Systems and methods for activity level pacing

Information

  • Patent Grant
  • 10617874
  • Patent Number
    10,617,874
  • Date Filed
    Monday, October 30, 2017
    7 years ago
  • Date Issued
    Tuesday, April 14, 2020
    4 years ago
Abstract
Systems, devices, and methods for pacing a heart of a patient are disclosed. An illustrative method may include determining a motion level of the patient using a motion sensor of an implantable medical device secured relative to a patient's heart, and setting a pacing rate based at least in part on the patient's motion level. The patient's motion level may be determined by, for example, comparing the motion level sensed by the motion sensor during a current heart beat to a motion level associated with one or more previous heart beats. Noise may occur in the motion level measurements during those heart beats that transition between an intrinsically initiated heart beat and pace initiated heart beat. Various techniques may be applied to the motion level measurements to help reduce the effect of such noise.
Description

The present disclosure generally relates to systems, devices, and methods for delivering pacing therapy to a patient, and more particularly, to systems, devices, and methods for modulating pacing therapy based on an activity level of the patient.


BACKGROUND

Pacing instruments can be used to treat patients suffering from various heart conditions that result in a reduced ability of the heart to deliver sufficient amounts of blood to a patient's body. These heart conditions may lead to rapid, irregular, and/or inefficient heart contractions. To help alleviate some of these conditions, various devices (e.g., pacemakers, defibrillators, etc.) can be implanted in a patient's body. Such devices may monitor and provide electrical stimulation to the heart to help the heart operate in a more normal, efficient and/or safe manner. In some cases, such devices may modulate delivered pacing therapy based on a patient's activity level, which is sometime referred to as rate responsive pacing.


SUMMARY

The present disclosure generally relates to systems, devices, and methods for delivering pacing therapy to a patient, and more particularly, to systems, devices, and methods for modulating pacing therapy based on an activity level of the patient.


In an illustrative embodiment, an implantable medical device (IMD) implantable within a patient's may comprise two or more sensors including a motion sensor and a controller operatively coupled to the two or more sensors. The controller may identify a plurality of heart beats using one or more of the sensors, each of the plurality of heart beats having a systole phase and diastole phase. The controller may identify each of two or more of the plurality of heart beats as an intrinsically initiated heart beat or a pace initiated heart beat, and identify a calibration time window. During the calibration time window, the controller may identify a baseline intrinsic motion level by identifying a motion level of the IMD using the motion sensor during the systole phase of N intrinsically initiated heart beats, where N is greater than two and identify a baseline pace motion level by identifying a motion level of the IMD using the motion sensor during the systole phase of N pace initiated heart beats, where N is greater than two. The controller may then determine an offset based at least in part on the baseline intrinsic motion level and the baseline pace motion level. After the calibration time window and for an intrinsically initiated heart beat that immediately follows a pace initiated heart beat, the controller may identify a motion level of the IMD using the motion sensor during the systole phase of the intrinsically initiated heart beat and apply the offset, and compare the identified motion level of the IMD with the applied offset to a motion level of the IMD identified for the immediately preceding pace initiated heart beat, and identify a motion level of the patient based at least in part on the comparison. Based at least in part on the identified motion level of the patient, the controller may set a pacing rate parameter.


Additionally, or alternatively to the first illustrative embodiment, after the calibration time window and for a pace initiated heart beat that immediately follows an intrinsic initiated heart beat, the controller may identify a motion level of the IMD using the motion sensor during the systole phase of the pace initiated heart beat and apply the offset, and compare the identified motion level of the LMD with the applied offset to a motion level of the LMD identified for the immediately preceding intrinsically initiated heart beat, and identify a motion level of the patient based at least in part on the comparison.


Additionally, or alternatively, in any of the above embodiments with respect to the first illustrative embodiment, after the calibration time window and for an intrinsically initiated heart beat that immediately follows an intrinsically initiated heart beat, the controller may identify a motion level of the IMD using the motion sensor during the systole phase of the intrinsically initiated heart beat, and compare the identified motion level of the IMD to a motion level of the IMD identified for one or more previous intrinsically initiated heart beats, and identify a motion level of the patient based at least in part on the comparison.


Additionally, or alternatively, in any of the above embodiments with respect to the first illustrative embodiment, after the calibration time window and for a pace initiated heart beat that immediately follows a pace initiated heart beat, the controller may identify a motion level of the IMD using the motion sensor during the systole phase of the pace initiated heart beat, and compare the identified motion level of the IMD to a motion level of the IMD identified for one or more previous pace initiated heart beats, and identify the motion level of the patient based at least in part on the comparison.


Additionally, or alternatively, in any of the above embodiments with respect to the first illustrative embodiment, the N intrinsically initiated heart beats may be N consecutive intrinsically initiated heart beats.


Additionally, or alternatively, in any of the above embodiments with respect to the first illustrative embodiment, the N pace initiated heart beats may be N consecutive pace initiated heart beats.


Additionally, or alternatively, in any of the above embodiments with respect to the first illustrative embodiment, the calibration time window may be a time window where patient activity is expected to be low.


Additionally, or alternatively, in any of the above embodiments with respect to the first illustrative embodiment, the calibration time window may be initiated after a particular posture of the patient is detected by the IMD.


Additionally, or alternatively, in any of the above embodiments with respect to the first illustrative embodiment, the IMD may detect each of N different postures, wherein N is greater than two, and the controller may identify a calibration time window for each N different postures. During each calibration time window, the controller may identify a baseline intrinsic motion level for the corresponding posture by identifying a motion level of the IMD using the motion sensor during the systole phase of N intrinsically initiated heart beats, where N is greater than two. The controller may also identify a baseline pace motion level for the corresponding posture by identifying a motion level of the IMD using the motion sensor during the systole phase of N pace initiated heart beats, where N is greater than two. Based at least in part on the baseline intrinsic motion level that corresponds to the corresponding posture and the baseline pace motion level that corresponds to the corresponding posture, the controller may determine an offset for each of the N different postures. After the calibration time window for each of the N different postures, the controller may identify a current posture of the patient as one of the N different postures. For an intrinsically initiated heart beat that immediately follows a pace initiated heart beat, the controller may identify a motion level of the IMD using the motion sensor during the systole phase of the intrinsically initiated heart beat, apply the offset that corresponds to the current posture, compare the identified motion level of the with the applied offset that corresponds to the current posture to a motion level of the IMD identified for the immediately preceding pace initiated heart beat, and identify a motion level of the patient based at least in part on the comparison. For a pace initiated heart beat that immediately follows an intrinsically initiated heart beat, the controller may identify a motion level of the IMD using the motion sensor during the systole phase of the pace initiated heart beat, apply the offset that corresponds to the current posture, compare the identified motion level of the IMD with the applied offset that corresponds to the current posture to a motion level of the IMD identified for the immediately preceding intrinsically initiated heart beat, and identify a motion level of the patient based at least in part on the comparison.


Additionally, or alternatively, in any of the above embodiments with respect to the first illustrative embodiment, wherein the calibration time window is initiated at a particular time of day.


Additionally, or alternatively, in any of the above embodiments with respect to the first illustrative embodiment, wherein the calibration time window is initiated after the motion level of the patient falls below a threshold for at least a predetermined length of time.


Additionally, or alternatively, in any of the above embodiments with respect to the first illustrative embodiment, wherein during the calibration time window the controller may pace the patient's heart at a pacing rate that is above a current intrinsic heart rate of the patient, and while pacing the patient's heart at the pacing rate that is above the current intrinsic heart rate of the patient, identify the baseline pace motion level by identifying the motion level of the using the motion sensor during the systole phase of N pace initiated heart beats, where N is greater than two.


In another illustrative embodiment, a method for identifying an activity level of a patient using a motion sensor implanted within the patient's heart may comprise identifying a plurality of heart beats using one or more of the sensors, each of the plurality of heart beats having a systole phase and diastole phase, identifying each of two or more of the plurality of heart beats as an intrinsically initiated heart beat or a pace initiated heart beat, and identifying a calibration time window. During the calibration time window, the method may comprise identifying a baseline intrinsic motion level by identifying a motion level of the IMD using the motion sensor during the systole phase of N intrinsically initiated heart beats, where N is greater than two, and identifying a baseline pace motion level by identifying a motion level of the IMD using the motion sensor during the systole phase of N pace initiated heart beats, where N is greater than two. The method may further comprise determining an offset based at least in part on the baseline intrinsic motion level and the baseline pace motion level. After the calibration time window and for an intrinsically initiated heart beat that immediately follows a pace initiated heart beat, the may comprise identifying a motion level of the IMD using the motion sensor during the systole phase of the intrinsically initiated heart beat and apply the offset, comparing the identified motion level of the IMD with the applied offset to a motion level of the IMD identified for the immediately preceding pace initiated heart beat, and identifying a motion level of the patient based at least in part on the comparison.


Additionally, or alternatively, the second illustrative embodiment may further comprise, setting a pacing rate parameter based at least in part on the identified motion level of the patient.


Additionally, or alternatively, to any of the above embodiments with respect to the second illustrative embodiment, after the calibration time window and for a pace initiated heart beat that immediately follows an intrinsic initiated heart beat, the method may further comprise identifying a motion level of the IMD using the motion sensor during the systole phase of the pace initiated heart beat and apply the offset, comparing the identified motion level of the IMD with the applied offset to a motion level of the IMD identified for the immediately preceding intrinsically initiated heart beat, and identifying a motion level of the patient based at least in part on the comparison.


Additionally, or alternatively, to any of the above embodiments with respect to the second illustrative embodiment, after the calibration time window and for an intrinsically initiated heart beat that immediately follows an intrinsically initiated heart beat, the method may further comprise identifying a motion level of the IMD using the motion sensor during the systole phase of the intrinsically initiated heart beat, comparing the identified motion level of the IMD to a motion level of the identified for one or more previous intrinsically initiated heart beats, and identifying a motion level of the patient based at least in part on the comparison. After the calibration time window and for a pace initiated heart beat that immediately follows a pace initiated heart beat, the method may further comprise identifying a motion level of the IMD using the motion sensor during the systole phase of the pace initiated heart beat, comparing the identified motion level of the IMD to a motion level of the IMD identified for one or more previous pace initiated heart beats, and identifying the motion level of the patient based at least in part on the comparison.


Additionally, or alternatively, to any of the above embodiments with respect to the second illustrative embodiment, the N intrinsically initiated heart beats may be N consecutive intrinsically initiated heart beats, and the N pace initiated heart beats may be N consecutive pace initiated heart beats.


In another illustrative embodiment, a leadless cardiac pacemaker (LCP) implantable within a patient's heart may comprise a housing, two or more electrodes secured relative to the housing, an accelerometer situated inside of the housing, and circuitry situated inside of the housing and operatively coupled to the two or more electrodes and the accelerometer. The two or more electrodes are configured to sense electrical signals of the patient's heart. The circuitry may identify a plurality of heart beats using two or more of the electrodes, each of the plurality of heart beats having a systole phase and diastole phase. The circuitry may also identify each of two or more of the plurality of heart beats as an intrinsically initiated heart beat or a pace initiated heart beat, and identify a calibration time window. During the calibration time window, the circuitry may identify a baseline intrinsic motion level by identifying a motion level of the LCP using the accelerometer during the systole phase of N intrinsically initiated heart beats, where N is greater than two, and identify a baseline pace motion level by identifying a motion level of the LCP using the accelerometer during the systole phase of N pace initiated heart beats, where N is greater than two. Based at least in part on the baseline intrinsic motion level and the baseline pace motion level, the circuitry may identify an offset. After the calibration time window and for an intrinsically initiated heart beat that immediately follows a pace initiated heart beat, the circuitry may identify a motion level of the LCP using the accelerometer during the systole phase of the intrinsically initiated heart beat and apply the offset, compare the identified motion level of the LCP with the applied offset to a motion level of the LCP identified for the immediately preceding pace initiated heart beat, and identify a motion level of the patient based at least in part on the comparison. After the calibration time window and for a pace initiated heart beat that immediately follows an intrinsic initiated heart beat, the circuitry may identify a motion level of the LCP using the accelerometer during the systole phase of the pace initiated heart beat and apply the offset, compare the identified motion level of the LCP with the applied offset to a motion level of the LCP identified for the immediately preceding intrinsically initiated heart beat, and identify a motion level of the patient based at least in part on the comparison. After the calibration time window and for an intrinsically initiated heart beat that immediately follows an intrinsically initiated heart beat, the circuitry may identify a motion level of the LCP using the accelerometer during the systole phase of the intrinsically initiated heart beat, compare the identified motion level of the LCP to a motion level of the LCP identified for one or more previous intrinsically initiated heart beats, and identify a motion level of the patient based at least in part on the comparison. After the calibration time window and for a pace initiated heart beat that immediately follows a pace initiated heart beat, the circuitry may identify a motion level of the LCP using the accelerometer during the systole phase of the pace initiated heart beat, and compare the identified motion level of the LCP to a motion level of the LCP identified for one or more previous pace initiated heart beats, and identify the motion level of the patient based at least in part on the comparison. Based at least in part on the identified motion level of the patient, the circuitry may set a pacing rate parameter.


Additionally, or alternatively, to the third illustrative embodiment, the N intrinsically initiated heart beats may be N consecutive intrinsically initiated heart beats, and the N pace initiated heart beats may be N consecutive pace initiated heart beats.


Additionally, or alternatively, to any of the above embodiments with respect to the third illustrative embodiment, the calibration time window may be a time window where patient activity is expected to be low.


The above summary is not intended to describe each embodiment or every implementation of the present disclosure. Advantages and attainments, together with a more complete understanding of the disclosure, will become apparent and appreciated by referring to the following description and claims taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure may be more completely understood in consideration of the following description of various illustrative embodiments in connection with the accompanying drawings, in which:



FIG. 1 is a schematic block diagram of an illustrative leadless cardiac pacemaker (LCP) according to one embodiment of the present disclosure;



FIG. 2 is a schematic block diagram of another illustrative medical device that may be used in conjunction with the LCP of FIG. 1;



FIG. 3 is a schematic diagram of an exemplary medical system that includes multiple LCPs and/or other devices in communication with one another;



FIG. 4 is a schematic diagram of a system including an LCP and another medical device, in accordance with another embodiment of the present disclosure;



FIG. 5 depicts a graph showing a cardiac electrical signal and illustrative motion sensor signal tracings for both an intrinsically initiated heart beat and a pace initiated heart beat;



FIG. 6 depicts a schematic flow diagram of an illustrative technique for setting a pacing rate parameter for an LCP;



FIG. 7 depicts a schematic flow diagram of an illustrative technique for setting a pacing rate parameter for an LCP;



FIG. 8 depicts a schematic flow diagram of an illustrative technique for setting a pacing rate parameter for an LCP utilizing heart rate range classifications;



FIG. 9 depicts a schematic flow diagram of an illustrative technique for setting a pacing rate parameter for an LCP utilizing an offset;



FIG. 10 depicts a schematic flow diagram of an illustrative technique for setting a pacing rate parameter for an LCP utilizing a calibration window; and



FIGS. 11A-11C depict graphs of illustrative averaged raw accelerometer data for a plurality of heart beats.





While the disclosure is amenable to various modifications and alternative forms, specifics thereof have been shown by way of embodiment in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit aspects of the disclosure to the particular illustrative embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the disclosure.


DESCRIPTION

The following description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The description and the drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the disclosure.


This disclosure describes systems, devices, and methods for modifying delivery of pacing pulses according to a motion level of a patient. For example, devices of the present disclosure may be configured to determine a motion level of a patient. The devices may then adjust the rate of delivery of pacing pulses in accordance with the determined motion level. As one example, the devices may slow the delivery rate of pacing pulses during periods of lower patient motion relative to a delivery rate of pacing pulses during periods of higher patient motion.



FIG. 1 is a conceptual schematic block diagram of an implantable medical device (IMD), such as an illustrative leadless cardiac pacemaker (LCP) that may be implanted on the heart or within a chamber of the heart and may operate to sense physiological signals and parameters and deliver one or more types of electrical stimulation therapy to the heart of the patient. Example electrical stimulation therapy may include bradycardia pacing, rate responsive pacing therapy, cardiac resynchronization therapy (CRT), anti-tachycardia pacing (ATP) therapy and/or the like. The disclosed concepts may be implemented in other IMDs and/or other devices including, but not limited to, pacemakers with leads, defibrillators, and/or other implantable or non-implantable devices.


As can be seen in FIG. 1, LCP 100 may be a compact device with all components housed within LCP 100 or directly on housing 120. In some instances, LCP 100 may include communication module 102, pulse generator module 104, electrical sensing module 106 (e.g., including one or more electrical sensors), mechanical sensing module 108 (e.g., including one or more mechanical sensors), processing module 110 (e.g., a controller including memory and one or more processors), energy storage module 112, and electrodes 114, 114′. Via circuitry, the electrodes 114, 114′ may be part of and/or may be in communication with (e.g., operatively coupled to) the communication module 102, the pulse generator module 104, electrical sensing module 106, the mechanical sensing module 108, the processing module 110, and/or the energy storage module 112.


As depicted in FIG. 1, LCP 100 may include electrodes 114, which can be secured relative to housing 120 and electrically exposed to tissue and/or blood surrounding LCP 100. Electrodes 114 may generally conduct electrical signals to and/or from LCP 100 and the surrounding tissue and/or blood. Such electrical signals may include communication signals, electrical stimulation pulses, and intrinsic cardiac electrical signals, to name a few. Intrinsic cardiac electrical signals may include electrical signals generated by the heart and may be represented by an electrocardiogram (ECG). The electrodes may be considered a sensor capable of sensing each of a plurality of heart beats.


Electrodes 114 may include one or more biocompatible conductive materials such as various metals or alloys that are known to be safe for implantation within a human body. In some instances, electrodes 114 may be generally disposed on either end of LCP 100 and may be in electrical communication with one or more of modules 102, 104, 106, 108, and 110. In embodiments where electrodes 114 (e.g., two or more electrodes 114) are secured directly to housing 120, an insulative material may electrically isolate the electrodes 114 from adjacent electrodes, housing 120, and/or other parts of LCP 100. In some instances, some or all of electrodes 114 may be spaced from housing 120 and connected to housing 120 and/or other components of LCP 100 through connecting wires. In such instances, the electrodes 114 may be placed on a tail (not shown) that extends out away from the housing 120.


