Systems and methods for actuating a prosthetic ankle

Information

  • Patent Grant
  • 9271851
  • Patent Number
    9,271,851
  • Date Filed
    Monday, February 28, 2011
    13 years ago
  • Date Issued
    Tuesday, March 1, 2016
    8 years ago
Abstract
Systems and methods for sensing actuating a prosthetic ankle are disclosed. In one example, the system, such as an actuated prosthetic ankle joint, detects that the user has moved to a relaxed position, such as sitting, reclining, crawling, or leaning. In response, the actuated prosthetic ankle joint actively adjusts the angle between the members of the ankle to a relaxed state. The system may further detect when the user has moved to exit the relaxed position, and may actively adjust the angle between the members of the ankle to an exit state.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


Preferred embodiments of this invention relate to sensing systems and methods for a motion-controlled limb and, in particular, an ankle-motion-controlled foot.


2. Description of the Related Art


Millions of individuals worldwide rely on prosthetic and/or orthotic devices to compensate for disabilities, such as amputation or debilitation, and to assist in the rehabilitation of injured limbs. Orthotic devices include external apparatuses used to support, align, prevent, protect, correct deformities of, or improve the function of movable parts of the body. Prosthetic devices include apparatuses used as artificial substitutes for a missing body part, such as an arm or leg.


The number of disabled persons and amputees is increasing each year as the average age of individuals increases, as does the prevalence of debilitating diseases such as diabetes. As a result, the need for prosthetic and orthotic devices is also increasing. Conventional orthoses are often used to support a joint, such as an ankle or a knee, of an individual, and movement of the orthosis is generally based solely on the energy expenditure of the user. Some conventional prostheses are equipped with basic controllers that artificially mobilize the joints without any interaction from the amputee and are capable of generating only basic motions. Such basic controllers do not take into consideration the dynamic conditions of the working environment. The passive nature of these conventional prosthetic and orthotic devices typically leads to movement instability, high energy expenditure on the part of the disabled person or amputee, gait deviations and other short- and long-term negative effects. This is especially true for leg orthoses and prostheses.


SUMMARY OF THE INVENTION

Accordingly, one embodiment of the invention includes a prosthetic or orthotic system that is self-powered and that mimics the natural movement of a healthy limb, and in particular, the movement of a healthy ankle. Another embodiment of the invention includes a sensor system and a control system that manage the motion of the prosthetic or orthotic system so as to facilitate movement by the disabled person or amputee.


One embodiment of the invention includes a system associated with the movement of a limb. In one embodiment, the system comprises a foot unit; an attachment member having an upper end and a lower end, wherein the lower end is pivotably attached to a first location on the foot unit; and an actuator operatively coupled to the foot unit and to the attachment member, wherein the actuator is configured to actively adjust an angle between the attachment member and the foot unit. For example, the foot unit may be a prosthetic or orthotic device.


Another embodiment of the invention includes a prosthetic system for mimicking the natural movement of an ankle. In one embodiment, the prosthetic system comprises a prosthetic foot; a pivot assembly attached to a first position on the prosthetic foot, wherein the first position is near a natural ankle location of the prosthetic foot; a lower limb member extending in a tibial direction, the lower limb member having an upper end and a lower end, wherein the lower end of the lower limb member is operatively coupled to the pivot assembly; and an actuator operatively coupled to the prosthetic foot and to the lower limb member, wherein the actuator is configured to actively adjust an angle between the lower limb member and the prosthetic foot about the pivot assembly.


One embodiment of the invention includes a method for controlling a device associated with the movement of a limb. In one embodiment, the method comprises monitoring with at least one sensor the movement of an actuatable device associated with a limb; generating data indicative of said movement; processing the data with a processing module to determine a current state of locomotion of the actuatable device; and adjusting the actuatable device based on the determined state of locomotion, wherein said adjusting comprises substantially mimicking the movement of a healthy ankle. For example, the actuatable device may be a prosthesis or an orthosis.


