Strap buckles have been in common use for many years. Typical of these is U.S. Pat. No. 1,234,818 (1917), which describes a buckle mounted on a strap. The user threads the end of the strap around the object being secured, through the buckle past a movable member, and then back the other direction through the buckle past an adjacent, fixed member. This action holds the strap in position within the buckle, forming a loop around the object being secured. Tension is added by pulling on the strap end. Some newer devices utilize fixed buckle members oriented such that they pinch the strap to maintain tension. The end of the strap is pulled to increase tension, but the buckle member orientation prevents movement of the strap in the opposite direction. Other devices employ spring-loaded cams or ratchets to maintain tension on a strap.
In spite of their widespread use, these devices share common problems, namely: (a) the user must locate the end of the strap and then thread it all the way through the buckle in a first direction, and some devices require the user to thread it back again through the buckle in the opposite direction, (b)—tension can be difficult to release because the release mechanism is typically located along the centerline of the strap, and thus offers little leverage for this purpose, (c)—even after tension is released, the strap must be fully withdrawn in one or both directions from the buckle before the strap can be removed from the object being secured.
It would therefore be advantageous to provide a buckle that allows loading the strap onto the buckle without having to thread the entire strap in one or both directions through the buckle. It would be further advantageous to provide a buckle that offers an easy to release structure. It would be further advantageous to provide a buckle that allows for ease of removal of the buckle.
In one embodiment, an improved Side-Loading Strap Buckle System is disclosed, which (A)—allows loading of the strap onto the side of the buckle, (B)—has a leveraged release structure, (C)—allows unloading of the strap from the side of the buckle, and in one alternative, (D)—incorporates an elastomer section for improved holding and release of the object being secured. In another embodiment, two side-loading buckles are provided, which allow use on a loop of strap without the need to permanently attach either buckle to the strap.
In one embodiment, a tensioning device includes a first slot located on a first end of the tensioning device, the first slot being closed on all four sides. The tensioning device further includes a second slot and a third slot, the third slot located on a second end of the tensioning device, the second end opposite the first end, the second slot located between the first and third slot, the second and the third slot being having an open side on one of four sides and closed on three of four sides. The tensioning device further includes a lever arm, the lever arm located on the second end of the tensioning device. Optionally, the tensioning device includes a raised area, located adjacent to the second and third slots, such that the second and third slots are raised in relation to the first slot. In one alternative, the open side of the second and the third slot are on the same side of the one of four sides. In another alternative, the first, second, and third slot are shaped to receive a flat strap. Optionally, the flat strap is standard size. Alternatively, the flat strap is made of nylon webbing. In another alternative, the tensioning device includes a first retention tab proximate to the second slot, the retention tab narrowing the width of the open side of the second slot. In yet another alternative, the tensioning device includes a second retention tab proximate to the third slot, the second retention tab narrowing the width of the open side of the third slot. Optionally, the first, second, and third slot are all arranged parallel to each other.
In one embodiment, a tensioning system includes a tensioning device, including a first slot located on a first end of the tensioning device, the first slot being closed on all four sides. The tensioning device further includes a second slot and a third slot, the third slot located on a second end of the tensioning device, the second end opposite the first end, the second slot located between the first and third slot, the second and the third slot being having an open side on one of four sides and closed on three of four sides. The tensioning device further includes a lever arm, the lever arm located on the second end of the tensioning device. The tensioning system further includes a first strap having a first end oriented and anchored in the first slot. Optionally, the tensioning system includes a raised area, located adjacent to the second and third slots, such that the second and third slots are raised in relation to the first slot. Alternatively, the second and third slot are arranged parallel to each other and the first slot is arranged such that an end of the first slot closest to the open side of the second slot is closer to the second slot than an end of the first slot furthest from the open side of the second slot. In one alternative, the open side of the second and the third slot are on the same side of the one of four sides. In another alternative, the first, second, and third slot are shaped to receive a flat strap. Optionally, the first slot is at a one to ten degree angle to the second slot. Alternatively, the first slot is at a four degree angle to the second slot. Optionally, the system further includes a carabiner gate oriented to close the open end of the second slot.
