data. The metadata is associated with the key identifications, which the recording subsystem 135 uses to retrieve the electronic keys from the centralized key management system 115. The structures of the encrypted data and metadata are described in relation to
Additionally or alternatively, the centralized key management system 115 can transmit the electronic keys maintained in the centralized key management system 115 to a cache 134 located in the recording subsystem 135. The cache 134 is a secure non-volatile component. The cache 134 can store active keys and inactive keys. The keys stored in the cache 134 can be updated via the centralized key management system 115. The cache 134 can be receive a request for the electronic key from a retrieval system, such as the recording subsystem 135, the playback component 130, or a third party playback component 140. The request includes a unique identifier associated with the data and/or key identification associated with the electronic key. The cache 134 uses the unique identifier and/or key identification to provide the electronic keys to the retrieval system. The cache 134 transmits the electronic key via the network 133 and/or IP/data network 110. The encryption of the data by the recording subsystem 135 provides security during the transmission and storage of the data in the recording system 120. The retrieval process of the electronic keys allows the encrypted data to migrate to different retrieval systems using the associated electronic keys for decrypting the data.
There are various encryption methods. For example, in symmetric-key encryption, each computer has a secret key (code) that the computer use to encrypt a packet of information before the packet is sent over the network to another computer. Symmetric-keys are installed into computers that communicate with each other. Symmetric-key encryption is essentially the same as a secret code that each computer knows to decode the information. The code provides the key for decoding the message. An analogy of the encryption is that a first person creates a coded message and sends the message to a second person. To decrypt the message, each letter is substituted with the letter that is two down from it in the alphabet. So “A” becomes “C,” and “B” becomes “D”. The second person knows the encryption method that the code is “Shift by 2”. The second person receives the message and decodes it. Anyone else who sees the message will see only nonsense.
Another encryption method is public-key encryption that uses a combination of a private key and a public key. Each private key is assigned to a first computer, while the public key is given by the first computer to any other computers that wants to communicate securely with the first computer. To decode an encrypted message, the other computers use the public key, provided by the first computer, and their own private keys. One public-key encryption utility is called Pretty Good Privacy (PGP).
Public-key encryption takes a lot of computing, so many systems use a combination of public-key and symmetry-key encryption. When two computers initiate a secure session, one computer creates a symmetric key and sends it to the other computer using public-key encryption. The two computers can then communicate using symmetric-key encryption. Once the session is finished, each computer discards the symmetric key used for that session. Any additional sessions require that a new symmetric key be created, and the process is repeated.
Additionally or alternatively, the recording system 120 encrypts incoming and outgoing data from multiple respective communication devices 117 associated with multiple respective interactions. Additionally or alternatively, the recording system 120 can instruct the communication device 117 to transmit incoming and outgoing data to a conference bridge 125. Responsive to receiving the instruction, the communication device 117 transmits incoming and outgoing data to the conference bridge 125, which duplicates and transmits the data to the recording system 120. In other words, the recording system 120 “observes” the calls/extensions of the interactions via the conference bridge to get a copy of the data. The conference bridge 125 can “camp” on a specific extension if the switch 108 permits and receive the data from the communication device 117 for the interactions as long as the recording system 120 is observing the extension.
Additionally or alternatively, the recording system 120 communicating with a VoIP switch 108 can also get the decryption information for active VoIP streams, which can be used for real-time or post call decryption of the data. Additionally or alternatively, the centralized key management system 115 continues to use associated electronic keys from the switch management system 109 for the transmission and storage of the data in the recording system 120. However, the manufacturer of the switch management system 109 currently discourages the use of this security method because this increases the risk of hackers cracking their security through the centralized key management system 115. Hackers (external and internal to a company) can use vendor default passwords and other vendor default settings to compromise systems. These passwords and settings can be easily discovered in hacker communities and easily determined via public information.