Another embodiment of the invention includes a method for controlling a prosthetic ankle device. In one embodiment, the method comprises monitoring with at least one sensor the movement of an actuatable prosthetic ankle device, wherein the at least one sensor generates data indicative of the movement of the prosthetic ankle device; receiving and processing the data with a control module to determine a current state of locomotion of the actuatable prosthetic ankle device; outputting with the control module at least one control signal based on the determined state of locomotion; and adjusting the actuatable prosthetic ankle device based at least upon the control signal, wherein said adjusting comprises substantially mimicking the movement of a healthy ankle.


In one embodiment, a prosthetic or orthotic system is provided having an ankle-motion-controlled foot. The prosthetic or orthotic system comprises, among other things, a lower limb member, an actuator, and a foot unit. The actuator is configured to mimic the motion of an ankle by adjusting the angle between the lower limb member and the foot unit. The prosthetic or orthotic system also comprises an attachment portion that facilitates coupling of the lower limb member to another prosthetic or orthotic member, to the stump of an amputee, or to another component. The prosthetic or orthotic system may also comprise a rechargeable battery to provide power to the actuator or other components of the system. Embodiments of the invention include systems for both transtibial and transfemoral amputees.


In another embodiment of the invention, the prosthetic or orthotic system comprises a sensor system that is used to capture information regarding the position and movement of the prosthetic or orthotic device. This information may be processed in real-time so as to predict appropriate movements for the prosthetic or orthotic device and to adjust the prosthetic or orthotic device accordingly.


In one embodiment of the invention, a system architecture is provided having a sensor module, a central processing unit, a memory, an external interface, a control drive module, an actuator, and an ankle device. The system architecture may receive instructions and/or data from external sources, such as a user or an electronic device, through the external interface.


In one embodiment, a control system may also be provided that manages the movement of the orthosis or the prosthesis. In one embodiment, the control system manages the movement of an actuator, such as a screw motor. Such motion control provides for movement by the user up inclined surfaces, down declines, or on stairs. In one embodiment, the control system may be configured to monitor through sensors the movements of a healthy limb and use the measurements to control the movement of the prosthesis or orthosis. The control system may also manage the damping of the actuator or other portions of the orthosis or prosthesis.


In one embodiment, a method is provided for controlling actuation of a prosthetic or orthotic device. The method comprises providing one or more sensors on an actuatable prosthetic or orthotic device. Data received from the sensors is processed and is used to determine the current state of locomotion for the prosthetic device. A processing unit, using at least a portion of the data received from the sensors, then predicts movement of the prosthetic or orthotic device. In one embodiment, a prosthetic ankle is provided that mimics the movement of a healthy ankle. The one or more sensors may comprise, for example, gyroscopes and/or accelerometers. In another embodiment of the invention, adjustments are not made to the actuatable prosthetic or orthotic device unless the locomotion type of the user is determined by the processing unit to have a security factor above a predetermined threshold value.


In another embodiment, a method is provided for identifying motion of an orthotic or prosthetic device. The method comprises receiving data from one or more sensors placed on an orthotic or prosthetic device while the device is moving. A waveform is generated from the data received by the sensors. A specific motion for the orthotic or prosthetic device is identified by correlating the waveform with known waveforms for particular types of motion. For example, known waveforms may be inputted by a user or downloaded from an external device or system. The waveforms may also be stored in a memory on the prosthetic or orthotic device.


In another embodiment, a method is provided for actuating an ankle-assisting device. The device is actuated by providing a computer control to provide relative motion between a first and a second portion of the device. In one embodiment, the device is an orthosis. In another embodiment, the device is a prosthesis. In one embodiment, the computer control predicts future motion of the device. In another embodiment, the computer control receives input from at least one sensor module that receives information regarding environmental variables and/or the movement or position of the prosthetic or orthotic device. In another embodiment, the computer control receives input from at least one sensor module that receives information regarding the movement or position of a healthy limb.


One embodiment of the invention includes a device configured to be attached to a limb. The device comprises a first portion and a second portion, the first and second portions being moveable relative to each other to mimic a natural human joint. The device also comprises an actuator coupling the first and second portions together and configured to adjust the angle between the first and second portions. The actuator comprises a rotor operatively coupled to a stator and a motor configured to rotate the rotor, wherein the actuator is selectively locked during a desired phase in a gait cycle.