As shown in FIG. 1, in some embodiments, LCP 100 may include electrodes 114′. Electrodes 114′ may be in addition to electrodes 114, or may replace one or more of electrodes 114. Electrodes 114′ may be similar to electrodes 114 except that electrodes 114′ are disposed on the sides of LCP 100. In some cases, electrodes 114′ may increase the number of electrodes by which LCP 100 may deliver communication signals and/or electrical stimulation pulses, and/or may sense intrinsic cardiac electrical signals, communication signals, and/or electrical stimulation pulses.


Electrodes 114 and/or 114′ may assume any of a variety of sizes and/or shapes, and may be spaced at any of a variety of spacings. For example, electrodes 114 may have an outer diameter of two to twenty millimeters (mm). In other embodiments, electrodes 114 and/or 114′ may have a diameter of two, three, five, seven millimeters (mm), or any other suitable diameter, dimension and/or shape. Example lengths for electrodes 114 and/or 114′ may include, for example, one, three, five, ten millimeters (mm), or any other suitable length. As used herein, the length is a dimension of electrodes 114 and/or 114′ that extends away from the outer surface of the housing 120, in some instances, at least some of electrodes 114 and/or 114′ may be spaced from one another by a distance of twenty, thirty, forty, fifty millimeters), or any other suitable spacing. The electrodes 114 and/or 114′ of a single device may have different sizes with respect to each other, and the spacing and/or lengths of the electrodes on the device may or may not be uniform.


In the embodiment shown, communication module 102 may be electrically coupled to electrodes 114 and/or 114′ and may be configured to deliver communication pulses to tissues of the patient for communicating with other devices such as sensors, programmers, other medical devices, and/or the like. Communication signals, as used herein, may be any modulated signal that conveys information to another device, either by itself or in conjunction with one or more other modulated signals. In some embodiments, communication signals may be limited to sub-threshold signals that do not result in capture of the heart yet still convey information. The communication signals may be delivered to another device that is located either external or internal to the patient's body. In some instances, the communication may take the form of distinct communication pulses separated by various amounts of time. In some of these cases, the timing between successive pulses may convey information. Communication module 102 may additionally be configured to sense for communication signals delivered by other devices, which may be located external or internal to the patient's body.


Communication module 102 may communicate to help accomplish one or more desired functions. Some example functions include delivering sensed data, using communicated data for determining occurrences of events such as arrhythmias, coordinating delivery of electrical stimulation therapy, and/or other functions. In some cases, LCP 100 may use communication signals to communicate raw information, processed information, messages and/or commands, and/or other data. Raw information may include information such as sensed electrical signals (e.g. a sensed ECG), signals gathered from coupled sensors, and the like. In some embodiments, the processed information may include signals that have been filtered using one or more signal processing techniques. Processed information may also include parameters and/or events that are determined by the LCP 100 and/or another device, such as a determined heart rate, timing of determined heartbeats, timing of other determined events, determinations of threshold crossings, expirations of monitored time periods, accelerometer signals, activity level parameters, blood-oxygen parameters, blood pressure parameters, heart sound parameters, and the like. Messages and/or commands may include instructions or the like directing another device to take action, notifications of imminent actions of the sending device, requests for reading from the receiving device, requests for writing data to the receiving device, information messages, and/or other messages commands.


In at least some embodiments, communication module 102 (or LCP 100) may further include switching circuitry to selectively connect one or more of electrodes 114 and/or 114′ to communication module 102 in order to select which electrodes 114 and/or 114′ that communication module 102 delivers communication pulses. It is contemplated that communication module 102 may be communicating with other devices via conducted signals, radio frequency (RF) signals, optical signals, acoustic signals, inductive coupling, and/or any other suitable communication methodology.


Where communication module 102 generates electrical communication signals, communication module 102 may include one or more capacitor elements and/or other charge storage devices to aid in generating and delivering communication signals. In the embodiment shown, communication module 102 may use energy stored in energy storage module 112 to generate the communication signals. In at least some examples, communication module 102 may include a switching circuit that is connected to energy storage module 112 and, with the switching circuitry, may connect energy storage module 112 to one or more of electrodes 114/114′ to generate the communication signals.


As shown in FIG. 1, a pulse generator module 104 may he electrically connected to one or more of electrodes 114 and/or 114′. Pulse generator module 104 may be configured to generate electrical stimulation pulses and deliver the electrical stimulation pulses to tissues of a patient via one or more of the electrodes 114 and/or 114′ in order to effectuate one or more electrical stimulation therapies. Electrical stimulation pulses as used herein are meant to encompass any electrical signals that may be delivered to tissue of a patient for purposes of treatment of any type of disease or abnormality. For example, when used to treat heart disease, the pulse generator module 104 may generate electrical stimulation pacing pulses for capturing the heart of the patient, i.e. causing the heart to contract in response to the delivered electrical stimulation pulse. In some of these cases, LCP 100 may vary the rate at which pulse generator module 104 generates the electrical stimulation pulses, for example in rate adaptive pacing. In other embodiments, the electrical stimulation pulses may include defibrillation/cardioversion pulses for shocking the heart out of fibrillation or into a normal heart rhythm. In yet other embodiments, the electrical stimulation pulses may include anti-tachycardia pacing (ATP) pulses. It should be understood that these are just some examples. When used to treat other ailments, the pulse generator module 104 may generate electrical stimulation pulses suitable for neurostimulation therapy or the like.


Pulse generator module 104 may include one or more capacitor elements and/or other charge storage devices to aid in generating and delivering appropriate electrical stimulation pulses. In at least some embodiments, pulse generator module 104 may use energy stored in energy storage module 112 to generate the electrical stimulation pulses. In some particular embodiments, pulse generator module 104 may include a switching circuit that is connected to energy storage module 112 and may connect energy storage module 112 to one or more of electrodes 114/114′ to generate electrical stimulation pulses.


LCP 100 may include an electrical sensing module 106. Electrical sensing module 106 may be configured to sense intrinsic cardiac electrical signals conducted from electrodes 114 and/or 114′ to electrical sensing module 106. For example, electrical sensing module 106 may be electrically connected to one or more electrodes 114 and/or 114′ and electrical sensing module 106 may be configured to receive cardiac electrical signals conducted through electrodes 114 and/or 114′ via a sensor amplifier or the like. In some embodiments, the cardiac electrical signals may represent local information from the chamber in which LCP 100 is implanted. For instance, if LCP 100 is implanted within a ventricle of the heart, cardiac electrical signals sensed by LCP 100 through electrodes 114 and/or 114′ may represent ventricular cardiac electrical signals. The electrical sensing module 106 may, in some cases, be configured to identify each of a plurality of heart beats as an intrinsically initiated heart beat or a pace initiated heart beat.


Further, LCP 100 may include a mechanical sensing module 108. Mechanical sensing module 108 may include, or be electrically connected to, various sensors, such as accelerometers, including multi-axis accelerometers such as two- or three-axis accelerometers, gyroscopes, including multi-axis gyroscopes such as two- or three-axis gyroscopes, blood pressure sensors, heart sound sensors, piezoelectric sensors, blood-oxygen sensors, and/or other sensors which measure one or more physiological parameters of the heart and/or patient. Mechanical sensing module 108, when present, may gather signals from the sensors indicative of the various physiological parameters.


Both electrical sensing module 106 and mechanical sensing module 108 may be connected to processing module 110 and may provide signals representative of the sensed cardiac electrical signals and/or physiological signals to processing module 110. Although described with respect to FIG. 1 as separate sensing modules, in some embodiments, electrical sensing module 106 and mechanical sensing module 108 may be combined into a single module. In at least some examples, LCP 100 may only include one of electrical sensing module 106 and mechanical sensing module 108. In some cases, any combination of the processing module 110, electrical sensing module 106, mechanical sensing module 108, communication module 102, pulse generator module 104 and/or energy storage module may be considered a controller of the 100.


Processing module 110 may be configured to direct the operation of LCP 100 and may, in some embodiments, be termed a controller. For example, processing module 110 may be configured to receive cardiac electrical signals from electrical sensing module 106 and/or physiological signals from mechanical sensing module 108. Based on the received signals, processing module 110 may, for example, adjust the rate of pacing based on the activity level of the patient (e.g, rate adaptive pacing). When so provided, processing module 110 may monitor one or more physiological parameters of the patient which may indicate a need for an increased heart rate (e.g. due to increased metabolic demand) and increase the rate at which pulse generator module 104 generates electrical stimulation pulses. Determining an activity level of the patient using a motion sensor (e.g. accelerometer) of the mechanical sensing module 108 of the LCP 100 can be challenging because the motion detected by the motion sensor not only includes the activity level of the patient but also the motion of the beating heart. FIGS. 6-10 describes illustrative methods for aiding in rate responsive pacing using a motion sensor accelerometer) in an LCP.


In some cases, the processing module 110 may determine occurrences and types of arrhythmias and other determinations such as whether LCP 100 has become dislodged. Processing module 110 may further receive information from communication module 102. In some embodiments, processing module 110 may additionally use such received information to determine occurrences and types of arrhythmias and/or and other determinations such as whether LCP 100 has become dislodged. In still some additional embodiments, LCP 100 may use the received information instead of the signals received from electrical sensing module 106 and/or mechanical sensing module 108—for instance if the received information is deemed to be more accurate than the signals received from electrical sensing module 106 and/or mechanical sensing module 108 or if electrical sensing module 106 and/or mechanical sensing module 108 have been disabled or omitted from LCP 100.


After determining an occurrence of an arrhythmia, processing module 110 may control pulse generator module 104 to generate electrical stimulation pulses in accordance with one or more electrical stimulation therapies to treat the determined arrhythmia. For example, processing module 110 may control pulse generator module 104 to generate pacing pulses with varying parameters and in different sequences to effectuate one or more electrical stimulation therapies. As one example, in controlling pulse generator module 104 to deliver bradycardia pacing therapy, processing module 110 may control pulse generator module 104 to deliver pacing pulses designed to capture the heart of the patient at a regular interval to help prevent the heart of a patient from falling below a predetermined threshold.


For ATP therapy, processing module 110 may control pulse generator module 104 to deliver pacing pulses at a rate faster than an intrinsic heart rate of a patient in an attempt to force the heart to beat in response to the delivered pacing pulses rather than in response to intrinsic cardiac electrical signals. Once the heart is following the pacing pulses, processing module 110 may control pulse generator module 104 to reduce the rate of delivered pacing pulses down to a safer level. In Cardiac Resynchronization Therapy (CRT), processing module 110 may control pulse generator module 104 to deliver pacing pulses in coordination with another device to cause the heart to contract more efficiently. In cases where pulse generator module 104 is capable of generating defibrillation and/or cardioversion pulses for defibrillation/cardioversion therapy, processing module 110 may control pulse generator module 104 to generate such defibrillation and/or cardioversion pulses. In some cases, processing module 110 may control pulse generator module 104 to generate electrical stimulation pulses to provide electrical stimulation therapies different than those examples described above.


Aside from controlling pulse generator module 104 to generate different types of electrical stimulation pulses and in different sequences, in some embodiments, processing module 110 may also control pulse generator module 104 to generate the various electrical stimulation pulses with varying pulse parameters. For example, each electrical stimulation pulse may have a pulse width and a pulse amplitude. Processing module 110 may control pulse generator module 104 to generate the various electrical stimulation pulses with specific pulse widths and pulse amplitudes. For example, processing module 110 may cause pulse generator module 104 to adjust the pulse width and/or the pulse amplitude of electrical stimulation pulses if the electrical stimulation pulses are not effectively capturing the heart. Such control of the specific parameters of the various electrical stimulation pulses may help LCP 100 provide more effective delivery of electrical stimulation therapy.


In some embodiments, processing module 110 may further control communication module 102 to send information to other devices. For example, processing module 110 may control communication module 102 to generate one or more communication signals for communicating with other devices of a system of devices. For instance, processing module 110 may control communication module 102 to generate communication signals in particular pulse sequences, where the specific sequences convey different information. Communication module 102 may also receive communication signals for potential action by processing module 110.


In further embodiments, processing module 110 may control switching circuitry by which communication module 102 and pulse generator module 104 deliver communication signals and/or electrical stimulation pulses to tissue of the patient. As described above, both communication module 102 and pulse generator module 104 may include circuitry for connecting one or more electrodes 114 and/114′ to communication module 102 and/or pulse generator module 104 so those modules may deliver the communication signals and electrical stimulation pulses to tissue of the patient. The specific combination of one or more electrodes by which communication module 102 and/or pulse generator module 104 deliver communication signals and electrical stimulation pulses may influence the reception of communication signals and/or the effectiveness of electrical stimulation pulses. Although it was described that each of communication module 102 and pulse generator module 104 may include switching circuitry, in some embodiments, LCP 100 may have a single switching module connected to the communication module 102, the pulse generator module 104, and electrodes 114 and/or 114′. In such embodiments, processing module 110 may control the switching module to connect modules 102/104 and electrodes 114/114′ as appropriate.


In some embodiments, processing module 110 may include a pre-programmed chip, such as a very-large-scale integration (VLSI) chip or an application specific integrated circuit (ASIC). In such embodiments, the chip may be pre-programmed with control logic in order to control the operation of LCP 100. By using a pre-programmed chip, processing module 110 may use less power than other programmable circuits while able to maintain basic functionality, thereby potentially increasing the battery life of LCP 100. In other instances, processing module 110 may include a programmable microprocessor or the like. Such a programmable microprocessor may allow a user to adjust the control logic of LCP 100 after manufacture, thereby allowing for greater flexibility of LCP 100 than when using a pre-programmed chip. In still other embodiments, processing module 110 may not be a single component. For example, processing module 110 may include multiple components positioned at disparate locations within LCP 100 in order to perform the various described functions. For example, certain functions may be performed in one component of processing module 110, while other functions are performed in a separate component of processing module 110,


Processing module 110, in additional embodiments, may include a memory circuit and processing module 110 may store information on and read information from the memory circuit. In other embodiments, LCP 100 may include a separate memory circuit (not shown) that is in communication with processing module 110, such that processing module 110 may read and write information to and from the separate memory circuit. The memory circuit, whether part of processing module 110 or separate from processing module 110, may be volatile memory, non-volatile memory, or a combination of volatile memory and non-volatile memory.


Energy storage module 112 may provide a power source to LCP 100 for its operations. In some embodiments, energy storage module 112 may be a non-rechargeable lithium-based battery. In other embodiments, the non-rechargeable battery may be made from other suitable materials. In some embodiments, energy storage module 112 may include a rechargeable battery. In still other embodiments, energy storage module 112 may include other types of energy storage devices such as capacitors or super capacitors.


To implant LCP 100 inside a patient's body, an operator a physician, clinician, etc.), may fix LCP 100 to the cardiac tissue of the patient's heart. To facilitate fixation, LCP 100 may include one or more anchors 116. The one or more anchors 116 are shown schematically in FIG. 1. The one or more anchors 116 may include any number of fixation or anchoring mechanisms. For example, one or more anchors 116 may include one or more pins, staples, threads, screws, helix, tines, and/or the like. In some embodiments, although not shown, one or more anchors 116 may include threads on its external surface that may run along at least a partial length of an anchor member. The threads may provide friction between the cardiac tissue and the anchor to help fix the anchor member within the cardiac tissue. In some cases, the one or more anchors 116 may include an anchor member that has a cork-screw shape that can be screwed into the cardiac tissue. In other embodiments, anchor 116 may include other structures such as barbs, spikes, or the like to facilitate engagement with the surrounding cardiac tissue.


In some examples, LCP 100 may be configured to be implanted on a patient's heart or within a chamber of the patient's heart. For instance, LCP 100 may be implanted within any of a left atrium, right atrium, left ventricle, or right ventricle of a patient's heart. By being implanted within a specific chamber, LCP 100 may be able to sense cardiac electrical signals originating or emanating from the specific chamber that other devices may not be able to sense with such resolution. Where LCP 100 is configured to be implanted on a patient's heart, LCP 100 may be configured to be implanted on or adjacent to one of the chambers of the heart, or on or adjacent to a path along which intrinsically generated cardiac electrical signals generally follow. In these examples, LCP 100 may also have an enhanced ability to sense localized intrinsic cardiac electrical signals and deliver localized electrical stimulation therapy. In embodiments where LCP 100 includes an accelerometer, LCP 100 may additionally be able to sense the motion of the cardiac wall to which LCP 100 is attached.



FIG. 2 depicts an embodiment of another device, medical device (MD) 200, which may operate to sense physiological signals and parameters and deliver one or more types of electrical stimulation therapy to tissues of the patient. In the embodiment shown, MD 200 may include a communication module 202, a pulse generator module 204, an electrical sensing module 206, a mechanical sensing module 208, a processing module 210, and an energy storage module 218. Each of modules 202, 204, 206, 208, and 210 may be similar to and/or different than modules 102, 104, 106, 108, and 110 of LCP 100 in one or more manners. Additionally, energy storage module 218 may be similar to and/or different than energy storage module 112 of LCP 100 in one or more manners. However, in some embodiments, MD 200 may have a larger volume within housing 220 than a volume of LCP 100. In such embodiments, MD 200 may include a larger energy storage module 218 and/or a larger processing module 210 capable of handling more complex operations than processing module 110 of LCP 100.


While MI) 200 may be another leadless device such as shown in FIG. 1, in some instances MD 200 may include leads, such as leads 212. Leads 212 may include electrical wires that conduct electrical signals between electrodes 214 and one or more modules located within housing 220. In some cases, leads 212 may be connected to and extend away from housing 220 of MD 200. In some embodiments, leads 212 may be implanted on, within, or adjacent to a heart of a patient. Leads 212 may contain one or more electrodes 214 positioned at various locations on leads 212 and various distances from housing 220. Some leads 212 may only include a single electrode 214, while other leads 212 may include multiple electrodes 214. Generally, electrodes 214 may be positioned on leads 212 such that when leads 212 are implanted within the patient, one or more of the electrodes 214 are positioned to perform a desired function. In some cases, the one or more of the electrodes 214 may be in contact with the patient's cardiac tissue. In other cases, the one or more of the electrodes 214 may be positioned subcutaneously but adjacent the patient's heart.