The playback component 130, a third-party playback component 140, or another recording subsystem 135 can retrieve the stored data from the recording subsystem 135. The retrieval components 130, 135, 140 can be, for example, a desktop computer that plays and/or displays audio, video, screen capture, and text messaging data on the speaker and monitor, respectively. Responsive to receiving a request from the retrieval components, an authorization process may be required for the retrieval components 130, 135, 140 before communicating with each other. For example, the recording subsystem 135 determines whether the retrieval components 130, 135, 140 have authentication via the authentication system 128 to receive the requested data. If the retrieval components 130, 135, 140 have authentication, the recording subsystem 135 transmits the stored data to the retrieval components 130, 135, 140. If the retrieval components 130, 140 play back the stored data, the retrieval components 130, 140 can retrieve the electronic keys from the centralized key management system 115 and/or cache 134, 137 using key identification associated with the encrypted data or the unique identifier of the encrypted data that is associated with the electronic key. The retrieval components 130, 140 decrypt the requested data using the associated electronic key and play back the requested data.
Additionally or alternatively, a secure tunnel may be established among the retrieval components before stored data and electronic keys are transmitted and received among the retrieval components. For example, a secure sockets layer (SSL) is a cryptographic protocol which provide secure communications on the network (e.g., Internet) for data, such things as e-mail and internet faxing. The SSL protocol exchanges data. Each data can be optionally compressed, encrypted and packed with a message authentication code (MAC). Each data can have a content type field that specifies which upper level protocol is being used. When the retrieval components 130, 140 connect with the recording subsystem 135 connection, the data level encapsulates another protocol, the handshake protocol, which has the content type.
Several handshake structures are transmitted and received via the network. For example, a ClientHello message is transmitted specifying the list of cipher suites, compression methods and the highest protocol version being supported. Random bytes can be transmitted. A ServerHello message is received, in which the server chooses the connection parameters from the choices offered by the client earlier. When the connection parameters are known, the retrieval components 130, 135, 140 exchange certificates (depending on the selected public key cipher). These certificates are currently X.509, which is an international Telecommunication union (ITU) standard. The retrieval components 130, 135, 140 can request a certificate from another retrieval component so that the connection can be mutually authenticated the retrieval components 130, 135, 140 negotiate a common secret called “master secret”, possibly using the result of a Diffie-Hellman exchange, or simply encrypting a secret with a public key that is decrypted with the peer's private key. All other key data is derived from this “master secret” (and the client- and server-generated random values), which is passed through a “Pseudo Random Function”. Once the retrieval components 130, 135, 140 have authentication, the stored data are secure to be passed among the retrieval components 130, 135, 140.
Additionally or alternatively, the recording subsystem 135 transmits the requested data to the centralized key management system 115 for decryption and instructs the system 115 to transmit the decrypted data to the playback components 130, 140. Additionally or alternatively, the recording subsystem uses the key identification associated with the encrypted data to obtain the electronic key from the cache 134 and transmits the requested data along with the associated electronic key to the retrieval components 130, 135, 140. Additionally or alternatively, the recording subsystem uses the key identification associated with the encrypted data to obtain the electronic key from the cache 134 and transmits the requested data along with the associated electronic key to the retrieval components 130, 135, 140. In the various alternative embodiments mentioned above, the transmission of the data to the playback component 130 from the recording system 120 are secure by providing encrypted data via a secure tunnel or an authentication process.
The company premises 212 receives encrypted or unencrypted data from the switch 208 and/or the communication device 217. The received data are transmitted to the recording subsystem 235, which includes a local key management system (LKMS) 213. Similar to the centralized key management system 115 of
For example, the recording subsystem 235 encrypts and stores data from the company premises 212 using an electronic key from the LKMS 213. The LKMS 213 communicates with the LKMSs 215, 217 via a secure method. The playback components 230, 240 can retrieve the stored, encrypted data from the recording subsystem 235. In addition, the playback components 230, 240 can retrieve the associated electronic key from the LKMSs 215, 217, respectively, using associated key identifications and/or unique identifiers.