Another embodiment of the invention includes a device configured to be attached to a limb. The device comprises a first portion and a second portion, the first and second portions being moveable relative to each other to mimic a natural human joint. The device also comprises an actuator coupling the first and second portions together and configured to adjust the angle between the first and second portions. The actuator comprises a rotor operatively coupled to a stator and a motor configured to rotate the rotor. The device also comprises means for minimizing friction against the rotor.


Still another embodiment of the invention includes a device configured to be attached to a limb. The device comprises a first portion and a second portion, the first and second portions being moveable relative to each other to mimic a natural human joint. The device also comprises an actuator coupling the first and second portions together and configured to adjust the angle between the first and second portions. The actuator comprises a rotor operatively coupled to a stator and a motor configured to rotate the rotor, wherein the motor is disposed about the rotor.


Another embodiment of the invention includes a prosthetic device configured to be attached to a limb. The device comprises a prosthetic foot and a pivot assembly attached to the prosthetic foot, the pivot assembly mimicking a natural human ankle joint. The device also comprises a support member having an upper end and a lower end, wherein the lower end of the support member is operatively coupled to the pivot assembly. The prosthetic device also comprises an actuator operatively coupled to the prosthetic foot and the support member, the actuator configured to adjust an angle between the support member and the prosthetic foot about the pivot assembly, wherein the actuator is selectively locked during a desired phase of a gait cycle of the prosthetic foot.


In still another embodiment, an actuator is provided, comprising an elongate member extending about a major axis of the actuator. The actuator also comprises a rotor rotatably coupled to the elongate member and a stator operatively coupled to the rotor. At least one magnet is disposed between the rotor and the stator, the magnet configured to apply a magnetic force between the rotor and the stator. The actuator also comprises a motor configured to rotate the rotor relative to the elongate member, wherein the at least one magnet is configured to minimize friction between the rotor and the stator.


In another embodiment of the invention, an actuator is provided, comprising an elongate member extending about a major axis of the actuator. The actuator also comprises a rotor rotatably coupled to the elongate member and a stator operatively coupled to the rotor. A ball bearing is disposed between the rotor and the stator. The actuator also comprises a motor configured to rotate the rotor relative to the elongate member, wherein the ball bearing is configured to minimize friction between the rotor and the stator.


In yet another embodiment of the invention, an actuator is provided, comprising an elongate member extending about a major axis of the actuator. A rotor is rotatably coupled to the elongate member and a stator operatively coupled to the rotor. The actuator also comprises a motor disposed about the rotor and configured to rotate the rotor relative to the elongate member.


In another embodiment, an actuator is provided, comprising an elongate member extending about a major axis of the actuator. The actuator also comprises a rotor rotatably coupled to the elongate member, a retainer disposed about the rotor, and a stator operatively coupled to the rotor. A motor is configured to rotate the rotor relative to the elongate member, wherein the rotor and the retainer selectively engage to inhibit rotation of the rotor.


In another embodiment, a method of operating a prosthetic device attached to a limb is provided. The method comprises providing a prosthetic device configured to attach to a limb, the device mimicking a natural human joint and having a first portion and a second portion, the portions moveable relative to each other about the joint. The method also comprises providing an actuator coupled to the first portion and the second portion, adjusting an angle between the first portion and the second portion and selectively locking the actuator during a desired phase of a gait cycle.


In still another embodiment, a method of operating a prosthetic device attached to a limb is provided. The method comprises providing a prosthetic device configured to attach to a limb, the device mimicking a natural human joint and having a first portion and a second portion, the portions moveable relative to each other about the joint. The method also comprises providing an actuator coupled to the first portion and the second portion, adjusting an angle between the first portion and the second portion and actively minimizing friction against a rotor of the actuator during a desired phase in a gait cycle.