MD 200 may also include one or more electrodes 214 not disposed on a lead 212. For example, one or more electrodes 214 may be connected directly to housing 220.


The electrodes 214 may conduct intrinsically generated electrical cardiac signals to leads 212. Leads 212 may, in turn, conduct the received electrical cardiac signals to one or more of the modules 202, 204, 206, and 208 of MD 200.


In some cases, MD 200 may generate electrical stimulation signals, and leads 212 may conduct the generated electrical stimulation signals to electrodes 214. Electrodes 214 may then conduct the electrical stimulation signals to the cardiac tissue of the patient (either directly or indirectly).


Leads 212, in some embodiments, may additionally contain one or more sensors, such as accelerometers, blood pressure sensors, heart sound sensors, blood-oxygen sensors, and/or other sensors which are configured to measure one or more physiological parameters of the heart and/or patient. In such embodiments, mechanical sensing module 208 may be in electrical communication with leads 212 and may receive signals generated from such sensors.


While not required, in some embodiments MI) 200 may be an implantable medical device. In such embodiments, housing 220 of MD 200 may be implanted in, for example, a transthoracic region of the patient. Housing 220 may generally include any of a number of known materials that are safe for implantation in a human body and may, when implanted, hermetically seal the various components of MD 200 from fluids and tissues of the patient's body. In such embodiments, leads 212 may be implanted at one or more various locations within the patient, such as within the heart of the patient, adjacent to the heart of the patient, adjacent to the spine of the patient, or any other desired location.


In some embodiments, MD 200 may be an implantable cardiac pacemaker (ICP). In these embodiments, MD 200 may have one or more leads, for example leads 212, which are implanted on or within the patient's heart. The one or more leads 212 may include one or more electrodes 214 that are in contact with cardiac tissue and/or blood of the patient's heart. MD 200 may be configured to sense intrinsically generated cardiac electrical signals and determine, for example, one or more cardiac arrhythmias based on analysis of the sensed signals. MD 200 may be configured to deliver CRT, ATP therapy, bradycardia therapy, and/or other therapy types via leads 212 implanted within the heart. In some embodiments, MD 200 may additionally be configured to provide defibrillation/cardioversion therapy.


In some instances, MD 200 may be an implantable cardioverter-defibrillator (ICD). In such embodiments, MD 200 may include one or more leads implanted within a patient's heart. MD 200 may also be configured to sense electrical cardiac signals, determine occurrences of tachyarrhythmias based on the sensed electrical cardiac signals, and deliver defibrillation and/or cardioversion therapy in response to determining an occurrence of a tachyarrhythmia (for example by delivering defibrillation and/or cardioversion pulses to the heart of the patient). In other embodiments, MD 200 may be a subcutaneous implantable cardioverter-defibrillator (SICD). In embodiments where MD 200 is an SICD, one of leads 212 may be a subcutaneously implanted lead. In at least some embodiments where MD 200 is an SICD, MD 200 may include only a single lead which is implanted subcutaneously but outside of the chest cavity, however this is not required.


In some embodiments, MD 200 may not be an implantable medical device. Rather, MD 200 may be a device external to the patient's body, and electrodes 214 may be skin-electrodes that are placed on a patient's body. In such embodiments, MD 200 may be able to sense surface electrical signals (e.g. electrical cardiac signals that are generated by the heart or electrical signals generated by a device implanted within a patient's body and conducted through the body to the skin). MD 200 may further be configured to deliver various types of electrical stimulation therapy, including, for example, defibrillation therapy via skin-electrodes 214.



FIG. 3 illustrates an embodiment of a medical device system and a communication pathway through which multiple medical devices 100a, 100b, 306, and/or 310 of the medical device system may communicate. In the embodiment shown, medical device system 300 may include a first LCP 100a and a second LCP 100b, external medical device 306, and other sensors/devices 310.


External device 306 may be a device disposed external to a patient's body, as described previously with respect to MD 200. In at least some examples, external device 306 may represent an external support device such as a device programmer, as will be described in more detail below.


Other sensors/devices 310 may be any of the devices described previously with respect to MD 200, such as ICPs, ICDs, and SICDs. Other sensors/devices 310 may also include various diagnostic sensors that gather information about the patient, such as accelerometers, blood pressure sensors, or the like. In some cases, other sensors/devices 310 may include an external programmer device that may be used to program one or more devices of system 300.


Various devices of system 300 may communicate via communication pathway 308. For example, LCPs 100a and/or 100b may sense intrinsic cardiac electrical signals and may communicate such signals to one or more other devices 100a/100b, 306, and 310 of system 300 via communication pathway 308. In one embodiment, one or more of devices 100a/100b may receive such signals and, based on the received signals, determine an occurrence of an arrhythmia. In some cases, device or devices 100a/100b may communicate such determinations to one or more other devices 306 and 310 of system 300. In some cases, one or more of devices 100a/100b, 306, and 310 of system 300 may take action based on the communicated determination of an arrhythmia, such as by delivering a suitable electrical stimulation to the heart of the patient. One or more of devices 100a/100b, 306, and 310 of system 300 may additionally communicate command or response messages via communication pathway 308. The command messages may cause a receiving device to take a particular action whereas response messages may include requested information or a confirmation that a receiving device did, in fact, receive a communicated message or data.


It is contemplated that the various devices of system 300 may communicate via pathway 308 using RF signals, inductive coupling, optical signals, acoustic signals, or any other signals suitable for communication. Additionally, in at least some embodiments, the various devices of system 300 may communicate via pathway 308 using multiple signal types. For instance, other sensors/device 310 may communicate with external device 306 using a first signal type (e.g. RF communication) but communicate with LCPs 100a/100b using a second signal type e.g. conducted communication). Further, in some embodiments, communication between devices may be limited. For instance, as described above, in some embodiments, LCPs 100a/100b may communicate with external device 306 only through other sensors/devices 310, where LCPs 100a/100b may send signals to other sensors/devices 310, and other sensors/devices 310 relay the received signals to external device 306.


In some cases, the various devices of system 300 may communicate via pathway 308 using conducted communication signals. Accordingly, devices of system 300 may have components that allow for such conducted communication. For instance, the devices of system 300 may be configured to transmit conducted communication signals (e.g. a voltage and/or current waveform punctuated with current and/or voltage pulses, referred herein as electrical communication pulses) into the patient's body via one or more electrodes of a transmitting device, and may receive the conducted communication signals via one or more electrodes of a receiving device. The patient's body may “conduct” the conducted communication signals from the one or more electrodes of the transmitting device to the electrodes of the receiving device in the system 300. In such embodiments, the delivered conducted communication signals may differ from pacing pulses, defibrillation and/or cardioversion pulses, or other electrical stimulation therapy signals. For example, the devices of system 300 may deliver electrical communication pulses at an amplitude/pulse width that is sub-threshold. That is, the communication pulses have an amplitude/pulse width designed to not capture the heart. In some cases, the amplitude/pulse width of the delivered electrical communication pulses may be above the capture threshold of the heart, but may be delivered during a refractory period of the heart and/or may be incorporated in or modulated onto a pacing pulse, if desired.


Additionally, unlike normal electrical stimulation therapy pulses, the electrical communication pulses may be delivered in specific sequences which convey information to receiving devices. For instance, delivered electrical communication pulses may be modulated in any suitable manner to encode communicated information. In some cases, the communication pulses may be pulse width modulated and/or amplitude modulated. Alternatively, or in addition, the time between pulses may be modulated to encode desired information. In some cases, a predefined sequence of communication pulses may represent a corresponding symbol (e.g. a logic “1” symbol, a logic “0” symbol, an ATP therapy trigger symbol, etc.). In some cases, conducted communication pulses may be voltage pulses, current pulses, biphasic voltage pulses, biphasic current pulses, or any other suitable electrical pulse as desired.



FIG. 4 depicts an illustrative medical device system 400. For example, system 400 may include multiple devices that are implanted within a patient and are configured to sense physiological signals, determine occurrences of cardiac arrhythmias, and deliver electrical stimulation to treat detected cardiac arrhythmias. In some embodiments, the devices of system 400 may be configured to determine occurrences of dislodgment of one or more devices of system 400. In FIG. 4, an LCP 100 is shown fixed to the interior of the right ventricle of the heart 410, and a pulse generator 406 is shown coupled to a lead 412 having one or more electrodes 408a-408c. In some cases, pulse generator 406 may be part of a subcutaneous implantable cardioverter-defibrillator (SICD), and the one or more electrodes 408a-408c may be positioned subcutaneously adjacent the heart. LCP 100 may communicate with the SICD, such as via communication pathway 308. The locations of LCP 100, pulse generator 406, lead 412, and electrodes 408a-c depicted in FIG. 4 are just exemplary. In other embodiments of system 400, LCP 100 may be positioned in the left ventricle, right atrium, or left atrium of the heart, as desired. In still other embodiments, LCP 100 may be implanted externally adjacent to heart 410 or even remote from heart 410.


Medical device system 400 may also include external support device 420. External support device 420 can be used to perform functions such as device identification, device programming and/or transfer of real-time and/or stored data between devices using one or more of the communication techniques described herein, or other functions involving communication with one or more devices of system 400. As one example, communication between external support device 420 and pulse generator 406 can be performed via a wireless mode, and communication between pulse generator 406 and LCP 100 can be performed via a conducted communication mode. In some embodiments, communication between LCP 100 and external support device 420 is accomplished by sending communication information through pulse generator 406. However, in other embodiments, communication between the LCP 100 and external support device 420 may be via a communication module.



FIG. 4 only illustrates one example embodiment of a medical device system that may be configured to operate according to techniques disclosed herein. Other example medical device systems may include additional or different medical devices and/or configurations. For instance, other medical device systems that are suitable to operate according to techniques disclosed herein may include additional LCPs implanted within the heart. Another example medical device system may include a plurality of LCPs with or without other devices such as pulse generator 406, with at least one LCP capable of delivering defibrillation therapy. Still another example may include one or more LCPs implanted along with a transvenous pacemaker and with or without an implanted SICD. In yet other embodiments, the configuration or placement of the medical devices, leads, and/or electrodes may be different from those depicted in FIG. 4. Accordingly, it should be recognized that numerous other medical device systems, different from system 400 depicted in FIG. 4, may be operated in accordance with techniques disclosed herein. As such, the embodiment shown in FIG. 4 should not be viewed as limiting in any way.


In some embodiments, LCP 100 may be configured to operate in one or more modes. Within each mode, LCP 100 may operate in a somewhat different manner. For instance, in a first mode, LCP 100 may be configured to sense certain signals and/or determine certain parameters from the sensed signals. In a second mode, LCP 100 may be configured to sense at least some different signals and/or determine at least some different parameters than in the first mode. In at least one mode, LCP 100 may be configured to determine a motion level of a patient and modulate delivery of electrical stimulation therapy based on the determined motion level of the patient. For ease of description, a mode that includes LCP 100 being configured to determine a motion level of a patient and modulate delivery of electrical stimulation therapy based on the determined motion level of the patient may be called a motion sensing mode. Other modes may include one or more programming and/or therapy modes, and it may be possible for LCP 100 to be engaged in multiple modes concurrently.


In some embodiments, LCP 100 may include a therapy mode where LCP 100 operates as a pacemaker and delivers electrical stimulation therapy, such as electrical stimulation pulses, to a heart to drive a specific heart rate for the patient. LCP 100 may be configured to modulate the rate at which LCP 100 delivers electrical stimulation therapy in order to drive different heart rates for the patient. For instance, LCP 100 may be configured to deliver electrical stimulation in a rate-adaptive manner, as described herein. In at least some of these embodiments, LCP 100 may include a motion sensing mode, which may be a specific therapy mode or may modify a therapy mode. In the motion sensing mode, LCP 100 may modulate the rate of delivery of electrical stimulation therapy based on a determined motion level of the patient.


In some cases, the LCP 100 may determine the motion level of the patient using a motion sensor (e.g. accelerometer) in the LCP 100. Determining an activity level of the patient using a motion sensor (e.g. accelerometer) in the LCP 100 can be challenging because the motion detected by the motion sensor not only includes the activity level of the patient but also the motion of the beating heart. Moreover, the motion level of the beating heart may be different for intrinsically initiated heart beats versus pace initiated heart beats.


It has been found that a level of noise in a motion level of a patient (e.g. activity level) may be present when sequential heart beats switch or transition from an intrinsically initiated heart beat to a pace initiated heart and/or switches or transitions from a pace initiated heart beat to an intrinsically initiated heart beat. When adjusting a pacing therapy (e.g., an electrical stimulation therapy) based, at least in part, on a motion level of a patient (e.g. activity level), such noise may result in elevating a patient's heart rate when it is not needed and/or may result in not elevating the patient's heart rate when it is needed. Noise in motion level measurements by a motion sensor in the LCP 100 when heart beats are transitioning between an intrinsically initiated heart beat and a pace initiated heart beat are illustrated in the traces of FIG. 5. FIG. 5 depicts a graph 450 showing a number of signal traces from a motion sensor (e.g. accelerometer) of the LCP 100 when LCP 100 is attached to a wall of a patient's heart. The x-axis of graph 450 is time, t. Electrical signal 452 is an illustrative cardiac electrical signal (e.g., depicting heart beats) sensed by electrodes of the LCP 100, Motion signal 454 is an example signal sensed by an accelerometer of the mechanical sensing module 108 of the LCP 100 assuming two consecutive intrinsically initiated heart beats, Motion signal 456 is an example signal sensed by an accelerometer of the mechanical sensing module 108 of the LCP 100 assuming two consecutive pace initiated heart beats. Motion signals 454, 456 illustrate motion level measurements of the LCP 100. Tracing 458 shows the example motion signals 454 and 456 plotted to show their relative amplitudes over time. The example signal traces in FIG. 5 may be taken using an LCP 100 while the patient is in a relative static position (e.g. little or no patient activity).


Line A-A in FIG. 5 represents a time at which readings from a mechanical sensing module 108 (e.g., from a motion sensor thereof) may be taken. In some cases, a time associated with line A-A may be relative to an identified heart beat in electrical signal 452. In one example, line A-A may be set at a predetermined time after a heart beat has been detected, such as 50 milliseconds (ins), 100 ms, 150 ms, 200 ms, 250 ms, 300 ms, and/or other time period therebetween, greater than 300 ms, or less than 50 ms. In some cases, it may be desirable to consistently take measurements from the mechanical sensing module 108 during one of the systole and diastole phases of the cardiac cycle. For example, a measurement may be taken from mechanical sensing module 108 while the heart of a patient is in the systole phase (e.g., while the heart is contracting) and the acceleration of the heart may be substantially constant. It one example, taking measurements from the mechanical sensing module 108 at or at about 200 ms after a heart beat is initiated can result in a measurement during a systole phase of the cardiac cycle and while the heart is in substantial constant acceleration (e.g., constant contraction and relatively flat in FIG. 5),


As can be seen from trace 458 in FIG. 5, motion signals 454 and 456 have different values at line A-A. This difference between motions signals 454 and 456 at line A-A may be considered to be a graphical representation of “noise” in the measurements taken from the mechanical sensing module 108 when sequential heart beats are not initiated by the same one of an intrinsic rhythm and a pace rhythm. The techniques herein may be utilized, individually and/or in combination, to help correct for this “noise” when determining whether to modify a pacing therapy in response to a motion level of a patient.


In rate-adaptive pacing, a motion level for an LCP 100 (e.g., an IMD may be determined for every heart beat. Then, a motion level of a patient (e.g., an activity level) in which the LCP 100 is implanted may be identified by comparing a motion level of the LCP 100 for a current heart beat to one or more motion levels associated with one or more previous heart beats. The difference may be attributed to the activity level of the patient. However, when heart beats transition between heart beats initiated by different rhythms (e.g., an intrinsic rhythm and a pace rhythm), the aforementioned “noise” may occur resulting in larger than expected changes in motion levels of the LCP 100 that may inaccurately indicate a rise in activity level of a patient and unnecessarily raising a pacing rate of the heart.



FIG. 6 depicts an illustrative method 500 for setting a pace rate parameter of an LCP 100 implanted in a patient's heart based, at least in part, on an identified motion level of the patient. In illustrative method 500, a plurality of heart beats may be identified 502, for example, by the electrical sensing module 106 of the implanted LCP 100. The processing module 110 of the LCP 100, or other processing module (e.g., located at or remote from the LCP), may identify 504 whether the identified heart beats were intrinsically initiated or pace initiated. The processing module 110 may distinguish intrinsically initiated heart beats, pace initiated heart beats and fusion beats by analyzing the morphology of the electrical signal 452 of the heart beat, the morphology of motion signal 454, 456, and/or using any other suitable technique. In some cases, the electrical signal 452 may be compared to an electrical signal template for an intrinsically initiated heart beat, an electrical signal template for a pace initiated heart beats and an electrical signal template for a fusion beat, and to identify which electrical signal template the electrical signal 452 most closely matches. Likewise, the motion signal may be compared to a motion signal template for an intrinsically initiated heart beat, a motion signal template for a pace initiated heart beats and a motion signal template for a fusion beat, and to identify which motion signal template the motion signal most closely matches. These are just examples.


For intrinsically initiated heart beats, the processing module 110 may identify 506 a motion level measurement from the mechanical sensing module 108 (e.g., from a motion sensor thereof) of the LCP 100 (e.g., an IMD) and compare 508 the identified motion level of the LCP 100 for a current intrinsically initiated heart beat to a motion level of the LCP 100 for one or more previous intrinsically initiated heart beats. The motion level measurement may be taken during the systole phase of the cardiac cycle, but this is not required. Based, at least in part on the comparison, the processing module 110, or other processing module, may identify 510 a motion level of the patient in which the LCP 100 is implanted. Based, at least in part on the identified motion level of the patient, the processing module 110, or other processing module, may set 518 a pacing rate parameter for the LCP 100.


For pace initiated heart beats, the processing module 110 may identify 512 a motion level measurement from the mechanical sensing module 108 for the LCP 100 (e.g., an IMD and compare 514 the identified motion level of the LCP 100 for a current pace initiated heart beat to a motion level of the LCP 100 for one or more previous pace initiated heart beats. Based, at least in part on the comparison, the processing module 110, or other processing module, may identify 516 a motion level of the patient in which the LCP 100 is implanted. Based, at least in part on the identified motion level of the patient, the processing module 110, or other processing module, may set 518 a pacing rate parameter for the LCP 100.