In block 635, either the key management system or cache transmits generated electronic keys via a network. In block 640, the recording system encrypts the data using the transmitted keys. In some embodiments, the data are encrypted to include the key identifications of the transmitted keys. In block 645, the recording system stores the encrypted data. In block 650, the recording system receives a request for stored data. The recording system can determine whether a retrieval component has authentication to retrieve the stored data. In block 655, responsive to the determining that the retrieval component has authentication, the recording system transmits the stored data via the network. In block 660, the recording system transmits a request to the key management system or cache to retrieve the associated electronic key for decrypting the stored data. The request for decryption includes the key identification or the unique identifier, or both, which the key management system or cache uses to determine the proper electronic key for decryption of the encrypted data. In block 665, the stored data are decrypted using the electronic keys.
In blocks 720 and 725, the key management system associates the generated or selected electronic keys with unique identifiers of the data and transmits the electronic keys for encrypting and decrypting the data, respectively. Alternatively or additionally, the request can include a key identification that the key management system uses to select the electronic key for decryption of the stored data. In block 730, the key management system manages the electronic keys for at least the life of the associated data.
Alternatively or additionally, if a recording subsystem transmits a request for encryption, the cache transmits the electronic key along with the key identification to the retrieval component. The recording subsystem encrypts the data and associates the key identification with the encrypted data. To decrypt the data, the retrieval component can request to the cache for the electronic key that is associated with the key identification and/or the unique identifier. In block 825, the cache transmits the associated electronic keys for encrypting and decrypting the data. In block 830, the cache manages the electronic keys for at least the life of the data.
Alternatively or additionally, in blocks 925 and 930, the recording subsystem receives a request to move stored data to a second recording subsystem and determines whether the second recording subsystem has authentication to store the data, respectively. In block 935, the recording subsystem moves the data to the second recording subsystem.
In block 940, both recording subsystems can receive a request from a playback component for the stored data. In block 945, each recording subsystem determines whether the playback component has authentication to retrieve stored data. In block 950, each recording subsystem transmits a request to a key management system or cache to retrieve associated electronic keys for decrypting the stored data. In blocks 955, each recording subsystem transmits stored data.