In another embodiment, a system is disclosed for sensing a rotational movement of a lower-limb prosthetic device. The system includes a prosthetic foot and an attachment member having an upper end and a lower end. The system also includes a pivot assembly rotatably coupling the lower end of the attachment member to the prosthetic foot to allow for rotation of the prosthetic foot about a pivot axis extending through the pivot assembly, wherein the pivot assembly is configured to substantially mimic a natural ankle joint The system further includes a sensor assembly coupled to the pivot assembly and configured to detect the rotation of the prosthetic foot about the pivot axis, wherein at least a portion of the sensor assembly is configured to rotate about the pivot axis and is securely positioned along the pivot axis to substantially eliminate other movement.


In another embodiment, a system is disclosed for sensing a rotational movement of a device associated with a limb. The system includes a foot unit and an attachment member having an upper end and a lower end. The system also includes a pivot assembly rotatably coupling the lower end of the attachment member to the foot unit to allow for rotation of the foot unit about an axis extending through the pivot assembly, wherein the pivot assembly is configured to substantially mimic a natural ankle joint. The system further includes a sensor assembly coupled to the pivot assembly and configured to detect the rotation of the foot unit about the axis and to substantially neglect axial and radial movement of the foot unit with respect to the axis.


In another embodiment, a system is disclosed for sensing a rotational movement of a device associated with a lower limb. The system includes a foot means for contacting a ground surface and a means for attaching the foot means to a patient. The system also includes a means for pivotably coupling the foot means to a lower end of the means for attaching to allow for rotation of the foot means about an axis extending through the means for pivotably coupling, wherein the means for pivotably coupling substantially mimics an ankle joint. The system further includes a means for sensing coupled to the means for pivotably coupling, the means for sensing further configured to detect the rotation of the foot means about the axis and to substantially neglect axial and radial movement of the foot means with respect to the axis.


In another embodiment, a prosthetic system is disclosed that mimics the movement of a natural ankle in a relaxed position. The prosthetic system comprises a prosthetic ankle joint comprising a foot unit and an upper member moveably attached to the foot unit to simulate a natural human ankle joint. The system further comprises a controller configured to automatically adjust the state of the prosthetic ankle joint, wherein the controller is configured to automatically adjust the prosthetic ankle joint to a relaxed state upon receiving data indicative of a user's movement to a relaxed position.


In another embodiment, a prosthetic system is disclosed for mimicking the natural movement of an ankle in a relaxed position. The prosthetic system comprises a prosthetic foot. The prosthetic system further comprises a pivot assembly attached to a first location on the prosthetic foot, wherein the first location is near a natural ankle location of the prosthetic foot. The prosthetic system further comprises a lower limb member extending in a tibial direction, the lower limb member having an upper end and a lower end, wherein the lower end of the lower limb member is operatively coupled to the pivot assembly. The prosthetic system further comprises an actuator coupled to the prosthetic foot and to the lower limb member, wherein the actuator is configured to adjust an angle between the lower limb member and the prosthetic foot about the pivot assembly. The prosthetic system further comprises at least one sensor configured to detect a position of a user of the prosthetic system. The prosthetic system further comprises a controller configured to operate the actuator. With regards to the prosthetic system described, the at least one sensor is configured to transmit data to the controller indicative of when the user is in a relaxed position, said relaxed position determined by the user positioning the prosthetic system within a range of defined angles relative to a ground surface for a defined amount of time and the prosthetic system having an acceleration less than a maximum threshold value, and wherein the controller is configured to operate the actuator to cause an angle between the prosthetic foot and the lower limb assembly to increase about the pivot assembly such that the prosthetic foot becomes more plantarflexed relative to the lower limb assembly.


In another embodiment, a method is disclosed for adjusting a prosthetic ankle device. The method comprises monitoring with at least one sensor the movement of a user of a prosthetic ankle device. The method further comprises generating data indicative of the movement. The method further comprises processing the data with a processing module to determine whether the user is in a relaxed position. The method further comprises adjusting the prosthetic ankle device based on whether the user is in a relaxed position, wherein adjusting the prosthetic ankle device comprises automatically adjusting a configurable element of the prosthetic ankle device.