In some cases, and as discussed above with respect to rate-adaptive pacing, comparing the identified motion level of the LCP 100 for a current heart beat to a motion level of the LCP 100 for a previous heart beat may include determining a difference between the compared motion levels. Then, based on this difference, the processing module 110 of the LCP 100 may set or update the motion level of the patient (e.g. activity level) and thus, set or update a pacing rate parameter for the LCP 100. In one example, the value of the motion level of the patient may be an absolute value of the difference between the motion level corresponding to a current heart beat and the motion level corresponding to the previous heart beat, but other relationships are contemplated. This general process, along with others, for comparing motion levels of the LCP 100 associated with different heart beats and determining a motion level of a patient may be utilized in the various techniques discussed herein.


Alternatively, or in addition to, comparing 508, 514 a motion level of an LCP 100 (e.g., an IMD) for a current heart beat to a motion level of the LCP 100 for an immediately previous heart beat, the processing module 110 may compare the motion level of an LCP 100 for a current heart beat to an average of motion levels of the LCP 100 for N previous heart beats (e.g., two or more previous heart beats) that were initiated by a same rhythm (e.g., intrinsic rhythm or pace rhythm) as is the current heart beat. The average of motion levels of the LCP 100 for N previous heart beats may be a straight average, a weighted average (e.g., where motion levels associated with one or more previous heart beats is weighted greater than another motion level associated with a heart beat), and/or one or more other average of motion levels. In other instances, the motion level of the LCP 100 may be compared to one or more other statistical analyses related to motion levels of the LCP 100 associated with previous heart beats. The comparison may then be used to determine a motion level of a patient and/or used to set a pacing rate for the LCP 100.


The number of N previous heart beats may be determined by a sliding or moving time window that extends back a predetermined amount of time or a predetermined number of beats from a current heart beat. In one example, there may be a predetermined amount of time, t, before the current heart beat and seven (7) heart beats occur during the time t. Of these seven heart beats, four may be intrinsically initiated heart beats and three may be pace initiated heart beats. Thus, if the current heart beat is an intrinsically initiated heart beat, a motion level associated with the current heart beat may be compared to an average of the four motion levels associated with the four intrinsically initiated heart beats within time t. If the current heart beat is a pace initiated heart beat, a motion level associated with the current heart beat may be compared to an average of the three motion levels associated with the three pace initiated heart beats within time t. A predetermined time t may be any time less than one (1) second, a time between one (1) second and three (3) minutes, a time between one (1) second and two (2) minute, one (1) second and one (1) minute, or any time greater than three (3) minutes.


If no heart beats occurring within the sliding or moving window were initiated by a same rhythm type (e.g., intrinsic or pace) as the current heart beat, then a motion level of the LCP 100 associated with the current heart beat may not be compared to a motion level associated with a heart beat or one or more other actions may be taken. In such instances, a motion level of a patient may not be updated and a pace rate for the LCP 100 may not be updated or re-set in response to the current heart beat.


Although the sliding or moving window is discussed with respect to averaging motion levels associated with previous heart beats initiated in the same manner as a current heart beat, the sliding or moving window may be utilized in other circumstances and/or without averaging motion levels within the window. For example, the processing module 110 may compare a motion level of the LCP 100 to a motion level of the LCP 100 associated with one previous and similarly initiated heart beat within the sliding or moving window. That is, all motion levels associated with previous similarly initiated heart beats outside of the sliding or moving window may be dropped and a motion level associated with a current heart beat may be compared to a motion level associated with the most recent similarly initiated heart beat within the window. Additionally or alternatively, if there are no previous similarly initiated heart beats within the sliding or moving window, a second or further sliding or moving window (e.g., having a longer duration than the first sliding or moving window) may be utilized. In such cases, an average of the motion levels associated with the previous similarly initiated heart beats in the second or further sliding or moving window may be compared to the motion level of the current heart, but this is not required.


In some cases, the LCP 100 may skip setting a pacing rate based, at least in part, on a motion level of the patient associated with a most recent heart beat and instead, maintain the previously established pacing rate for the most recent heart beat. For example, if a most recent heart beat is identified as an intrinsically initiated heart beat or a pace initiated heart beat and is directly after (e.g., immediately after or sequentially follows) a heart beat initiated by the same type of rhythm, then the LCP 100 may set a pacing rate based, at least in part, on a motion level of the patient associated with the most recent heart beat, as discussed with respect to illustrative method 500. However, in the example, if a most recent heart beat is initiated by a different type of rhythm than an immediately previous heart beat, the LCP 100 may maintain the pace rate previously established, and essentially ignore the most recent heart beat.



FIG. 7 depicts an illustrative method 600 for determining whether to update a motion level of a patient (e.g. activity level) based on a current heart beat and thus, update the set pacing rate. Illustrative method 600 may be carried out by the processing module 110 of the LCP and may be used individually or in combination with the other techniques and processes described herein.


As shown in FIG. 7, illustrative method 600 may include determining 602 whether a currently identified heart beat is initiated by a same one of an intrinsic rhythm or a pace rhythm as was an immediately previous heart beat. If the currently identified heart beat is not initiated by a same one of an intrinsic rhythm or a pace rhythm as was an immediately previous heart beat, then the LCP 100 may skip updating 604 a motion level of the patient for the current heart beat. In some cases, not updating 604 a motion level of the patient may include either not identifying a motion level of the LCP 100 for a current heart beat or ignoring an identified motion level of the LCP 100 for the current heart beat. As a result, a previously set pacing rate for the patient may be maintained 606. In some cases, instead of maintaining 606 a previously set pacing rate for the patient, the processing module 110 may take one or more steps to change the pacing rate based on one or more parameters other than a motion level of the patient.


In illustrative method 600, if the currently identified heart beat is initiated by a same one of an intrinsic rhythm or a pace rhythm as was an immediately previous heart beat, then the LCP 100 may update 608 a motion level of the patient. In one example, a motion level of a patient may be updated by the processing module 110 or other processing module by identifying a motion level of the LCP 100 from the mechanical sensing module 108 (e.g. from accelerometer signal), comparing the identified motion level of the LCP 100 to a motion level of the LCP 100 for the immediately previous heart beat and determining a motion level of the patient based, at least in part, on the comparison, but this is not required and other techniques may be utilized. Once the motion level of the patient has been updated, the LCP 100 may update (e.g., set) 610 a pacing rate based, at least in part, on the updated motion level of the patient.


In some instances, a fusion initiated heart beat may occur. A fusion initiated heart beat is a heart beat in which a pace rhythm and an intrinsic rhythm of the heart occur at the same or close to the same time and cause a fusion heart beat. If a currently identified heart beat is a fusion initiated heart beat, then the LCP 100 may skip updating a motion level of a patient for the current heart beat. In some cases, not updating or identifying a motion level of the patient may include either not identifying a motion level of the LCP 100 for the current heart beat or ignoring an identified motion level of the LCP 100 for the current heart beat. As a result, a previously set pacing rate for the patient may be maintained. In some cases, instead of maintaining a previously set pacing rate for the patient, the processing module 110 may take one or more steps to change the pace rate based on one or more parameters other than a motion level of the patient.



FIG. 8 depicts an illustrative method 700 that may be effected by the processing module 110 of the LCP 100 and may be used individually or in combination with the other techniques and processes described herein. In illustrative method 700, a current heart rate of a patient may be identified 702 and based, at least in part, on the identified heart rate, a current heart beat may be identified 704 as corresponding to a particular heart rate range of two or more heart rate ranges. The heart rate ranges may be determined in any manner. In one example, a first heart rate range may be indicative of a resting activity level for a patient, a second heart rate range may be indicative of an active activity level for the patient (e.g. walking), and a third heart rate range may be indicative of a strenuous activity level of the patient (e.g. running). Additionally, in sonic cases, the heart beats identified as corresponding to each heart rate range may be further classified as being either intrinsically or pace initiated. For a current heart beat intrinsically initiated or pace initiated, a motion level of an LCP 100 may be identified 706 and the motion level may be compared 708 to a motion level of the LCP 100 for one or more similarly initiated heart beats in the corresponding heart rate range. Then, a motion level of the patient may be identified 710 based, at least in part on the comparison.


In some cases, rather than ignoring a motion level of a current heart beat when the current heart beat is not initiated by the same intrinsic or pace rhythm, it is contemplated that an offset may be applied. The offset may be applied to correct for the “noise” in a motion level measurement taken for the current heart beat that results from the current heart beat not being initiated by the same intrinsic rhythm or pace rhythm than the immediately previous heart beat (e.g., see the offset at line A-A between motion signal 454 and motion signal 456 of FIG. 5). An illustrative method 800 is shown in FIG. 9 for using an offset for determining a motion level of a patient even for heart beats that transition from an intrinsic rhythm to a pace rhythm, and visa-versa.


The illustrative method 800 includes identifying 802 a plurality of heart beats and identifying 804 each of two or more of the identified heart beats as being an intrinsically initiated heart beat or a pace initiated heart beat. The processing module 110 of the LCP 100 may then determine 806 if a current heart beat is initiated by a same one of an intrinsic rhythm or a pace rhythm of the immediately previous heart beat. In illustrative method 800, if a current heart beat is initiated by a same one of an intrinsic rhythm or a pace rhythm of the immediately previous heart beat, the processing module 110 may identify 808 a motion level of the LCP 100 (e.g., an IMD) using a motion sensor (e.g. accelerometer) of the mechanical sensing module 108 and compare 810 the identified motion level of the LCP 100 to a motion level of the LCP 100 corresponding to one or more previous and similarly initiated (e.g., either intrinsically initiated or pace initiated) heart beats. In some cases, and similar to as discussed above, the motion level corresponding to the measurement from the motion sensor of the mechanical sensing module 108 may be taken during the systole phase of a cardiac cycle, but this is not required. Based, at least in part, on the comparison 810, the processing module 110 may identify 812 a motion level of the patient and set 822 a pacing rate parameter for the LCP 100 based, at least in part, on the identified motion level of the patient.


In illustrative method 800, if a current heart beat is initiated by a different one of an intrinsic rhythm or a pace rhythm of the immediately previous heart beat, the processing module 110 may identify 814 a motion level of the LCP 100 (e.g., an IMD) using a motion sensor (e.g. accelerometer) of the mechanical sensing module 108 and apply 816 an offset to the identified motion level. In one example, the offset may represent the offset at line A-A between motion signal 454 and motion signal 456 of FIG. 5. The identified motion level of the LCP 100 for the current heart beat with the offset applied may then be compared 818 to a motion level of the LCP 100 corresponding to the immediately previous heart beat. In some cases, and similar to that discussed above, the motion level corresponding to the measurement from the motion sensor of the mechanical sensing module 108 may be taken during the systole phase of a cardiac cycle, but this is not required. Based, at least in part, on the comparison 818, the processing module 110 may identify 820 a motion level of the patient and set a pacing rate parameter for the LCP 100 based, at least in part, on the identified motion level of the patient.


One illustrative method for determine the offset is shown in FIG. 10. Illustrative method 900 of FIG. 10 may be utilized to determine the offset to be applied to a motion level of a current heart beat on a transition from a heart beat that was initiated by a different rhythm (e.g., an intrinsic rhythm or a pace rhythm). To determine the offset, the processing module 110 of the LCP 100 or other processing module may identify 902 a calibration window. In some cases, the calibration window may cover a time period or window in which N pace initiated heart beats occur and in which N intrinsically initiated heart beats occur. The illustrative method 900 may include identifying 904 a motion level of the LCP 100 (e.g., an IMD) for N pace initiated heart beats using a motion sensor of the mechanical sensing module 108 and identifying 906 a motion level of the LCP 100 for N intrinsically initiated heart beats using the motion sensor of the mechanical sensing module 108. N may be one, two, or a greater number of heart beats. The N heart beats for a particular rhythm type (e.g., intrinsic or pace) may be consecutive heart beats or may be separated by one or more heart beats initiated by the other rhythm type. In some cases, to obtain N consecutive pace initiated heart beats, it may be necessary to raise the pacing rate to a particular level above a current intrinsic heart rate (e.g., 5-30 beats per minute over the current intrinsic heart rate, 10-20 beats per minute over the current intrinsic heart rate, and/or a different level above the current intrinsic heart rate). In some cases, to obtain N consecutive intrinsically initiated heart beats, it may be necessary to lower the pacing rate to a particular level below a current intrinsic heart rate (e.g., 5-10 beats per minute below the current intrinsic heart rate and/or a different level below the current intrinsic heart rate). In some cases, the measurements taken by the motion sensor of the mechanical sensing module 108 for each of the N heart beats may be taken during the systole phase of the cardiac cycle, but this is not required.


From the identified motion levels for the N pace initiated heart beats, the processing module 110 may identify a baseline pace motion level. Similarly, from the identified motion levels for the N intrinsically initiated heart beats, the processing module 110 may identify a baseline intrinsic motion level. Based, at least in part, on the baseline pace motion level and the baseline intrinsic motion level, the processing module 110 may determine an offset that may be applied to motion levels associated with heart beats initiated by a rhythm that is different than a rhythm that initiated an immediately previous heart beat.


The baseline pace motion level and/or the baseline intrinsic motion level may be identified in any manner. In one example, the motion levels of the LCP 100 associated with the N pace initiated heart beats may be averaged to obtain the baseline pace motion level. Similarly, in an example, the motion levels of the LCP 100 associated with the N intrinsic initiated heart beats may be averaged to obtain the baseline intrinsic motion level. In addition or as an alternative to averaging of the motion levels associated with the heart beats, other analyses may be performed on the identified motion levels. For example, motion levels detected for older heart beats may be weighted less than the motion levels detected of more recently heart beats.



FIGS. 11A-11C show graphs 960a, 960b, 960c, which represent an average of motion level signals from different axes, x-axis, y-axis, and z-axis, respectively, generated by a motion sensor, such as a three-axis accelerometer, of LCP 100 for each of N pace initiated heart beats and N intrinsically initiated heart beats, where LCP 100 is attached to a wall of a patients' heart. Signal 962, shown in a dashed line in graphs 960a-960c, represents an average of accelerometer magnitude signals (e.g., a baseline motion level signal) for N pace initiated heart beats on the respective axis. Signal 964, represented in a solid line, represents an average of accelerometer magnitude signals (e.g., a baseline motion level signal) for N intrinsically initiated heart beats.


In the example depicted in FIGS. 11A-11C, an offset may be selected by determining a difference between signal 962 and 964 at a predetermined time in each graph and using the greatest difference at the predetermined time as the offset. Alternatively, the least difference at the predetermined time may be utilized as the offset. Alternatively, the difference of each axis may be averaged to determine the offset. In yet another example, one or more other analyses may be performed to determine the offset. As shown in the example of FIGS. 11A-11C, a pre-determined time may be 200 ms, at line A-A, after a heart beat has been identified. In the example, at 200 ms, the signals 962 and 964 have a difference of 175 units on the x-axis (FIG. 11A), 125 units on the y-axis (FIG. 11B), and 125 units on the z-axis (FIG. 11C). With this example, the processing module 110 or other module may select the difference of the x-axis as the offset because it is the greatest difference between signals 962 and 964 at 200 ms out from when a heart beat was initiated.


The calibration window discussed above may be identified in accordance with a predetermined time period and may begin in response to a signal from a device external to the LCP 100 or other signal. Alternatively, or in addition, a calibration window may be identified by the LCP 100 or other device after N consecutive pace initiated heart beats and/or after N consecutive intrinsically initiated heart beats, where N may be the same number or a different number of pace initiated heart beats and intrinsically initiated heart beats.


In some cases, a calibration window may be selected based on a patient activity level. In one example, a calibration window may be selected to occur while a patient in which the LCP 100 is implanted is performing no activity or is at a low activity level. Illustratively, no activity or a low activity level may include the patient sitting down, lying down, in a standing position, in a particular pose, and/or in one or more static or substantially static position.


In some cases, a calibration window may he automatically initiated to start an offset determination process (e.g., such as method 900). For example, the LCP 100 may detect when the patient is in a particular position or posture and may automatically initiate a calibration window. In some cases, the LCP 100 may detect that a motion level or activity level of the patient has crossed (e.g., fallen below or exceeded) a threshold level of motion or activity for a predetermined length of time, and then initiate a calibration window. Further, and in some cases, the LCP 100 may only automatically initiate a calibration window if it detects communication with an external device in addition to detecting that the patient is in a particular position or posture, but this is not required. Alternatively or additionally, the LCP 100 may only automatically initiate a calibration window if it detects a certain time of day. Such automatic initiation of a calibration window may allow the LCP 100 to update the offset over time to account for changing conditions.


In some cases, the LCP 100 may be configured to detect one or more positions or postures (e.g., N positions or postures) of a patient in which the LCP 100 has been implanted. This may allow the LCP 100 to: 1) create a library of offsets for different positions or postures of the patient; and 2) apply the offsets for different positions or postures when the patient is in a corresponding position or posture. For each posture or position of the patient, the processing module 110 or other processing module may identify a calibration window. During each calibration window, the processing module 110 or other processing module may identify a motion level of the LCP 100 (e.g., an IMD) using a motion sensor of the mechanical sensing module 108 for N intrinsically initiated heart beats and identify a motion level of the LCP 100 using the motion sensor for N pace initiated heart beats, where the respective N heart beats may be two or more heart beats and may or may not be consecutive heart beats. Further, measurements from the motion sensor may be taken during the systole phase of the cardiac cycle, but this is not required.


Based on the identified motion levels of the LCP 100 for the pace initiated heart beats, the processing module 110 or other processing module may identify a baseline pace motion level for the identified patient posture or position. Similarly, based on the identified motion levels of the LCP 100 for the intrinsic initiated heart beats, the processing module 110 or other processing module may identify a baseline intrinsic motion level for the identified patient posture or position. Then, in a manner similar to as discussed above with respect to method 900, the processing module may determine an offset for the identified posture or position of the patient based, at least in part, on the baseline intrinsic motion level and the baseline pace motion level for the identified posture or position.