It should be emphasized that the above-described embodiments are merely possible examples of implementations, merely set forth for a clear understanding of the principles of the invention. Many variations and modifications may be made to the above-described embodiments without departing substantially from the spirit and principles of the invention. All such modifications and variations are intended to be included herein within the scope of this disclosure and the present invention and protected by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3594919 | De Bell et al. | Jul 1971 | A |
3705271 | De Bell et al. | Dec 1972 | A |
4510351 | Costello et al. | Apr 1985 | A |
4684349 | Ferguson et al. | Aug 1987 | A |
4694483 | Cheung | Sep 1987 | A |
4763353 | Canale et al. | Aug 1988 | A |
4815120 | Kosich | Mar 1989 | A |
4924488 | Kosich | May 1990 | A |
4953159 | Hayden et al. | Aug 1990 | A |
5016272 | Stubbs et al. | May 1991 | A |
5101402 | Chiu et al. | Mar 1992 | A |
5117225 | Wang | May 1992 | A |
5210789 | Jeffus et al. | May 1993 | A |
5239460 | LaRoche | Aug 1993 | A |
5241625 | Epard et al. | Aug 1993 | A |
5267865 | Lee et al. | Dec 1993 | A |
5299260 | Shaio | Mar 1994 | A |
5311422 | Loftin et al. | May 1994 | A |
5315711 | Barone et al. | May 1994 | A |
5317628 | Misholi et al. | May 1994 | A |
5347306 | Nitta | Sep 1994 | A |
5388252 | Dreste et al. | Feb 1995 | A |
5396371 | Henits et al. | Mar 1995 | A |
5432715 | Shigematsu et al. | Jul 1995 | A |
5465286 | Clare et al. | Nov 1995 | A |
5475625 | Glaschick | Dec 1995 | A |
5485569 | Goldman et al. | Jan 1996 | A |
5491780 | Fyles et al. | Feb 1996 | A |
5499291 | Kepley | Mar 1996 | A |
5535256 | Maloney et al. | Jul 1996 | A |
5572652 | Robusto et al. | Nov 1996 | A |
5577112 | Cambray et al. | Nov 1996 | A |
5590171 | Howe et al. | Dec 1996 | A |
5597312 | Bloom et al. | Jan 1997 | A |
5619183 | Ziegra et al. | Apr 1997 | A |
5696906 | Peters et al. | Dec 1997 | A |
5717879 | Moran et al. | Feb 1998 | A |
5721842 | Beasley et al. | Feb 1998 | A |
5742670 | Bennett | Apr 1998 | A |
5748499 | Trueblood | May 1998 | A |
5778182 | Cathey et al. | Jul 1998 | A |
5784452 | Carney | Jul 1998 | A |
5790798 | Beckett, II et al. | Aug 1998 | A |
5796952 | Davis et al. | Aug 1998 | A |
5809247 | Richardson et al. | Sep 1998 | A |
5809250 | Kisor | Sep 1998 | A |
5825869 | Brooks et al. | Oct 1998 | A |
5835572 | Richardson, Jr. et al. | Nov 1998 | A |
5862330 | Anupam et al. | Jan 1999 | A |
5864772 | Alvarado et al. | Jan 1999 | A |
5884032 | Bateman et al. | Mar 1999 | A |
5907680 | Nielsen | May 1999 | A |
5918214 | Perkowski | Jun 1999 | A |
5923746 | Baker et al. | Jul 1999 | A |
5933811 | Angles et al. | Aug 1999 | A |
5944791 | Scherpbier | Aug 1999 | A |
5948061 | Merriman et al. | Sep 1999 | A |
5958016 | Chang et al. | Sep 1999 | A |
5964836 | Rowe et al. | Oct 1999 | A |
5978648 | George et al. | Nov 1999 | A |
5982857 | Brady | Nov 1999 | A |
5987466 | Greer et al. | Nov 1999 | A |
5990852 | Szamrej | Nov 1999 | A |
5991373 | Pattison et al. | Nov 1999 | A |