In another embodiment, a method is disclosed for adjusting a prosthetic ankle device comprising a prosthetic foot and a limb member moveably connected at a location about a natural human ankle joint. The method comprises measuring with at least one sensor the angle of the prosthetic ankle device relative to a ground surface and an acceleration of the device. The method further comprises determining whether the angle of the prosthetic ankle device relative to the ground surface falls within a defined range of angles. The method further comprises determining whether the acceleration of the device is above or below a threshold acceleration. The method further comprises adjusting an angle between the prosthetic foot and the limb member to a plantarflexed or dorsiflexed configuration upon determining that the angle of the ankle device relative to the ground surface falls within the defined range of angles and upon determining that the acceleration of the device is above or below the threshold acceleration.


In another embodiment, a method is disclosed for operating a prosthetic ankle worn by a user. The method comprises providing a prosthetic ankle comprising a foot unit and a lower limb member, the foot unit and lower limb member configured to rotate at about a location of a natural human ankle. The method further comprises detecting an incline or decline of a surface while the user moves with the prosthetic ankle. The method further comprises adjusting an angle between the foot unit and the lower limb member based on the detected incline or decline.


In another embodiment, a method is disclosed for operating a prosthetic ankle worn by a user. The method comprises providing a prosthetic ankle comprising a foot unit and a lower limb member, the foot unit and the lower limb member configured to rotate at about a location of a natural human ankle. The method further comprises measuring a terrain variable upon which the user moves with the prosthetic ankle. The method further comprises adjusting an angle between the foot unit and the lower limb member based on the measured terrain variable.


In another embodiment, a method is disclosed for operating a prosthetic ankle worn by a user. The method comprises providing a prosthetic ankle comprising a foot unit and a lower limb member, the foot unit and the lower limb member configured to rotate at about a location of a natural human ankle. The method further comprises measuring a surface angle of a surface upon which the user moves with the prosthetic ankle. The method further comprises calculating a desired angle between the foot unit and the lower limb member for moving upon the surface, wherein the calculation is based at least in part on the measured surface angle. The method further comprises adjusting an angle between the foot unit and the lower limb member to the desired angle.


For purposes of summarizing the invention, certain aspects, advantages and novel features of the invention have been described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment of the invention. Thus, the invention may be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of a lower limb prosthesis having an ankle-motion-controlled foot unit according to one embodiment of the invention.



FIG. 2 is a perspective view of the lower limb prosthesis of FIG. 1, wherein a cover is removed to show inner components of the prosthesis.



FIG. 3 is a side view of the lower limb prosthesis of FIG. 2.



FIG. 4 is a rear view of the lower limb prosthesis of FIG. 2.



FIG. 5 is a side view of the lower limb prosthesis of FIG. 1 with the cover shown partially removed, wherein the ankle-motion-controlled foot is adjusted to accommodate an incline.



FIG. 6 is a side view of a lower limb prosthesis of FIG. 5, wherein the ankle-motion-controlled foot is adjusted to accommodate a decline.



FIG. 7 is a schematic drawing indicating the correlation between an ankle pivot point on an exemplifying embodiment of a prosthetic foot unit with the natural ankle joint of a human foot.



FIG. 8 is a graph depicting the range of ankle motion of an exemplifying embodiment of a prosthetic or orthotic system during one full stride on a level surface.



FIG. 9 is a block diagram of an exemplifying embodiment of a control system architecture of a prosthetic or orthotic system having an ankle-motion-controlled foot.



FIG. 10 is a table illustrating control signals usable to adjust the ankle angle of a prosthetic or orthotic system according to one embodiment of the invention.



FIG. 11 is a graph depicting an exemplifying embodiment of the relationship between the control of a prosthetic or orthotic system and the motion of a corresponding sound limb.



FIG. 12A is a perspective view of another embodiment of a lower limb prosthesis.



FIG. 12B is a side view of the lower limb prosthesis of FIG. 12A.



FIG. 12C is a cross-sectional view of the lower limb prosthesis of FIG. 12B along plane M-M.