The offsets corresponding to the various patient postures or positions may then be saved in a library in memory of the LCP 100 (e.g., memory of the processing module 110 or other memory) and/or in memory external to the LCP 100. Then, when a heart beat that is initiated by a different rhythm (e.g., intrinsic rhythm or pace rhythm) than an immediately previous rhythm is identified, the LCP 100 may identify the patient's posture or position and apply a posture or position specific offset to the motion level of an LCP 100 for the current heart beat prior to or after comparing the motion level to a motion level of the LCP 100 for the immediately previous heart beat.


Those skilled in the art will recognize that the present disclosure may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. For instance, as described herein, various embodiments include one or more modules described as performing various functions. However, other embodiments may include additional modules that split the described functions up over more modules than that described herein. Additionally, other embodiments may consolidate the described functions into fewer modules.


Although various features may have been described with respect to less than all embodiments, this disclosure contemplates that those features may be included on any embodiment. Further, although the embodiments described herein may have omitted some combinations of the various described features, this disclosure contemplates embodiments that include any combination of each described feature. Accordingly, departure in form and detail may be made without departing from the scope and spirit of the present disclosure as described in the appended claims.

Claims
  • 1. An implantable medical device (IMD) implantable within a patient's heart, the IMD comprising: two or more sensors including a motion sensor;a controller operatively coupled to the two or more sensors, the controller configured to: identify a plurality of heart beats using one or more of the sensors, each of the plurality of heart beats having a systole phase and diastole phase;identify each of two or more of the plurality of heart beats as an intrinsically initiated heart beat or a pace initiated heart beat;identify a calibration time window, and during the calibration time window: identify a baseline intrinsic motion level by identifying a motion level of the IMD using the motion sensor during N intrinsically initiated heart beats, where N is greater than two;identify a baseline pace motion level by identifying a motion level of the IMD using the motion sensor during N pace initiated heart beats, where N is greater than two;determine an offset based at least in part on the baseline intrinsic motion level and the baseline pace motion level;after the calibration time window: for an intrinsically initiated heart beat that immediately follows a pace initiated heart beat, identify a motion level of the IMD using the motion sensor and apply the offset, and compare the identified motion level of the IMD with the applied offset to a motion level of the IMD identified for the immediately preceding pace initiated heart beat, and identify a motion level of the patient based at least in part on the comparison; andset a pacing rate parameter based at least in part on the identified motion level of the patient.
  • 2. The IMD of claim 1, wherein, after the calibration time window, the controller is further configured to: for a pace initiated heart beat that immediately follows an intrinsic initiated heart beat, identify a motion level of the IMD using the motion sensor and apply the offset, and compare the identified motion level of the IMD with the applied offset to a motion level of the IMD identified for the immediately preceding intrinsically initiated heart beat, and identify a motion level of the patient based at least in part on the comparison.
  • 3. The IMD of claim 2, wherein, after the calibration time window, the controller is further configured to: for an intrinsically initiated heart beat that immediately follows an intrinsically initiated heart beat, identify a motion level of the IMD using the motion sensor during the systole phase of the intrinsically initiated heart beat, and compare the identified motion level of the IMD to a motion level of the IMD identified for one or more previous intrinsically initiated heart beats, and identify a motion level of the patient based at least in part on the comparison.
  • 4. The IMD of claim 3, wherein, after the calibration time window, the controller is further configured to: for a pace initiated heart beat that immediately follows a pace initiated heart beat, identify a motion level of the IMD using the motion sensor during the systole phase of the pace initiated heart beat, and compare the identified motion level of the IMD to a motion level of the IMD identified for one or more previous pace initiated heart beats, and identify the motion level of the patient based at least in part on the comparison.
  • 5. The IMD of claim 1, wherein the N intrinsically initiated heart beats are N consecutive intrinsically initiated heart beats.
  • 6. The IMD of claim 1, wherein the N pace initiated heart beats are N consecutive pace initiated heart beats.
  • 7. The IMD of claim 1, wherein the calibration time window is a time window where patient activity is expected to be low.
  • 8. The IMD of claim 1, wherein the calibration time window is initiated after a particular posture of the patient is detected by the IMD.
  • 9. The IMD of claim 8, wherein the IMD is configured to detect each of N different postures, wherein N is greater than two, and wherein the controller is configured to: identify a calibration time window for each N different postures, and during each calibration time window: identify a baseline intrinsic motion level for the corresponding posture by identifying a motion level of the IMD using the motion sensor during the systole phase of N intrinsically initiated heart beats, where N is greater than two;identify a baseline pace motion level for the corresponding posture by identifying a motion level of the IMD using the motion sensor during the systole phase of N pace initiated heart beats, where N is greater than two;determine an offset for each of the N different postures based at least in part on the baseline intrinsic motion level that corresponds to the corresponding posture and the baseline pace motion level that corresponds to the corresponding posture;after the calibration time window for each of the N different postures: identify a current posture of the patient as one of the N different postures;for an intrinsically initiated heart beat that immediately follows a pace initiated heart beat, identify a motion level of the IMD using the motion sensor during the systole phase of the intrinsically initiated heart beat and apply the offset that corresponds to the current posture, and compare the identified motion level of the IMD with the applied offset that corresponds to the current posture to a motion level of the IMD identified for the immediately preceding pace initiated heart beat, and identify a motion level of the patient based at least in part on the comparison.
  • 10. The IMD of claim 1, wherein the calibration time window is initiated at a particular time of day.
  • 11. The IMD of claim 1, wherein the calibration time window is initiated after the motion level of the patient falls below a threshold for at least a predetermined length of time.
  • 12. The IMD of claim 1, wherein the controller is further configured to: during the calibration time window: pace the patient's heart at a pacing rate that is above a current intrinsic heart rate of the patient; andwhile pacing the patient's heart at the pacing rate that is above the current intrinsic heart rate of the patient, identify the baseline pace motion level by identifying the motion level of the IMD using the motion sensor during the systole phase of N pace initiated heart beats, where N is greater than two.
  • 13. A method for identifying an activity level of a patient using a motion sensor implanted within the patient's heart, the method comprising: identifying a plurality of heart beats using the motion sensor, each of the plurality of heart beats having a systole phase and diastole phase;identifying each of two or more of the plurality of heart beats as an intrinsically initiated heart beat or a pace initiated heart beat;identifying a calibration time window, and during the calibration time window: identifying a baseline intrinsic motion level by identifying a motion level of the IMD using the motion sensor during N intrinsically initiated heart beats, where N is greater than two;identifying a baseline pace motion level by identifying a motion level of the IMD using the motion sensor during N pace initiated heart beats, where N is greater than two;determining an offset based at least in part on the baseline intrinsic motion level and the baseline pace motion level; andafter the calibration time window: for an intrinsically initiated heart beat that immediately follows a pace initiated heart beat, identifying a motion level of the IMD using the motion sensor and apply the offset, and comparing the identified motion level of the IMD with the applied offset to a motion level of the IMD identified for the immediately preceding pace initiated heart beat, and identifying a motion level of the patient based at least in part on the comparison.
  • 14. The method of claim 13 further comprising setting a pacing rate parameter based at least in part on the identified motion level of the patient.
  • 15. The method of claim 13, wherein, after the calibration time window, the method further comprises: for a pace initiated heart beat that immediately follows an intrinsic initiated heart beat, identifying a motion level of the IMD using the motion sensor and apply the offset, and comparing the identified motion level of the IMD with the applied offset to a motion level of the IMD identified for the immediately preceding intrinsically initiated heart beat, and identifying a motion level of the patient based at least in part on the comparison.
  • 16. The method of claim 13, wherein, after the calibration time window, the method further comprises: for an intrinsically initiated heart beat that immediately follows an intrinsically initiated heart beat, identifying a motion level of the IMD using the motion sensor during the systole phase of the intrinsically initiated heart beat, and comparing the identified motion level of the IMD to a motion level of the IMD identified for one or more previous intrinsically initiated heart beats, and identifying a motion level of the patient based at least in part on the comparison; andfor a pace initiated heart beat that immediately follows a pace initiated heart beat, identifying a motion level of the IMD using the motion sensor during the systole phase of the pace initiated heart beat, and comparing the identified motion level of the IMD to a motion level of the IMD identified for one or more previous pace initiated heart beats, and identifying the motion level of the patient based at least in part on the comparison.
  • 17. The method of claim 13, wherein the N intrinsically initiated heart beats are N consecutive intrinsically initiated heart beats, and wherein the N pace initiated heart beats are N consecutive pace initiated heart beats.
  • 18. A leadless cardiac pacemaker (LCP) implantable within a patient's heart, the LCP comprising: a housing;two or more electrodes secured relative to the housing, the two or more electrodes are configured to sense electrical signals of the patient's heart;an accelerometer situated inside of the housing;circuitry situated inside of the housing and operatively coupled to the two or more electrodes and the accelerometer, the circuitry is configured to: identify a plurality of heart beats using two or more of the electrodes, each of the plurality of heart beats having a systole phase and diastole phase;identify each of two or more of the plurality of heart beats as an intrinsically initiated heart beat or a pace initiated heart beat;identify a calibration time window, and during the calibration time window: identify a baseline intrinsic motion level by identifying a motion level of the LCP using the accelerometer during the systole phase of N intrinsically initiated heart beats, where N is greater than two;identify a baseline pace motion level by identifying a motion level of the LCP using the accelerometer during the systole phase of N pace initiated heart beats, where N is greater than two;identify an offset based at least in part on the baseline intrinsic motion level and the baseline pace motion level;after the calibration time window: for an intrinsically initiated heart beat that immediately follows a pace initiated heart beat, identify a motion level of the LCP using the accelerometer during the systole phase of the intrinsically initiated heart beat and apply the offset, and compare the identified motion level of the LCP with the applied offset to a motion level of the LCP identified for the immediately preceding pace initiated heart beat, and identify a motion level of the patient based at least in part on the comparison;for a pace initiated heart beat that immediately follows an intrinsic initiated heart beat, identify a motion level of the LCP using the accelerometer during the systole phase of the pace initiated heart beat and apply the offset, and compare the identified motion level of the LCP with the applied offset to a motion level of the LCP identified for the immediately preceding intrinsically initiated heart beat, and identify a motion level of the patient based at least in part on the comparison;for an intrinsically initiated heart beat that immediately follows an intrinsically initiated heart beat, identify a motion level of the LCP using the accelerometer during the systole phase of the intrinsically initiated heart beat, and compare the identified motion level of the LCP to a motion level of the LCP identified for one or more previous intrinsically initiated heart beats, and identify a motion level of the patient based at least in part on the comparison;for a pace initiated heart beat that immediately follows a pace initiated heart beat, identify a motion level of the LCP using the accelerometer during the systole phase of the pace initiated heart beat, and compare the identified motion level of the LCP to a motion level of the LCP identified for one or more previous pace initiated heart beats, and identify the motion level of the patient based at least in part on the comparison; andset a pacing rate parameter based at least in part on the identified motion level of the patient.
  • 19. The LCP of claim 18, wherein the N intrinsically initiated heart beats are N consecutive intrinsically initiated heart beats, and wherein the N pace initiated heart beats are N consecutive pace initiated heart beats.
  • 20. The LCP of claim 18, wherein the calibration time window is a time window where patient activity is expected to be low.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Ser. No. 62/424,876 filed on Nov. 21, 2016, and U.S. Provisional Patent Application Ser. No. 62/415,132 filed on Oct. 31, 2016, the disclosures of which are incorporated herein by reference.