5991796 | Anupam et al. | Nov 1999 | A |
6005932 | Bloom | Dec 1999 | A |
6009429 | Greer et al. | Dec 1999 | A |
6014134 | Bell et al. | Jan 2000 | A |
6014647 | Nizzari et al. | Jan 2000 | A |
6018619 | Allard et al. | Jan 2000 | A |
6035332 | Ingrassia et al. | Mar 2000 | A |
6038544 | Machin et al. | Mar 2000 | A |
6039575 | L'Allier et al. | Mar 2000 | A |
6055314 | Spies et al. | Apr 2000 | A |
6057841 | Thurlow et al. | May 2000 | A |
6058163 | Pattison et al. | May 2000 | A |
6061798 | Coley et al. | May 2000 | A |
6072860 | Kek et al. | Jun 2000 | A |
6076099 | Chen et al. | Jun 2000 | A |
6078894 | Clawson et al. | Jun 2000 | A |
6091712 | Pope et al. | Jul 2000 | A |
6108711 | Beck et al. | Aug 2000 | A |
6122665 | Bar et al. | Sep 2000 | A |
6122668 | Teng et al. | Sep 2000 | A |
6130668 | Stein | Oct 2000 | A |
6138139 | Beck et al. | Oct 2000 | A |
6144991 | England | Nov 2000 | A |
6146148 | Stuppy | Nov 2000 | A |
6151622 | Fraenkel et al. | Nov 2000 | A |
6154771 | Rangan et al. | Nov 2000 | A |
6157808 | Hollingsworth | Dec 2000 | A |
6171109 | Ohsuga | Jan 2001 | B1 |
6175922 | Wang | Jan 2001 | B1 |
6182094 | Humpleman et al. | Jan 2001 | B1 |
6195679 | Bauersfeld et al. | Feb 2001 | B1 |
6201948 | Cook et al. | Mar 2001 | B1 |
6211451 | Tohgi et al. | Apr 2001 | B1 |
6225993 | Lindblad et al. | May 2001 | B1 |
6230197 | Beck et al. | May 2001 | B1 |
6236977 | Verba et al. | May 2001 | B1 |
6244758 | Solymar et al. | Jun 2001 | B1 |
6282548 | Burner et al. | Aug 2001 | B1 |
6286030 | Wenig et al. | Sep 2001 | B1 |
6286046 | Bryant | Sep 2001 | B1 |
6288753 | DeNicola et al. | Sep 2001 | B1 |
6289340 | Puram et al. | Sep 2001 | B1 |
6301462 | Freeman et al. | Oct 2001 | B1 |
6301573 | McIlwaine et al. | Oct 2001 | B1 |
6324282 | McIlwaine et al. | Nov 2001 | B1 |
6347374 | Drake et al. | Feb 2002 | B1 |
6351467 | Dillon | Feb 2002 | B1 |
6353851 | Anupam et al. | Mar 2002 | B1 |
6360250 | Anupam et al. | Mar 2002 | B1 |
6370574 | House et al. | Apr 2002 | B1 |
6398245 | Gruse et al. | Jun 2002 | B1 |
6404857 | Blair et al. | Jun 2002 | B1 |
6411989 | Anupam et al. | Jun 2002 | B1 |
6418471 | Shelton et al. | Jul 2002 | B1 |
6459787 | McIlwaine et al. | Oct 2002 | B2 |
6487195 | Choung et al. | Nov 2002 | B1 |
6493758 | McLain | Dec 2002 | B1 |
6502131 | Vaid et al. | Dec 2002 | B1 |
6510220 | Beckett, II et al. | Jan 2003 | B1 |
6523113 | Wehrenberg | Feb 2003 | B1 |
6535909 | Rust | Mar 2003 | B1 |
6542602 | Elazer | Apr 2003 | B1 |
6546405 | Gupta et al. | Apr 2003 | B2 |
6560328 | Bondarenko et al. | May 2003 | B1 |
6574609 | Downs et al. | Jun 2003 | B1 |
6583806 | Ludwig et al. | Jun 2003 | B2 |
6606657 | Zilberstein et al. | Aug 2003 | B1 |
6625734 | Marvit et al. | Sep 2003 | B1 |
6665644 | Kanevsky et al. | Dec 2003 | B1 |
6674447 | Chiang et al. | Jan 2004 | B1 |
6683633 | Holtzblatt et al. | Jan 2004 | B2 |
6697858 | Ezerzer et al. | Feb 2004 | B1 |
6724887 | Eilbacher et al. | Apr 2004 | B1 |
6738456 | Wrona et al. | May 2004 | B2 |
6757361 | Blair et al. | Jun 2004 | B2 |
6772396 | Cronin et al. | Aug 2004 | B1 |