FIG. 13 is a perspective view of one embodiment of an actuator which may be used with the lower limb prosthesis of FIG. 12A.



FIG. 14 is a side-view of the actuator of FIG. 13.



FIG. 15 is a rear view of the actuator of FIG. 13.



FIG. 16 is a top view of the actuator of FIG. 13.



FIG. 17 is a cross-sectional side view of the actuator of FIG. 13.



FIG. 18 is an exploded view of the actuator of FIG. 13.



FIG. 19 is a flow chart illustrating different phases of motion of the prosthesis shown in FIG. 12A.



FIG. 20 is a disassembled view of a lower limb prosthesis having an ankle-motion-controlled foot unit according to another embodiment of the invention.



FIG. 21 is a disassembled view of a sensor assembly usable with the lower limb prosthesis of FIG. 20.



FIG. 22 is a graph illustrating preferred ankle response angles for respective degrees of incline/decline.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Some preferred embodiments of the invention described herein relate generally to prosthetic and orthotic systems and, in particular, to prosthetic and orthotic devices having an ankle-motion-controlled foot. While the description sets forth various embodiment-specific details, it will be appreciated that the description is illustrative only and should not be construed in any way as limiting the invention. Furthermore, various applications of the invention, and modifications thereto, which may occur to those who are skilled in the art, are also encompassed by the general concepts described herein.


The features of the system and method will now be described with reference to the drawings summarized above. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements. The drawings, associated descriptions, and specific implementation are provided to illustrate embodiments of the invention and not to limit the scope of the invention.


The terms “prosthetic” and “prosthesis” as used herein are broad terms and are used in their ordinary sense and refer to, without limitation, any system, device or apparatus usable as an artificial substitute or support for a body part.


The term “orthotic” and “orthosis” as used herein are broad terms and are used in their ordinary sense and refer to, without limitation, any system, device or apparatus usable to support, align, prevent, protect, correct deformities of, immobilize, or improve the function of parts of the body, such as joints and/or limbs.


The term “ankle device” as used herein is a broad term and is used in its ordinary sense and relates to any prosthetic, orthotic or ankle-assisting device.


The term “transtibial” as used herein is a broad term and is used in its ordinary sense and relates to without limitation any plane, direction, location, or cross-section that is located at or below a knee joint of a body, including artificial knee joints.


The term “transfemoral” as used herein is a broad term and is used in its ordinary sense and relates to without limitation any plane, direction, location, or cross-section that is located at or above a knee joint of a body, including artificial knee joints.


The term “sagittal” as used herein is a broad term and is used in its ordinary sense and relates to any description, location, or direction relating to, situated in, or being in or near the median plane (i.e., the plane divides the body lengthwise into right and left halves) of the body or any plane parallel or approximately parallel thereto. A “sagittal plane” may also refer to any vertical anterior to posterior plane that passes through the body parallel or approximately parallel to the median plane and that divides the body into equal or unequal right and left sections.


The term “coronal” as used herein is a broad term and is used in its ordinary sense and relates to any description, location, or direction relating to, situated in, or being in or near the plane that passes through the long axis of the body. A “coronal plane” may also refer to any plane that passes vertically or approximately vertically through the body and is perpendicular or approximately perpendicular to the median plane and that divides the body into anterior and posterior sections.



FIG. 1 illustrates one embodiment of a lower limb prosthesis 100 having an ankle-motion-controlled foot with an attachment member. The prosthesis 100 comprises an attachment member, in the form of a lower limb member 102, operatively coupled to a foot unit 104. As used herein, the term “attachment member” is a broad term and is used in its ordinary sense and in a prosthetic foot embodiment relates to, without limitation, any member that attaches either directly or indirectly to the foot unit 104 and is moveable in relation thereto, for example by a pivoting motion, and is used to attach the prosthesis 100 to a stump or intermediate prosthesis. As illustrated, the attachment member may take the form of a lower limb member in an ankle-prosthesis embodiment. In other embodiments, for example an orthotic embodiment, the attachment member may be used to attach to and support a body part, such as with a brace, which also is moveably connected to a second member, such as a foot unit, which would also attach to and support a body part, such as the foot. In one embodiment, the lower limb member 102 is a generally elongated member with a main longitudinal axis that extends in approximately a tibial direction, that is, a direction that extends generally along the axis of a natural tibia bone. For example, FIG. 1 depicts the lower limb member 102 as being a generally vertical orientation.