US Referenced Citations (1174)
Number Name Date Kind
3835864 Rasor et al. Sep 1974 A
3943936 Rasor et al. Mar 1976 A
4142530 Wittkampf Mar 1979 A
4151513 Menken et al. Apr 1979 A
4157720 Greatbatch Jun 1979 A
RE30366 Rasor et al. Aug 1980 E
4243045 Maas Jan 1981 A
4250884 Hartlaub et al. Feb 1981 A
4256115 Bilitch Mar 1981 A
4263919 Levin Apr 1981 A
4310000 Lindemans Jan 1982 A
4312354 Walters Jan 1982 A
4323081 Wiebusch Apr 1982 A
4357946 Dutcher et al. Nov 1982 A
4365639 Goldreyer Dec 1982 A
4440173 Hudziak et al. Apr 1984 A
4476868 Thompson Oct 1984 A
4522208 Buffet Jun 1985 A
4537200 Widrow Aug 1985 A
4556063 Thompson et al. Dec 1985 A
4562841 Brockway et al. Jan 1986 A
4593702 Kepski et al. Jun 1986 A
4593955 Leiber Jun 1986 A
4630611 King Dec 1986 A
4635639 Hakala et al. Jan 1987 A
4674508 DeCote Jun 1987 A
4712554 Garson Dec 1987 A
4729376 DeCote Mar 1988 A
4754753 King Jul 1988 A
4759366 Callaghan Jul 1988 A
4776338 Lekholm et al. Oct 1988 A
4787389 Tarjan Nov 1988 A
4793353 Borkan Dec 1988 A
4819662 Heil et al. Apr 1989 A
4858610 Callaghan et al. Aug 1989 A
4886064 Strandberg Dec 1989 A
4887609 Cole Dec 1989 A
4928688 Mower May 1990 A
4967746 Vandegriff Nov 1990 A
4987897 Funke Jan 1991 A
4989602 Sholder et al. Feb 1991 A
5012806 De Bellis May 1991 A
5036849 Hauck et al. Aug 1991 A
5040534 Mann et al. Aug 1991 A
5058581 Silvian Oct 1991 A
5078134 Heilman et al. Jan 1992 A
5109845 Yuuchi et al. May 1992 A
5113859 Funke May 1992 A
5113869 Nappholz et al. May 1992 A
5117824 Keimel et al. Jun 1992 A
5127401 Grevious et al. Jul 1992 A
5133353 Hauser Jul 1992 A
5144950 Stoop et al. Sep 1992 A
5170784 Ramon et al. Dec 1992 A
5179945 Van Hofwegen et al. Jan 1993 A
5193539 Schulman et al. Mar 1993 A
5193540 Schulman et al. Mar 1993 A
5241961 Henry Sep 1993 A
5243977 Trabucco et al. Sep 1993 A
5259387 DePinto Nov 1993 A
5269326 Verrier Dec 1993 A
5284136 Hauck et al. Feb 1994 A
5300107 Stokes et al. Apr 1994 A
5301677 Hsung Apr 1994 A
5305760 McKown et al. Apr 1994 A
5312439 Loeb May 1994 A
5313953 Yomtov et al. May 1994 A
5314459 Swanson et al. May 1994 A
5318597 Hauck et al. Jun 1994 A
5324316 Schulman et al. Jun 1994 A
5331966 Bennett et al. Jul 1994 A
5334222 Salo et al. Aug 1994 A
5342408 deCoriolis et al. Aug 1994 A
5350409 Stoop et al. Sep 1994 A
5370667 Alt Dec 1994 A
5372606 Lang et al. Dec 1994 A
5376106 Stahmann et al. Dec 1994 A
5383915 Adams Jan 1995 A
5388578 Yomtov et al. Feb 1995 A
5404877 Nolan et al. Apr 1995 A
5405367 Schulman et al. Apr 1995 A
5411031 Yomtov May 1995 A
5411525 Swanson et al. May 1995 A
5411535 Fujii et al. May 1995 A
5413592 Schroeppel May 1995 A
5456691 Snell Oct 1995 A
5458622 Alt Oct 1995 A
5466246 Silvian Nov 1995 A
5468254 Hahn et al. Nov 1995 A
5472453 Alt Dec 1995 A
5522866 Fernald Jun 1996 A
5540727 Tockman et al. Jul 1996 A
5545186 Olson et al. Aug 1996 A
5545202 Dahl et al. Aug 1996 A
5571146 Jones et al. Nov 1996 A
5591214 Lu Jan 1997 A
5593431 Sheldon Jan 1997 A
5620466 Haefner et al. Apr 1997 A
5634938 Swanson et al. Jun 1997 A
5649968 Alt et al. Jul 1997 A
5662688 Haefner et al. Sep 1997 A
5674259 Gray Oct 1997 A
5683426 Greenhut et al. Nov 1997 A
5683432 Goedeke et al. Nov 1997 A
5706823 Wodlinger Jan 1998 A
5709215 Perttu et al. Jan 1998 A
5720770 Nappholz et al. Feb 1998 A
5728154 Crossett et al. Mar 1998 A
5741314 Daly et al. Apr 1998 A
5741315 Lee et al. Apr 1998 A
5752976 Duffin et al. May 1998 A
5752977 Grevious et al. May 1998 A
5755736 Gillberg et al. May 1998 A
5759199 Snell et al. Jun 1998 A
5774501 Halpern et al. Jun 1998 A
5792195 Carlson et al. Aug 1998 A
5792202 Rueter Aug 1998 A
5792203 Schroeppel Aug 1998 A
5792205 Alt et al. Aug 1998 A
5792208 Gray Aug 1998 A
5814089 Stokes et al. Sep 1998 A
5827216 Igo et al. Oct 1998 A
5836985 Rostami et al. Nov 1998 A
5836987 Baumann et al. Nov 1998 A
5842977 Lesho et al. Dec 1998 A
5855593 Olson et al. Jan 1999 A
5873894 Vandegriff et al. Feb 1999 A
5891184 Lee et al. Apr 1999 A
5897586 Molina Apr 1999 A
5899876 Flower May 1999 A
5899928 Sholder et al. May 1999 A
5919214 Ciciarelli et al. Jul 1999 A
5935078 Feierbach Aug 1999 A
5941906 Barreras, Sr. et al. Aug 1999 A
5944744 Paul et al. Aug 1999 A
5954757 Gray Sep 1999 A
5978713 Prutchi et al. Nov 1999 A
5991660 Goyal Nov 1999 A
5991661 Park et al. Nov 1999 A
5999848 Gord et al. Dec 1999 A
5999857 Weijand et al. Dec 1999 A
6016445 Baura Jan 2000 A
6026320 Carlson et al. Feb 2000 A
6029085 Olson et al. Feb 2000 A
6041250 DePinto Mar 2000 A
6044298 Salo et al. Mar 2000 A
6044300 Gray Mar 2000 A
6055454 Heemels Apr 2000 A
6073050 Griffith Jun 2000 A
6076016 Feierbach Jun 2000 A
6077236 Cunningham Jun 2000 A
6080187 Alt et al. Jun 2000 A
6083248 Thompson Jul 2000 A
6106551 Crossett et al. Aug 2000 A
6115636 Ryan Sep 2000 A
6128526 Stadler et al. Oct 2000 A
6141581 Olson et al. Oct 2000 A
6141588 Cox et al. Oct 2000 A
6141592 Pauly Oct 2000 A
6144879 Gray Nov 2000 A
6162195 Igo et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6167310 Grevious Dec 2000 A
6201993 Kruse et al. Mar 2001 B1
6208894 Schulman et al. Mar 2001 B1
6211799 Post et al. Apr 2001 B1
6221011 Bardy Apr 2001 B1
6240316 Richmond et al. May 2001 B1
6240317 Villaseca et al. May 2001 B1
6256534 Dahl Jul 2001 B1
6259947 Olson et al. Jul 2001 B1
6266558 Gozani et al. Jul 2001 B1
6266567 Ishikawa et al. Jul 2001 B1
6270457 Bardy Aug 2001 B1
6272377 Sweeney et al. Aug 2001 B1
6273856 Sun et al. Aug 2001 B1
6277072 Bardy Aug 2001 B1
6280380 Bardy Aug 2001 B1
6285907 Kramer et al. Sep 2001 B1
6292698 Duffin et al. Sep 2001 B1
6295473 Rosar Sep 2001 B1
6297943 Carson Oct 2001 B1
6298271 Weijand Oct 2001 B1
6307751 Bodony et al. Oct 2001 B1
6312378 Bardy Nov 2001 B1
6315721 Schulman et al. Nov 2001 B2
6336903 Bardy Jan 2002 B1
6345202 Richmond et al. Feb 2002 B2
6351667 Godie Feb 2002 B1
6351669 Hartley et al. Feb 2002 B1
6353759 Hartley et al. Mar 2002 B1
6358203 Bardy Mar 2002 B2
6361780 Ley et al. Mar 2002 B1
6368284 Bardy Apr 2002 B1
6371922 Baumann et al. Apr 2002 B1
6398728 Bardy Jun 2002 B1
6400982 Sweeney et al. Jun 2002 B2
6400990 Silvian Jun 2002 B1
6408208 Sun Jun 2002 B1
6409674 Brockway et al. Jun 2002 B1
6411848 Kramer et al. Jun 2002 B2
6424865 Ding Jul 2002 B1
6434429 Kraus et al. Aug 2002 B1
6438410 Hsu et al. Aug 2002 B2
6438417 Rockwell et al. Aug 2002 B1
6438421 Stahmann et al. Aug 2002 B1
6440066 Bardy Aug 2002 B1
6441747 Khair et al. Aug 2002 B1
6442426 Kroll Aug 2002 B1
6442432 Lee Aug 2002 B2
6443891 Grevious Sep 2002 B1
6445953 Bulkes et al. Sep 2002 B1
6453200 Koslar Sep 2002 B1
6459929 Hopper et al. Oct 2002 B1
6470215 Kraus et al. Oct 2002 B1
6471645 Warkentin et al. Oct 2002 B1
6480745 Nelson et al. Nov 2002 B2
6487443 Olson et al. Nov 2002 B2
6490487 Kraus et al. Dec 2002 B1
6498951 Larson et al. Dec 2002 B1
6507755 Gozani et al. Jan 2003 B1
6507759 Prutchi et al. Jan 2003 B1
6512940 Brabec et al. Jan 2003 B1
6522915 Ceballos et al. Feb 2003 B1
6526311 Begemann Feb 2003 B2
6539253 Thompson et al. Mar 2003 B2
6542775 Ding et al. Apr 2003 B2
6553258 Stahmann et al. Apr 2003 B2
6561975 Pool et al. May 2003 B1
6564807 Schulman et al. May 2003 B1
6574506 Kramer et al. Jun 2003 B2
6584351 Ekwall Jun 2003 B1
6584352 Combs et al. Jun 2003 B2
6597948 Rockwell et al. Jul 2003 B1
6597951 Kramer et al. Jul 2003 B2
6622046 Fraley et al. Sep 2003 B2
6628985 Sweeney et al. Sep 2003 B2
6647292 Bardy et al. Nov 2003 B1
6666844 Igo et al. Dec 2003 B1
6689117 Sweeney et al. Feb 2004 B2
6690959 Thompson Feb 2004 B2
6694189 Begemann Feb 2004 B2
6704602 Berg et al. Mar 2004 B2
6718212 Parry et al. Apr 2004 B2
6721597 Bardy et al. Apr 2004 B1
6738670 Almendinger et al. May 2004 B1
6746797 Benson et al. Jun 2004 B2
6749566 Russ Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6763269 Cox Jul 2004 B2
6778860 Ostroff et al. Aug 2004 B2
6788971 Sloman et al. Sep 2004 B1
6788974 Bardy et al. Sep 2004 B2
6804558 Haller et al. Oct 2004 B2
6807442 Myklebust et al. Oct 2004 B1
6847844 Sun et al. Jan 2005 B2
6871095 Stahmann et al. Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6885889 Chinchoy Apr 2005 B2
6892094 Ousdigian et al. May 2005 B2
6897788 Khair et al. May 2005 B2
6904315 Panken et al. Jun 2005 B2
6922592 Thompson et al. Jul 2005 B2
6931282 Esler Aug 2005 B2
6934585 Schloss et al. Aug 2005 B1
6957107 Rogers et al. Oct 2005 B2
6978176 Lattouf Dec 2005 B2
6985773 Von Arx et al. Jan 2006 B2
6990375 Kloss et al. Jan 2006 B2
7001366 Ballard Feb 2006 B2
7003350 Denker et al. Feb 2006 B2
7006864 Echt et al. Feb 2006 B2
7013178 Reinke et al. Mar 2006 B2
7027871 Burnes et al. Apr 2006 B2
7050849 Echt et al. May 2006 B2
7060031 Webb et al. Jun 2006 B2
7063693 Guenst Jun 2006 B2
7082336 Ransbury et al. Jul 2006 B2
7085606 Flach et al. Aug 2006 B2
7092758 Sun et al. Aug 2006 B2
7110824 Amundson et al. Sep 2006 B2
7120504 Osypka Oct 2006 B2
7130681 Gebhardt et al. Oct 2006 B2
7139613 Reinke et al. Nov 2006 B2
7142912 Wagner et al. Nov 2006 B2
7146225 Guenst et al. Dec 2006 B2
7146226 Lau et al. Dec 2006 B2
7149581 Goedeke Dec 2006 B2
7149588 Lau et al. Dec 2006 B2
7158839 Lau Jan 2007 B2
7162307 Patrias Jan 2007 B2
7164952 Lau et al. Jan 2007 B2
7177700 Cox Feb 2007 B1
7181505 Haller et al. Feb 2007 B2
7184830 Echt et al. Feb 2007 B2
7186214 Ness Mar 2007 B2
7191015 Lamson et al. Mar 2007 B2
7200437 Nabutovsky et al. Apr 2007 B1
7200439 Zdeblick et al. Apr 2007 B2
7206423 Feng et al. Apr 2007 B1
7209785 Kim et al. Apr 2007 B2
7209790 Thompson et al. Apr 2007 B2
7211884 Davis et al. May 2007 B1
7212871 Morgan May 2007 B1
7226440 Gelfand et al. Jun 2007 B2
7228183 Sun et al. Jun 2007 B2
7236821 Cates et al. Jun 2007 B2
7236829 Farazi et al. Jun 2007 B1
7254448 Almendinger et al. Aug 2007 B2
7260436 Kilgore et al. Aug 2007 B2
7270669 Sra Sep 2007 B1
7272448 Morgan et al. Sep 2007 B1
7277755 Falkenberg et al. Oct 2007 B1
7280872 Mosesov et al. Oct 2007 B1
7288096 Chin Oct 2007 B2
7289847 Gill et al. Oct 2007 B1
7289852 Helfinstine et al. Oct 2007 B2
7289853 Campbell et al. Oct 2007 B1
7289855 Nghiem et al. Oct 2007 B2
7302294 Kamath et al. Nov 2007 B2
7305266 Kroll Dec 2007 B1
7310556 Bulkes Dec 2007 B2
7319905 Morgan et al. Jan 2008 B1
7321798 Muhlenberg et al. Jan 2008 B2
7333853 Mazar et al. Feb 2008 B2
7336994 Hettrick et al. Feb 2008 B2
7347819 Lebel et al. Mar 2008 B2
7366572 Heruth et al. Apr 2008 B2
7373207 Lattouf May 2008 B2
7384403 Sherman Jun 2008 B2
7386342 Falkenberg et al. Jun 2008 B1
7392090 Sweeney et al. Jun 2008 B2
7406105 DelMain et al. Jul 2008 B2
7406349 Seeberger et al. Jul 2008 B2
7410497 Hastings et al. Aug 2008 B2
7425200 Brockway et al. Sep 2008 B2
7433739 Salys et al. Oct 2008 B1
7496409 Greenhut et al. Feb 2009 B2
7496410 Heil Feb 2009 B2
7502652 Gaunt et al. Mar 2009 B2
7512448 Malick et al. Mar 2009 B2
7515969 Tockman et al. Apr 2009 B2
7526342 Chin et al. Apr 2009 B2
7529589 Williams et al. May 2009 B2
7532933 Hastings et al. May 2009 B2
7536222 Bardy et al. May 2009 B2
7536224 Ritscher et al. May 2009 B2
7539541 Quiles et al. May 2009 B2
7544197 Kelsch et al. Jun 2009 B2
7558631 Cowan et al. Jul 2009 B2
7565195 Kroll et al. Jul 2009 B1
7584002 Burnes et al. Sep 2009 B2
7590455 Heruth et al. Sep 2009 B2
7606621 Brisken et al. Oct 2009 B2
7610088 Chinchoy Oct 2009 B2
7610092 Cowan et al. Oct 2009 B2
7610099 Almendinger et al. Oct 2009 B2
7610104 Kaplan et al. Oct 2009 B2
7616991 Mann et al. Nov 2009 B2
7617001 Penner et al. Nov 2009 B2
7617007 Williams et al. Nov 2009 B2
7630767 Poore et al. Dec 2009 B1
7634313 Kroll et al. Dec 2009 B1
7637867 Zdeblick Dec 2009 B2
7640060 Zdeblick Dec 2009 B2
7647109 Hastings et al. Jan 2010 B2
7650186 Hastings et al. Jan 2010 B2
7657311 Bardy et al. Feb 2010 B2
7668596 Von Arx et al. Feb 2010 B2
7682316 Anderson et al. Mar 2010 B2
7691047 Ferrari Apr 2010 B2
7702392 Echt et al. Apr 2010 B2
7713194 Zdeblick May 2010 B2
7713195 Zdeblick May 2010 B2
7729783 Michels et al. Jun 2010 B2
7734333 Ghanem et al. Jun 2010 B2
7734343 Ransbury et al. Jun 2010 B2
7738958 Zdeblick et al. Jun 2010 B2
7738964 Von Arx et al. Jun 2010 B2
7742812 Ghanem et al. Jun 2010 B2
7742816 Masoud et al. Jun 2010 B2
7742822 Masoud et al. Jun 2010 B2
7743151 Vallapureddy et al. Jun 2010 B2
7747335 Williams Jun 2010 B2
7751881 Cowan et al. Jul 2010 B2
7758521 Morris et al. Jul 2010 B2
7761150 Ghanem et al. Jul 2010 B2
7761164 Verhoef et al. Jul 2010 B2
7765001 Echt et al. Jul 2010 B2
7769452 Ghanem et al. Aug 2010 B2
7783362 Whitehurst et al. Aug 2010 B2
7792588 Harding Sep 2010 B2
7797059 Bornzin et al. Sep 2010 B1
7801596 Fischell et al. Sep 2010 B2
7809438 Echt et al. Oct 2010 B2
7840281 Kveen et al. Nov 2010 B2
7844331 Li et al. Nov 2010 B2
7844348 Swoyer et al. Nov 2010 B2
7846088 Ness Dec 2010 B2
7848815 Brisken et al. Dec 2010 B2
7848823 Drasler et al. Dec 2010 B2
7860455 Fukumoto et al. Dec 2010 B2
7871433 Lattouf Jan 2011 B2
7877136 Moffitt et al. Jan 2011 B1
7877142 Moaddeb et al. Jan 2011 B2
7881786 Jackson Feb 2011 B2
7881798 Miesel et al. Feb 2011 B2
7881810 Chitre et al. Feb 2011 B1
7890173 Brisken et al. Feb 2011 B2
7890181 Denzene et al. Feb 2011 B2
7890192 Kelsch et al. Feb 2011 B1
7894885 Bartal et al. Feb 2011 B2
7894894 Stadler et al. Feb 2011 B2
7894907 Cowan et al. Feb 2011 B2
7894910 Cowan et al. Feb 2011 B2
7894915 Chitre et al. Feb 2011 B1
7899537 Kroll et al. Mar 2011 B1
7899541 Cowan et al. Mar 2011 B2
7899542 Cowan et al. Mar 2011 B2
7899554 Williams et al. Mar 2011 B2
7901360 Yang et al. Mar 2011 B1
7904170 Harding Mar 2011 B2
7907993 Ghanem et al. Mar 2011 B2
7920928 Yang et al. Apr 2011 B1
7925343 Min et al. Apr 2011 B1
7930022 Zhang et al. Apr 2011 B2
7930040 Kelsch et al. Apr 2011 B1
7937135 Ghanem et al. May 2011 B2
7937148 Jacobson May 2011 B2
7937161 Hastings et al. May 2011 B2
7941214 Kleckner et al. May 2011 B2
7945333 Jacobson May 2011 B2
7946997 Hübinette May 2011 B2
7949404 Hill May 2011 B2
7949405 Feher May 2011 B2
7953486 Daum et al. May 2011 B2
7953493 Fowler et al. May 2011 B2
7962202 Bhunia Jun 2011 B2
7974702 Fain et al. Jul 2011 B1
7979136 Young et al. Jul 2011 B2
7983753 Severin Jul 2011 B2
7991467 Markowitz et al. Aug 2011 B2