6775377 | McIlwaine et al. | Aug 2004 | B2 |
6792575 | Samaniego et al. | Sep 2004 | B1 |
6810414 | Brittain | Oct 2004 | B1 |
6820083 | Nagy et al. | Nov 2004 | B1 |
6823384 | Wilson et al. | Nov 2004 | B1 |
6870916 | Henrikson et al. | Mar 2005 | B2 |
6876986 | Currans et al. | Apr 2005 | B1 |
6901438 | Davis et al. | May 2005 | B1 |
6912513 | Candelore | Jun 2005 | B1 |
6954854 | Miura et al. | Oct 2005 | B1 |
6959078 | Eilbacher et al. | Oct 2005 | B1 |
6965886 | Govrin et al. | Nov 2005 | B2 |
6981138 | Douceur et al. | Dec 2005 | B2 |
7047422 | Benaloh | May 2006 | B2 |
7073063 | Peinado | Jul 2006 | B2 |
7111005 | Wessman | Sep 2006 | B1 |
7124304 | Bel et al. | Oct 2006 | B2 |
7130426 | Cha et al. | Oct 2006 | B1 |
7242771 | Shiragami et al. | Jul 2007 | B2 |
7266691 | Ishiguro et al. | Sep 2007 | B1 |
7272229 | Nakano et al. | Sep 2007 | B2 |
7272230 | Sasaki | Sep 2007 | B2 |
7275159 | Hull et al. | Sep 2007 | B2 |
7346774 | Douceur et al. | Mar 2008 | B2 |
7352867 | Medvinsky | Apr 2008 | B2 |
7362870 | Okaue | Apr 2008 | B2 |
7472280 | Giobbi | Dec 2008 | B2 |
7503073 | Kawamoto et al. | Mar 2009 | B2 |
7624412 | McEvilly et al. | Nov 2009 | B2 |
20010000962 | Rajan | May 2001 | A1 |
20010032335 | Jones | Oct 2001 | A1 |
20010043697 | Cox et al. | Nov 2001 | A1 |
20020038363 | MacLean | Mar 2002 | A1 |
20020052948 | Baudu et al. | May 2002 | A1 |
20020064283 | Parenty | May 2002 | A1 |
20020065911 | Von Klopp et al. | May 2002 | A1 |
20020065912 | Catchpole et al. | May 2002 | A1 |
20020095507 | Jerdonek | Jul 2002 | A1 |
20020126850 | Allen et al. | Sep 2002 | A1 |
20020128925 | Angeles | Sep 2002 | A1 |
20020138722 | Douceur et al. | Sep 2002 | A1 |
20020143925 | Pricer et al. | Oct 2002 | A1 |
20020144116 | Giobbi | Oct 2002 | A1 |
20020165954 | Eshghi et al. | Nov 2002 | A1 |
20020194492 | Choi et al. | Dec 2002 | A1 |
20030055883 | Wiles et al. | Mar 2003 | A1 |
20030079020 | Gourraud et al. | Apr 2003 | A1 |
20030144900 | Whitmer | Jul 2003 | A1 |
20030154240 | Nygren et al. | Aug 2003 | A1 |
20040008846 | Medvinsky | Jan 2004 | A1 |
20040010468 | Abe et al. | Jan 2004 | A1 |
20040100507 | Hayner et al. | May 2004 | A1 |
20040151318 | Duncanson, Jr. | Aug 2004 | A1 |
20040165717 | McIlwaine et al. | Aug 2004 | A1 |
20050050345 | Dowdy et al. | Mar 2005 | A1 |
20050138560 | Lee et al. | Jun 2005 | A1 |
20050144459 | Qureshi et al. | Jun 2005 | A1 |
20050190947 | Dulac | Sep 2005 | A1 |
20050249350 | Kahn et al. | Nov 2005 | A1 |
20050271211 | Takemura | Dec 2005 | A1 |
20060026425 | Douceur et al. | Feb 2006 | A1 |
20060158737 | Hu et al. | Jul 2006 | A1 |
20060200415 | Lu | Sep 2006 | A1 |
20060242069 | Peterka et al. | Oct 2006 | A1 |
20070174067 | Ito et al. | Jul 2007 | A1 |
20070230703 | Barrus et al. | Oct 2007 | A1 |
20070297610 | Chen et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
0453128 | Oct 1991 | EP |
0773687 | May 1997 | EP |
0989720 | Mar 2000 | EP |
2369263 | May 2002 | GB |
WO 9843380 | Nov 1998 | WO |
WO 0016207 | Mar 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20080005568 A1 | Jan 2008 | US |