In one embodiment, a method of using a tensioning system includes providing a tensioning system. The tensioning system includes a tensioning device, including a first slot located on a first end of the tensioning device, the first slot being closed on all four sides. The tensioning device further includes a second slot and a third slot, the third slot located on a second end of the tensioning device, the second end opposite the first end, the second slot located between the first and third slot, the second and the third slot being having an open side on one of four sides and closed on three of four sides. The tensioning device further includes a lever arm, the lever arm located on the second end of the tensioning device. The tensioning system further includes a first strap having a first end oriented and anchored in the first slot. The method further includes looping the first strap. The method further includes wrapping the first strap around an object. The method further includes placing the first strap on the second and third slot of the tensioning device from the open side of the second and third slot. The method further includes tensioning the first strap around the object by pulling on the strap. Optionally, the method further includes lifting the lever arm to release the tension on the first strap. Optionally, the method further includes removing the first strap from tensioning device by sliding the first strap through the open side of the second and third slot.
Certain terminology is used herein for convenience only and is not to be taken as a limitation on the embodiments of the systems and methods for a side-loading strap buckle system (the “device”). In many embodiments, the side-loading strap buckle system includes a variety of slots for receiving and tensioning a strap. In many embodiments, the device includes a first slot to which a strap may be affixed. In many configurations, this is a permanently attached strap. In many embodiments, the device further includes a first and second side load slot. These side load slots are open on one side, such that a strap may be easily slid onto the device and tensioned. The side load slots are located in a raise portion of the device in comparison to the first slot. Additionally, the device may include a lever arm that allows the user to release the tension of the device on the strap. The lever arm, in combination with the raised slot area, provides for release by rotation of the device, such that the edge of the device is moved away from the strap, allowing it to slide more freely.
A side-loading strap buckle system is disclosed which constitutes a strap tensioning system. In one embodiment as shown in
In use, the strap 110 is passed around the object to be secured. A loop 170 is formed at a convenient spot along the strap 110. Loop 170 is then inserted into the device 100 at slots 130 and 140. Retention tab 160 assures that loop 170 stays within slots 130 and 140 as strap 110 is pulled in the direction of the release lever 190 to tighten the strap. To release tension from the system as shown in
In many embodiments, raised area 120 is formed via making bends in the device 100 that coincide with slot 130 and 140 such that the area between them is raised. This forms an approximate half hexagonal shape for the device 100. In
In another embodiment as shown in
Another embodiment of a device 700 shown in
In another embodiment of a device 900 as shown in
In still another embodiment, a device 1000 as shown in
In many embodiments, the side-loading strap buckle system is designed to work with flat straps. In many configurations, the flat straps are of standard one inch thickness. The slots are typically sized to accommodate these flat straps. However, flat straps come in various sizes, including but not limited to, sizes ranging from a quarter inch in width to two or more inches in width.
Another embodiment of a side-loading strap buckle system is shown in
While specific embodiments have been described in detail in the foregoing detailed description, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure and the broad inventive concepts thereof. It is understood, therefore, that the scope of this disclosure is not limited to the particular examples and implementations disclosed herein but is intended to cover modifications within the spirit and scope thereof as defined by the appended claims and any and all equivalents thereof.
This application claims the benefit of U.S. Provisional Application No. 62/600,961, filed Mar. 7, 2017, the entirety of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
411777 | Behrens | Oct 1889 | A |
685831 | Frawley | Nov 1901 | A |
1636925 | Ravigneaux | Jul 1927 | A |
1853889 | Alterson | Apr 1932 | A |
1860170 | Bronson | May 1932 | A |
2326328 | Bush | Aug 1943 | A |
2585619 | Becker | Feb 1952 | A |
2648112 | Neumann | Aug 1953 | A |
3161931 | Jehiel | Dec 1964 | A |
3203058 | Roing | Aug 1965 | A |
3242542 | Tako | Mar 1966 | A |
3858279 | Brattstrom | Jan 1975 | A |
5432985 | Bernart | Jul 1995 | A |
5733004 | Celestina-Krevh | Mar 1998 | A |
5784763 | Cassidy | Jul 1998 | A |
20050066484 | Hum | Mar 2005 | A1 |
20050086772 | Yoshiguchi | Apr 2005 | A1 |
20110016676 | Gray | Jan 2011 | A1 |
Entry |
---|
International Search Report and Written Opinion dated May 15, 2018 issued in related PCT Patent App. No. PCT/US2018/021416 (14 pages). |
Number | Date | Country | |
---|---|---|---|
20180255881 A1 | Sep 2018 | US |
Number | Date | Country | |
---|---|---|---|
62600961 | Mar 2017 | US |