7991471 Ghanem et al. Aug 2011 B2
7996087 Cowan et al. Aug 2011 B2
8000791 Sunagawa et al. Aug 2011 B2
8000807 Morris et al. Aug 2011 B2
8001975 DiSilvestro et al. Aug 2011 B2
8002700 Ferek-Petric et al. Aug 2011 B2
8010209 Jacobson Aug 2011 B2
8019419 Panescu et al. Sep 2011 B1
8019434 Quiles et al. Sep 2011 B2
8027727 Freeberg Sep 2011 B2
8027729 Sunagawa et al. Sep 2011 B2
8032219 Neumann et al. Oct 2011 B2
8036743 Savage et al. Oct 2011 B2
8046079 Bange et al. Oct 2011 B2
8046080 Von Arx et al. Oct 2011 B2
8050297 DelMain et al. Nov 2011 B2
8050759 Stegemann et al. Nov 2011 B2
8050774 Kveen et al. Nov 2011 B2
8055345 Li et al. Nov 2011 B2
8055350 Roberts Nov 2011 B2
8060212 Rios et al. Nov 2011 B1
8065018 Haubrich et al. Nov 2011 B2
8073542 Doerr Dec 2011 B2
8078278 Penner Dec 2011 B2
8078283 Cowan et al. Dec 2011 B2
8095123 Gray Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103359 Reddy Jan 2012 B2
8103361 Moser Jan 2012 B2
8112148 Giftakis et al. Feb 2012 B2
8114021 Robertson et al. Feb 2012 B2
8121680 Falkenberg et al. Feb 2012 B2
8123684 Zdeblick Feb 2012 B2
8126545 Flach et al. Feb 2012 B2
8131334 Lu et al. Mar 2012 B2
8140161 Willerton et al. Mar 2012 B2
8150521 Crowley et al. Apr 2012 B2
8160672 Kim et al. Apr 2012 B2
8160702 Mann et al. Apr 2012 B2
8160704 Freeberg Apr 2012 B2
8165694 Carbanaru et al. Apr 2012 B2
8175715 Cox May 2012 B1
8180451 Hickman et al. May 2012 B2
8185213 Kveen et al. May 2012 B2
8187161 Li et al. May 2012 B2
8195293 Limousin et al. Jun 2012 B2
8204595 Pianca et al. Jun 2012 B2
8204605 Hastings et al. Jun 2012 B2
8209014 Doerr Jun 2012 B2
8214043 Matos Jul 2012 B2
8224244 Kim et al. Jul 2012 B2
8229556 Li Jul 2012 B2
8233985 Bulkes et al. Jul 2012 B2
8262578 Bharmi et al. Sep 2012 B1
8265748 Liu et al. Sep 2012 B2
8265757 Mass et al. Sep 2012 B2
8280521 Haubrich et al. Oct 2012 B2
8285387 Utsi et al. Oct 2012 B2
8290598 Boon et al. Oct 2012 B2
8290600 Hastings et al. Oct 2012 B2
8295939 Jacobson Oct 2012 B2
8301254 Mosesov et al. Oct 2012 B2
8315701 Cowan et al. Nov 2012 B2
8315708 Berthelsdorf et al. Nov 2012 B2
8321021 Kisker et al. Nov 2012 B2
8321036 Brockway et al. Nov 2012 B2
8332036 Hastings et al. Dec 2012 B2
8335563 Stessman Dec 2012 B2
8335568 Heruth et al. Dec 2012 B2
8340750 Prakash et al. Dec 2012 B2
8340780 Hastings et al. Dec 2012 B2
8352025 Jacobson Jan 2013 B2
8352028 Wenger Jan 2013 B2
8352038 Mao et al. Jan 2013 B2
8359098 Lund et al. Jan 2013 B2
8364261 Stubbs et al. Jan 2013 B2
8364276 Willis Jan 2013 B2
8369959 Meskens Feb 2013 B2
8369962 Abrahamson Feb 2013 B2
8380320 Spital Feb 2013 B2
8386051 Rys Feb 2013 B2
8391981 Mosesov Mar 2013 B2
8391990 Smith et al. Mar 2013 B2
8406874 Liu et al. Mar 2013 B2
8406879 Shuros et al. Mar 2013 B2
8406886 Gaunt et al. Mar 2013 B2
8412352 Griswold et al. Apr 2013 B2
8417340 Goossen Apr 2013 B2
8417341 Freeberg Apr 2013 B2
8423149 Hennig Apr 2013 B2
8428722 Verhoef et al. Apr 2013 B2
8433402 Ruben et al. Apr 2013 B2
8433409 Johnson et al. Apr 2013 B2
8433420 Bange et al. Apr 2013 B2
8447412 Dal Molin et al. May 2013 B2
8452413 Young et al. May 2013 B2
8457740 Osche Jun 2013 B2
8457742 Jacobson Jun 2013 B2
8457744 Janzig et al. Jun 2013 B2
8457761 Wariar Jun 2013 B2
8478407 Demmer et al. Jul 2013 B2
8478408 Hastings et al. Jul 2013 B2
8478431 Griswold et al. Jul 2013 B2
8494632 Sun et al. Jul 2013 B2
8504156 Bonner et al. Aug 2013 B2
8509910 Sowder et al. Aug 2013 B2
8515559 Roberts et al. Aug 2013 B2
8525340 Eckhardt et al. Sep 2013 B2
8527068 Ostroff Sep 2013 B2
8532790 Griswold Sep 2013 B2
8538526 Stahmann et al. Sep 2013 B2
8541131 Lund et al. Sep 2013 B2
8543205 Ostroff Sep 2013 B2
8547248 Zdeblick et al. Oct 2013 B2
8548605 Ollivier Oct 2013 B2
8554333 Wu et al. Oct 2013 B2
8565882 Matos Oct 2013 B2
8565897 Regnier et al. Oct 2013 B2
8571678 Wang Oct 2013 B2
8577327 Makdissi et al. Nov 2013 B2
8588926 Moore et al. Nov 2013 B2
8612002 Faltys et al. Dec 2013 B2
8615310 Khairkhahan et al. Dec 2013 B2
8626280 Allavatam et al. Jan 2014 B2
8626294 Sheldon et al. Jan 2014 B2
8634908 Cowan Jan 2014 B2
8634912 Bomzin et al. Jan 2014 B2
8634919 Hou et al. Jan 2014 B1
8639335 Peichel et al. Jan 2014 B2
8644934 Hastings et al. Feb 2014 B2
8649859 Smith et al. Feb 2014 B2
8670842 Bomzin et al. Mar 2014 B1
8676319 Knoll Mar 2014 B2
8676335 Katoozi et al. Mar 2014 B2
8700173 Edlund Apr 2014 B2
8700181 Bomzin et al. Apr 2014 B2
8705599 dal Molin et al. Apr 2014 B2
8718766 Wahlberg May 2014 B2
8718773 Willis et al. May 2014 B2
8725260 Shuros et al. May 2014 B2
8738133 Shuros et al. May 2014 B2
8738147 Hastings et al. May 2014 B2
8744555 Allavatam et al. Jun 2014 B2
8744572 Greenhut et al. Jun 2014 B1
8747314 Stahmann et al. Jun 2014 B2
8755884 Demmer et al. Jun 2014 B2
8758365 Bonner et al. Jun 2014 B2
8768483 Schmitt et al. Jul 2014 B2
8774572 Hamamoto Jul 2014 B2
8781605 Bornzin et al. Jul 2014 B2
8788035 Jacobson Jul 2014 B2
8788053 Jacobson Jul 2014 B2
8798740 Samade et al. Aug 2014 B2
8798745 Jacobson Aug 2014 B2
8798762 Fain et al. Aug 2014 B2
8798770 Reddy Aug 2014 B2
8805505 Roberts Aug 2014 B1
8805528 Corndorf Aug 2014 B2
8812109 Blomqvist et al. Aug 2014 B2
8818504 Bodner et al. Aug 2014 B2
8827913 Havel et al. Sep 2014 B2
8831747 Min et al. Sep 2014 B1
8855789 Jacobson Oct 2014 B2
8868186 Kroll Oct 2014 B2
8886339 Faltys et al. Nov 2014 B2
8903473 Rogers et al. Dec 2014 B2
8903500 Smith et al. Dec 2014 B2
8903513 Ollivier Dec 2014 B2
8909336 Navarro-Paredes et al. Dec 2014 B2
8914131 Bomzin et al. Dec 2014 B2
8923795 Makdissi et al. Dec 2014 B2
8923963 Bonner et al. Dec 2014 B2
8938300 Rosero Jan 2015 B2
8942806 Sheldon et al. Jan 2015 B2
8958892 Khairkhahan et al. Feb 2015 B2
8977358 Ewert et al. Mar 2015 B2
8989873 Locsin Mar 2015 B2
8996109 Karst et al. Mar 2015 B2
9002467 Smith et al. Apr 2015 B2
9008776 Cowan et al. Apr 2015 B2
9008777 Dianaty et al. Apr 2015 B2
9014818 Deterre et al. Apr 2015 B2
9017341 Bornzin et al. Apr 2015 B2
9020611 Khairkhahan et al. Apr 2015 B2
9037262 Regnier et al. May 2015 B2
9042984 Demmer et al. May 2015 B2
9072911 Hastings et al. Jul 2015 B2
9072913 Jacobson Jul 2015 B2
9155882 Grubac et al. Oct 2015 B2
9168372 Fain Oct 2015 B2
9168380 Greenhut et al. Oct 2015 B1
9168383 Jacobson et al. Oct 2015 B2
9180285 Moore et al. Nov 2015 B2
9192774 Jacobson Nov 2015 B2
9205225 Khairkhahan et al. Dec 2015 B2
9216285 Boling et al. Dec 2015 B1
9216293 Berthiaume et al. Dec 2015 B2
9216298 Jacobson Dec 2015 B2
9227077 Jacobson Jan 2016 B2
9238145 Wenzel et al. Jan 2016 B2
9242102 Khairkhahan et al. Jan 2016 B2
9242113 Smith et al. Jan 2016 B2
9248300 Rys et al. Feb 2016 B2
9265436 Min et al. Feb 2016 B2
9265962 Dianaty et al. Feb 2016 B2
9272155 Ostroff Mar 2016 B2
9278218 Karst et al. Mar 2016 B2
9278229 Reinke et al. Mar 2016 B1
9283381 Grubac et al. Mar 2016 B2
9283382 Berthiaume et al. Mar 2016 B2
9289612 Sambelashvili et al. Mar 2016 B1
9302115 Molin et al. Apr 2016 B2
9333364 Echt et al. May 2016 B2
9358387 Suwito et al. Jun 2016 B2
9358400 Jacobson Jun 2016 B2
9364675 Deterre et al. Jun 2016 B2
9370663 Moulder Jun 2016 B2
9375580 Bonner et al. Jun 2016 B2
9375581 Baru et al. Jun 2016 B2
9381365 Kibler et al. Jul 2016 B2
9393424 Demmer et al. Jul 2016 B2
9393436 Doerr Jul 2016 B2
9399139 Demmer et al. Jul 2016 B2
9399140 Cho et al. Jul 2016 B2
9409033 Jacobson Aug 2016 B2
9427594 Bornzin et al. Aug 2016 B1
9433368 Stahmann et al. Sep 2016 B2
9433780 Régnier et al. Sep 2016 B2
9457193 Klimovitch et al. Oct 2016 B2
9492668 Sheldon et al. Nov 2016 B2
9492669 Demmer et al. Nov 2016 B2
9492674 Schmidt et al. Nov 2016 B2
9492677 Greenhut et al. Nov 2016 B2
9511233 Sambelashvili Dec 2016 B2
9511236 Varady et al. Dec 2016 B2
9511237 Deterre et al. Dec 2016 B2
9522276 Shen et al. Dec 2016 B2
9522280 Fishler et al. Dec 2016 B2
9526522 Wood et al. Dec 2016 B2
9526891 Eggen et al. Dec 2016 B2
9526909 Stahmann et al. Dec 2016 B2
9533163 Klimovitch et al. Jan 2017 B2
9561382 Persson et al. Feb 2017 B2
9566012 Greenhut et al. Feb 2017 B2
9636511 Carney et al. May 2017 B2
9669223 Auricchio et al. Jun 2017 B2
9687654 Sheldon et al. Jun 2017 B2
9687655 Pertijs et al. Jun 2017 B2
9687659 Von Arx et al. Jun 2017 B2
9694186 Carney et al. Jul 2017 B2
9782594 Stahmann et al. Oct 2017 B2
9782601 Ludwig Oct 2017 B2
9789317 Greenhut et al. Oct 2017 B2
9789319 Sambelashvili Oct 2017 B2
9808617 Ostroff et al. Nov 2017 B2
9808628 Sheldon et al. Nov 2017 B2
9808631 Maile et al. Nov 2017 B2
9808632 Reinke et al. Nov 2017 B2
9808633 Bonner et al. Nov 2017 B2
9808637 Sharma et al. Nov 2017 B2
9855414 Marshall et al. Jan 2018 B2
9855430 Ghosh et al. Jan 2018 B2
9855435 Sahabi et al. Jan 2018 B2
9861815 Tran et al. Jan 2018 B2
10080887 Schmidt et al. Sep 2018 B2
10080888 Kelly et al. Sep 2018 B2
10080900 Ghosh et al. Sep 2018 B2
10080903 Willis et al. Sep 2018 B2
10086206 Sambelashvili Oct 2018 B2
20020032470 Linberg Mar 2002 A1
20020035376 Bardy et al. Mar 2002 A1
20020035377 Bardy et al. Mar 2002 A1
20020035378 Bardy et al. Mar 2002 A1
20020035380 Rissmann et al. Mar 2002 A1
20020035381 Bardy et al. Mar 2002 A1
20020042629 Bardy et al. Apr 2002 A1
20020042630 Bardy et al. Apr 2002 A1
20020042634 Bardy et al. Apr 2002 A1
20020049475 Bardy et al. Apr 2002 A1
20020052636 Bardy et al. May 2002 A1
20020068958 Bardy et al. Jun 2002 A1
20020072773 Bardy et al. Jun 2002 A1
20020082665 Haller et al. Jun 2002 A1
20020091414 Bardy et al. Jul 2002 A1
20020095196 Linberg Jul 2002 A1
20020099423 Berg et al. Jul 2002 A1
20020103510 Bardy et al. Aug 2002 A1
20020107545 Rissmann et al. Aug 2002 A1
20020107546 Ostroff et al. Aug 2002 A1
20020107547 Erlinger et al. Aug 2002 A1
20020107548 Bardy et al. Aug 2002 A1
20020107549 Bardy et al. Aug 2002 A1
20020107559 Sanders et al. Aug 2002 A1
20020120299 Ostroff et al. Aug 2002 A1
20020173830 Starkweather et al. Nov 2002 A1
20020193846 Pool et al. Dec 2002 A1
20030009203 Lebel et al. Jan 2003 A1
20030028082 Thompson Feb 2003 A1
20030040779 Engmark et al. Feb 2003 A1
20030041866 Linberg et al. Mar 2003 A1
20030045805 Sheldon et al. Mar 2003 A1
20030088278 Bardy et al. May 2003 A1
20030097153 Bardy et al. May 2003 A1
20030105497 Zhu et al. Jun 2003 A1
20030114908 Flach Jun 2003 A1
20030144701 Mehra et al. Jul 2003 A1
20030187460 Chin et al. Oct 2003 A1
20030187461 Chin Oct 2003 A1
20040024435 Leckrone et al. Feb 2004 A1
20040068302 Rodgers et al. Apr 2004 A1
20040087938 Leckrone et al. May 2004 A1
20040088035 Guenst et al. May 2004 A1
20040102830 Williams May 2004 A1
20040127959 Amundson et al. Jul 2004 A1
20040133242 Chapman et al. Jul 2004 A1
20040147969 Mann et al. Jul 2004 A1
20040147973 Hauser Jul 2004 A1
20040167558 Igo et al. Aug 2004 A1
20040167587 Thompson Aug 2004 A1
20040172071 Bardy et al. Sep 2004 A1
20040172077 Chinchoy Sep 2004 A1
20040172104 Berg et al. Sep 2004 A1
20040176817 Wahlstrand et al. Sep 2004 A1
20040176818 Wahlstrand et al. Sep 2004 A1
20040176830 Fang Sep 2004 A1
20040186529 Bardy et al. Sep 2004 A1
20040204673 Flaherty Oct 2004 A1
20040210292 Bardy et al. Oct 2004 A1
20040210293 Bardy et al. Oct 2004 A1
20040210294 Bardy et al. Oct 2004 A1
20040215308 Bardy et al. Oct 2004 A1
20040220624 Ritscher et al. Nov 2004 A1
20040220626 Wagner Nov 2004 A1
20040220639 Mulligan et al. Nov 2004 A1
20040230283 Prinzen et al. Nov 2004 A1
20040249431 Ransbury et al. Dec 2004 A1
20040260348 Bakken et al. Dec 2004 A1
20040267303 Guenst Dec 2004 A1
20050061320 Lee et al. Mar 2005 A1
20050070962 Echt et al. Mar 2005 A1
20050102003 Grabek et al. May 2005 A1
20050149138 Min et al. Jul 2005 A1
20050165466 Morris et al. Jul 2005 A1
20050182465 Ness Aug 2005 A1
20050203410 Jenkins Sep 2005 A1
20050283208 Von Arx et al. Dec 2005 A1
20050288743 Ahn et al. Dec 2005 A1
20060042830 Maghribi et al. Mar 2006 A1
20060052829 Sun et al. Mar 2006 A1
20060052830 Spinelli et al. Mar 2006 A1
20060064135 Brockway Mar 2006 A1
20060064149 Belacazar et al. Mar 2006 A1
20060085039 Hastings et al. Apr 2006 A1
20060085041 Hastings et al. Apr 2006 A1
20060085042 Hastings et al. Apr 2006 A1
20060095078 Tronnes May 2006 A1
20060106442 Richardson et al. May 2006 A1
20060116746 Chin Jun 2006 A1
20060135999 Bodner et al. Jun 2006 A1
20060136004 Cowan et al. Jun 2006 A1
20060161061 Echt et al. Jul 2006 A1
20060200002 Guenst Sep 2006 A1
20060206151 Lu Sep 2006 A1
20060212079 Routh et al. Sep 2006 A1
20060241701 Markowitz et al. Oct 2006 A1
20060241705 Neumann et al. Oct 2006 A1
20060247672 Vidlund et al. Nov 2006 A1
20060259088 Pastore et al. Nov 2006 A1
20060265018 Smith et al. Nov 2006 A1
20070004979 Wojciechowicz et al. Jan 2007 A1
20070016098 Kim et al. Jan 2007 A1
20070027508 Cowan Feb 2007 A1
20070078490 Cowan et al. Apr 2007 A1
20070088394 Jacobson Apr 2007 A1
20070088396 Jacobson Apr 2007 A1
20070088397 Jacobson Apr 2007 A1
20070088398 Jacobson Apr 2007 A1
20070088405 Jacobson Apr 2007 A1
20070135882 Drasler et al. Jun 2007 A1
20070135883 Drasler et al. Jun 2007 A1
20070142864 Libbus et al. Jun 2007 A1
20070150037 Hastings et al. Jun 2007 A1
20070150038 Hastings et al. Jun 2007 A1
20070156190 Cinbis Jul 2007 A1
20070219525 Gelfand et al. Sep 2007 A1
20070219590 Hastings et al. Sep 2007 A1
20070225545 Ferrari Sep 2007 A1
20070233206 Frikart et al. Oct 2007 A1
20070239244 Morgan et al. Oct 2007 A1
20070255376 Michels et al. Nov 2007 A1
20070276444 Gelbart et al. Nov 2007 A1
20070293900 Sheldon et al. Dec 2007 A1
20070293904 Gelbart et al. Dec 2007 A1
20080004663 Jorgenson Jan 2008 A1
20080004664 Hopper et al. Jan 2008 A1
20080021505 Hastings et al. Jan 2008 A1
20080021519 De Geest et al. Jan 2008 A1
20080021532 Kveen et al. Jan 2008 A1
20080065183 Whitehurst et al. Mar 2008 A1
20080065185 Worley Mar 2008 A1
20080071318 Brooke et al. Mar 2008 A1
20080109054 Hastings et al. May 2008 A1
20080119911 Rosero May 2008 A1
20080130670 Kim et al. Jun 2008 A1
20080154139 Shuros et al. Jun 2008 A1
20080154322 Jackson et al. Jun 2008 A1
20080228234 Stancer Sep 2008 A1
20080234771 Chinchoy et al. Sep 2008 A1
20080243217 Wildon Oct 2008 A1
20080269814 Rosero Oct 2008 A1
20080269825 Chinchoy et al. Oct 2008 A1
20080275518 Ghanem et al. Nov 2008 A1
20080275519 Ghanem et al. Nov 2008 A1
20080288039 Reddy Nov 2008 A1
20080294208 Willis et al. Nov 2008 A1
20080294210 Rosero Nov 2008 A1
20080294229 Friedman et al. Nov 2008 A1
20080306359 Zdeblick et al. Dec 2008 A1
20090018599 Hastings et al. Jan 2009 A1
20090024180 Kisker et al. Jan 2009 A1
20090036941 Corbucci Feb 2009 A1
20090048646 Katoozi et al. Feb 2009 A1
20090062895 Stahmann et al. Mar 2009 A1
20090082827 Kveen et al. Mar 2009 A1
20090082828 Ostroff Mar 2009 A1
20090088813 Brockway et al. Apr 2009 A1
20090131907 Chin et al. May 2009 A1
20090135886 Robertson et al. May 2009 A1
20090143835 Pastore et al. Jun 2009 A1
20090171408 Solem Jul 2009 A1
20090171414 Kelly et al. Jul 2009 A1
20090204163 Shuros et al. Aug 2009 A1
20090204170 Hastings et al. Aug 2009 A1
20090210024 M. Aug 2009 A1
20090216292 Pless et al. Aug 2009 A1
20090234407 Hastings et al. Sep 2009 A1
20090234411 Sambelashvili et al. Sep 2009 A1
20090266573 Engmark et al. Oct 2009 A1
20090275998 Burnes et al. Nov 2009 A1
20090275999 Burnes et al. Nov 2009 A1
20090299447 Jensen et al. Dec 2009 A1
20100013668 Kantervik Jan 2010 A1
20100016911 Willis et al. Jan 2010 A1
20100023085 Wu et al. Jan 2010 A1
20100030061 Canfield et al. Feb 2010 A1
20100030327 Chatel Feb 2010 A1
20100042108 Hibino Feb 2010 A1
20100056871 Govari et al. Mar 2010 A1
20100063375 Kassab et al. Mar 2010 A1
20100063562 Cowan et al. Mar 2010 A1
20100069983 Peacock, III et al. Mar 2010 A1
20100094367 Sen Apr 2010 A1
20100114209 Krause et al. May 2010 A1
20100114214 Morelli et al. May 2010 A1
20100125281 Jacobson et al. May 2010 A1
20100168761 Kassab et al. Jul 2010 A1
20100168819 Freeberg Jul 2010 A1
20100198288 Ostroff Aug 2010 A1
20100198304 Wang Aug 2010 A1
20100217367 Belson Aug 2010 A1
20100228308 Cowan et al. Sep 2010 A1
20100234906 Koh Sep 2010 A1
20100234924 Willis Sep 2010 A1
20100241185 Mahapatra et al. Sep 2010 A1
20100249729 Morris et al. Sep 2010 A1
20100286744 Echt et al. Nov 2010 A1
20100298841 Prinzen et al. Nov 2010 A1
20100312309 Harding Dec 2010 A1
20110022113 Zdeblick et al. Jan 2011 A1
20110071586 Jacobson Mar 2011 A1
20110077708 Ostroff Mar 2011 A1
20110112600 Cowan et al. May 2011 A1
20110118588 Komblau et al. May 2011 A1
20110118810 Cowan et al. May 2011 A1
20110137187 Yang et al. Jun 2011 A1
20110144720 Cowan et al. Jun 2011 A1
20110152970 Jollota et al. Jun 2011 A1
20110160558 Rassatt et al. Jun 2011 A1
20110160565 Stubbs et al. Jun 2011 A1
20110160801 Markowitz et al. Jun 2011 A1
20110160806 Lyden et al. Jun 2011 A1
20110166620 Cowan et al. Jul 2011 A1
20110166621 Cowan et al. Jul 2011 A1
20110184491 Kivi Jul 2011 A1
20110190835 Brockway et al. Aug 2011 A1
20110208260 Jacobson Aug 2011 A1
20110218587 Jacobson Sep 2011 A1
20110230734 Fain et al. Sep 2011 A1
20110237967 Moore et al. Sep 2011 A1
20110245890 Brisben et al. Oct 2011 A1
20110251660 Griswold Oct 2011 A1
20110251662 Griswold et al. Oct 2011 A1
20110270099 Ruben et al. Nov 2011 A1
20110270339 Murray, III et al. Nov 2011 A1
20110270340 Pellegrini et al. Nov 2011 A1
20110270341 Ruben et al. Nov 2011 A1
20110276102 Cohen Nov 2011 A1
20110282423 Jacobson Nov 2011 A1
20120004527 Thompson et al. Jan 2012 A1
20120029323 Zhao Feb 2012 A1
20120041508 Rousso et al. Feb 2012 A1
20120059433 Cowan et al. Mar 2012 A1
20120059436 Fontaine et al. Mar 2012 A1
20120065500 Rogers et al. Mar 2012 A1
20120078322 Dal Molin et al. Mar 2012 A1
20120089198 Ostroff Apr 2012 A1
20120093245 Makdissi et al. Apr 2012 A1
20120095521 Hintz Apr 2012 A1
20120095539 Khairkhahan et al. Apr 2012 A1
20120101540 O'Brien et al. Apr 2012 A1
20120101553 Reddy Apr 2012 A1
20120109148 Bonner et al. May 2012 A1
20120109149 Bonner et al. May 2012 A1
20120109236 Jacobson et al. May 2012 A1
20120109259 Bond et al. May 2012 A1
20120116489 Khairkhahan et al. May 2012 A1
20120150251 Giftakis et al. Jun 2012 A1
20120158111 Khairkhahan et al. Jun 2012 A1
20120165827 Khairkhahan et al. Jun 2012 A1
20120172690 Anderson et al. Jul 2012 A1
20120172891 Lee Jul 2012 A1
20120172892 Grubac et al. Jul 2012 A1
20120172942 Berg Jul 2012 A1
20120197350 Roberts et al. Aug 2012 A1
20120197373 Khairkhahan et al. Aug 2012 A1
20120215285 Tahmasian et al. Aug 2012 A1
20120232565 Kveen et al. Sep 2012 A1
20120245665 Friedman et al. Sep 2012 A1
20120277600 Greenhut Nov 2012 A1
20120277606 Ellingson et al. Nov 2012 A1
20120283795 Stancer et al. Nov 2012 A1
20120283807 Deterre et al. Nov 2012 A1
20120289776 Keast et al. Nov 2012 A1
20120289815 Keast et al. Nov 2012 A1
20120290021 Saurkar et al. Nov 2012 A1
20120290025 Keimel Nov 2012 A1
20120296381 Matos Nov 2012 A1
20120303082 Dong et al. Nov 2012 A1
20120316613 Keefe et al. Dec 2012 A1
20130012151 Hankins Jan 2013 A1
20130023975 Locsin Jan 2013 A1
20130035748 Bonner et al. Feb 2013 A1
20130041422 Jacobson Feb 2013 A1
20130053908 Smith et al. Feb 2013 A1
20130053915 Holmstrom et al. Feb 2013 A1
20130053921 Bonner et al. Feb 2013 A1
20130060298 Splett et al. Mar 2013 A1
20130066169 Rys et al. Mar 2013 A1
20130072770 Rao et al. Mar 2013 A1
20130079798 Tran et al. Mar 2013 A1
20130079861 Reinert et al. Mar 2013 A1
20130085350 Schugt et al. Apr 2013 A1
20130085403 Gunderson et al. Apr 2013 A1
20130085550 Polefko et al. Apr 2013 A1
20130096649 Martin et al. Apr 2013 A1
20130103047 Steingisser et al. Apr 2013 A1
20130103109 Jacobson Apr 2013 A1
20130110008 Bourget et al. May 2013 A1
20130110127 Bornzin et al. May 2013 A1
20130110192 Tran et al. May 2013 A1
20130110219 Bornzin et al. May 2013 A1
20130116529 Min et al. May 2013 A1
20130116738 Samade et al. May 2013 A1
20130116740 Bornzin et al. May 2013 A1
20130116741 Bornzin et al. May 2013 A1
20130123872 Bornzin et al. May 2013 A1
20130123875 Varady et al. May 2013 A1
20130131591 Berthiaume et al. May 2013 A1
20130131693 Berthiaume et al. May 2013 A1
20130138006 Bornzin et al. May 2013 A1
20130150695 Biela et al. Jun 2013 A1
20130150911 Perschbacher et al. Jun 2013 A1
20130150912 Perschbacher et al. Jun 2013 A1
20130184776 Shuros et al. Jul 2013 A1
20130192611 Taepke, II et al. Aug 2013 A1
20130196703 Masoud et al. Aug 2013 A1
20130197609 Moore et al. Aug 2013 A1
20130231710 Jacobson Sep 2013 A1
20130238072 Deterre et al. Sep 2013 A1
20130238073 Makdissi et al. Sep 2013 A1
20130253309 Allan et al. Sep 2013 A1
20130253342 Griswold et al. Sep 2013 A1
20130253343 Waldhauser et al. Sep 2013 A1
20130253344 Griswold et al. Sep 2013 A1
20130253345 Griswold et al. Sep 2013 A1
20130253346 Griswold et al. Sep 2013 A1
20130253347 Griswold et al. Sep 2013 A1
20130261497 Pertijs et al. Oct 2013 A1
20130265144 Banna et al. Oct 2013 A1
20130268042 Hastings et al. Oct 2013 A1
20130274828 Willis Oct 2013 A1
20130274847 Ostroff Oct 2013 A1
20130282070 Cowan et al. Oct 2013 A1
20130282073 Cowan et al. Oct 2013 A1
20130296727 Sullivan et al. Nov 2013 A1
20130303872 Taff et al. Nov 2013 A1
20130324825 Ostroff et al. Dec 2013 A1
20130325081 Karst et al. Dec 2013 A1
20130345770 Dianaty et al. Dec 2013 A1
20140012344 Hastings et al. Jan 2014 A1
20140018876 Ostroff Jan 2014 A1
20140018877 Demmer et al. Jan 2014 A1
20140031836 Ollivier Jan 2014 A1
20140039570 Carroll et al. Feb 2014 A1
20140039591 Drasler et al. Feb 2014 A1
20140043146 Makdissi et al. Feb 2014 A1
20140046395 Regnier et al. Feb 2014 A1
20140046420 Moore et al. Feb 2014 A1
20140058240 Mothilal et al. Feb 2014 A1
20140058494 Ostroff et al. Feb 2014 A1
20140074114 Khairkhahan et al. Mar 2014 A1
20140074186 Faltys et al. Mar 2014 A1
20140094891 Pare et al. Apr 2014 A1
20140100624 Ellingson Apr 2014 A1
20140100627 Min Apr 2014 A1
20140107723 Hou et al. Apr 2014 A1
20140121719 Bonner et al. May 2014 A1
20140121720 Bonner et al. May 2014 A1
20140121722 Sheldon et al. May 2014 A1
20140128935 Kumar et al. May 2014 A1
20140135865 Hastings et al. May 2014 A1
20140142648 Smith et al. May 2014 A1
20140148675 Nordstrom et al. May 2014 A1
20140148815 Wenzel et al. May 2014 A1
20140155950 Hastings et al. Jun 2014 A1
20140169162 Romano et al. Jun 2014 A1
20140172060 Bornzin et al. Jun 2014 A1
20140180306 Grubac et al. Jun 2014 A1
20140180366 Edlund Jun 2014 A1
20140207149 Hastings et al. Jul 2014 A1
20140207210 Willis et al. Jul 2014 A1
20140214104 Greenhut et al. Jul 2014 A1
20140222015 Keast et al. Aug 2014 A1
20140222098 Baru et al. Aug 2014 A1
20140222109 Moulder Aug 2014 A1
20140228913 Molin et al. Aug 2014 A1
20140236172 Hastings et al. Aug 2014 A1
20140243848 Auricchio et al. Aug 2014 A1
20140255298 Cole et al. Sep 2014 A1
20140257324 Fain Sep 2014 A1
20140257422 Herken Sep 2014 A1
20140257444 Cole et al. Sep 2014 A1
20140276929 Foster et al. Sep 2014 A1
20140303704 Suwito et al. Oct 2014 A1
20140309706 Jacobson Oct 2014 A1
20140343348 Kaplan et al. Nov 2014 A1
20140371818 Bond et al. Dec 2014 A1
20140379041 Foster Dec 2014 A1
20150025612 Haasl et al. Jan 2015 A1
20150039041 Smith et al. Feb 2015 A1
20150045868 Bonner et al. Feb 2015 A1
20150051609 Schmidt et al. Feb 2015 A1
20150051610 Schmidt et al. Feb 2015 A1
20150051611 Schmidt et al. Feb 2015 A1
20150051612 Schmidt et al. Feb 2015 A1
20150051613 Schmidt et al. Feb 2015 A1
20150051614 Schmidt et al. Feb 2015 A1
20150051615 Schmidt et al. Feb 2015 A1
20150051616 Haasl et al. Feb 2015 A1
20150051682 Schmidt et al. Feb 2015 A1
20150057520 Foster et al. Feb 2015 A1
20150057558 Stahmann et al. Feb 2015 A1
20150057721 Stahmann et al. Feb 2015 A1
20150088155 Stahmann et al. Mar 2015 A1
20150105836 Bonner et al. Apr 2015 A1
20150126854 Keast et al. May 2015 A1
20150157861 Aghassian Jun 2015 A1
20150157866 Demmer et al. Jun 2015 A1
20150173655 Demmer et al. Jun 2015 A1
20150190638 Smith et al. Jul 2015 A1
20150196756 Stahmann et al. Jul 2015 A1
20150196757 Stahmann et al. Jul 2015 A1
20150196758 Stahmann et al. Jul 2015 A1
20150196769 Stahmann et al. Jul 2015 A1
20150217119 Nikolski et al. Aug 2015 A1
20150221898 Chi et al. Aug 2015 A1
20150224315 Stahmann Aug 2015 A1
20150224320 Stahmann Aug 2015 A1
20150230699 Berul et al. Aug 2015 A1
20150238769 Demmer et al. Aug 2015 A1
20150258345 Smith et al. Sep 2015 A1
20150290468 Zhang Oct 2015 A1
20150297905 Greenhut et al. Oct 2015 A1
20150297907 Zhang Oct 2015 A1
20150305637 Greenhut et al. Oct 2015 A1
20150305638 Zhang Oct 2015 A1
20150305639 Greenhut et al. Oct 2015 A1
20150305640 Reinke et al. Oct 2015 A1
20150305641 Stadler et al. Oct 2015 A1
20150305642 Reinke et al. Oct 2015 A1
20150306374 Seifert et al. Oct 2015 A1
20150306375 Marshall et al. Oct 2015 A1
20150306401 Demmer et al. Oct 2015 A1
20150306406 Crutchfield et al. Oct 2015 A1
20150306407 Crutchfield et al. Oct 2015 A1
20150306408 Greenhut et al. Oct 2015 A1
20150321016 O'Brien et al. Nov 2015 A1
20150328459 Chin et al. Nov 2015 A1
20150335884 Khairkhahan et al. Nov 2015 A1
20150360036 Kane et al. Dec 2015 A1
20160015322 Anderson et al. Jan 2016 A1
20160023000 Cho et al. Jan 2016 A1
20160030757 Jacobson Feb 2016 A1
20160033177 Barot et al. Feb 2016 A1
20160121127 Klimovitch et al. May 2016 A1
20160121128 Fishler et al. May 2016 A1
20160121129 Persson et al. May 2016 A1
20160213919 Suwito et al. Jul 2016 A1
20160213937 Reinke et al. Jul 2016 A1
20160213939 Carney et al. Jul 2016 A1
20160228026 Jackson Aug 2016 A1
20160250480 Sheldon et al. Sep 2016 A1
20160317825 Jacobson Nov 2016 A1
20160367823 Cowan et al. Dec 2016 A1
20170014629 Ghosh et al. Jan 2017 A1
20170035315 Jackson Feb 2017 A1
20170043173 Sharma et al. Feb 2017 A1
20170043174 Greenhut et al. Feb 2017 A1
20170189681 Anderson Jul 2017 A1
20170281261 Shuros et al. Oct 2017 A1
20170281952 Shuros et al. Oct 2017 A1
20170281953 Min et al. Oct 2017 A1
20170281955 Maile et al. Oct 2017 A1
20170312531 Sawchuk Nov 2017 A1
20180117339 Huelskamp May 2018 A1
20180256902 Toy et al. Sep 2018 A1
20180256909 Smith et al. Sep 2018 A1
20180264262 Haasl et al. Sep 2018 A1
20180264270 Koop et al. Sep 2018 A1
20180264272 Haasl et al. Sep 2018 A1
20180264273 Haasl et al. Sep 2018 A1
20180264274 Haasl et al. Sep 2018 A1
Foreign Referenced Citations (45)
Number Date Country
2008279789 Oct 2011 AU
2008329620 May 2014 AU
2014203793 Jul 2014 AU
1003904 Jan 1977 CA
202933393 May 2013 CN
0362611 Apr 1990 EP
503823 Sep 1992 EP
1702648 Sep 2006 EP
1904166 Jun 2011 EP
2471452 Jul 2012 EP
2433675 Jan 2013 EP
2441491 Jan 2013 EP
2452721 Nov 2013 EP
2662113 Nov 2013 EP
1948296 Jan 2014 EP
2760541 May 2016 EP
2833966 May 2016 EP
2000051373 Feb 2000 JP
2002502640 Jan 2002 JP
2004512105 Apr 2004 JP
2005508208 Mar 2005 JP
2005245215 Sep 2005 JP
2008540040 Nov 2008 JP
5199867 Feb 2013 JP
9500202 Jan 1995 WO
9636134 Nov 1996 WO
9724981 Jul 1997 WO
9826840 Jun 1998 WO
9939767 Aug 1999 WO
0234330 May 2002 WO
02098282 Dec 2002 WO
2005000206 Jan 2005 WO
2005042089 May 2005 WO
2006065394 Jun 2006 WO
2006086435 Aug 2006 WO
2006113659 Oct 2006 WO
2006124833 Nov 2006 WO
2007073435 Jun 2007 WO
2007075974 Jul 2007 WO
2009006531 Jan 2009 WO
2012054102 Apr 2012 WO
2013080038 Jun 2013 WO
2013098644 Jul 2013 WO
2013184787 Dec 2013 WO
2014120769 Aug 2014 WO
Non-Patent Literature Citations (7)
Entry
US 8,886,318 B2, 11/2014, Jacobson et al. (withdrawn)
International Search Report and Written Opinion for Application No. PCT/US2017/059048, 32 pages, dated Feb. 8, 2018.
“Instructions for Use System 1, Leadless Cardiac Pacemaker (LCP) and Delivery Catheter,” Nanostim Leadless Pacemakers, pp. 1-28, 2013.
Hachisuka et al., “Development and Performance Analysis of an Intra-Body Communication Device,” The 12th International Conference on Solid State Sensors, Actuators and Microsystems, vol. 4A1.3, pp. 1722-1725, 2003.
Seyedi et al., “A Survey on Intrabody Communications for Body Area Network Application,” IEEE Transactions on Biomedical Engineering,vol. 60(8): 2067-2079, 2013.
Spickler et al., “Totally Self-Contained Intracardiac Pacemaker,” Journal of Electrocardiology, vol. 3(3&4): 324-331, 1970.
Wegmüller, “Intra-Body Communication for Biomedical Sensor Networks,” Diss. ETH, No. 17323, 1-173, 2007.
Related Publications (1)
Number Date Country
20180117338 A1 May 2018 US
Provisional Applications (2)
Number Date Country
62424876 Nov 2016 US
62415132 Oct 2016 US