In another embodiment, the lower limb member 102 may comprise multiple sections. For example, the lower limb member 102 may comprise two elongated sections that extend approximately parallel in a tibial direction and that are connected together. In another embodiment, the lower limb member 102 comprises a two-sided chamber having two substantially symmetrical parts to form a partially enclosed housing. In another embodiment, the lower limb member 102 may comprise a hollow member, such as a tube-like structure. In other embodiments, the lower limb member 102 may comprise elongated flat portions or rounded portions. In yet other embodiments, the structure of the lower limb member 102 is not elongated. For example, the lower limb member 102 may comprise a generally circular, cylindrical, half-circular, dome-shaped, oval or rectangular structure. One example of a possible lower limb member is the ankle module and the structures described in U.S. patent application Ser. No. 10/742,455, filed Dec. 18, 2003, published as U.S. Pub. No. 2005/0137717 on Jun. 23, 2005, and entitled “PROSTHETIC FOOT WITH ROCKER MEMBER,” the entirety of which is hereby incorporated herein by reference and is to be considered as part of this specification.


In one embodiment, the lower limb member 102 is generally formed of a machine metal, such as aluminum, or a carbon fiber material. In other embodiments of the invention, the lower limb member 102 may comprise other materials that are suitable for prosthetic devices. In one embodiment, the lower limb member 102 advantageously has a height between approximately 12 and 15 centimeters. In other embodiments of the invention, the lower limb member 102 may have a height less than 12 centimeters or height greater than 15 centimeters depending on the size of the user and/or the intended use of the prosthesis 100. For example, the lower limb member 102 may have a height of approximately 20 centimeters.


In one embodiment, the prosthesis 100 is configured such that the main longitudinal axis of the lower limb member 102 is substantially perpendicular to a lower surface of the foot unit 104 when the prosthesis 100 is in a resting position. In another embodiment, the lower limb member 102 may be substantially perpendicular to a level ground surface when the foot unit 104 rests on the ground. Such a configuration advantageously provides a user with increased support and/or stability.


As depicted in FIG. 1, the lower limb member 102 further comprises a cover 106. The cover 106 houses and/or protects the inner components of the lower limb member 102. In another embodiment, the cover 106 may be rounded or may be shaped in the form of a natural human leg.


The lower limb member 102 further comprises an attachment portion 108 to facilitate coupling of the lower limb member 102. For example, as depicted in FIG. 1, the attachment portion 108 of the lower limb member 102 couples the prosthesis 100 to a pylori 110. In other embodiments of the invention, the attachment portion 108 may be configured to couple the prosthesis 100 to a stump of an amputee or to another prosthetic device. FIG. 1 also depicts a control wire 112 usable to provide power to and/or communicate control signals to the prosthesis 100.


The foot unit 104 may comprise various types of prosthetic or orthotic feet. As illustrated in FIG. 1, the foot unit 104 incorporates a design described in Applicant's co-pending U.S. patent application Ser. No. 10/642,125, entitled “LOW PROFILE PROSTHETIC FOOT,” filed Aug. 15, 2003, and published as U.S. Pub. No. 2005/0038524 on Feb. 17, 2005, the entirety of which is hereby incorporated by reference and is to be considered as part of this specification. For example, the foot unit 104 may comprise a standard LP VARI-FLEX® unit available from Össur.


In one embodiment, the foot unit 104 is configured to exert a proportional response to weight or impact levels on the foot unit 104. In addition, the foot unit 104 may comprise shock absorption for comfortable loading of the heel and/or for returning expended energy. The foot unit 104 may comprise a full-length toe lever with enhanced flexibility so as to provide a stride length for the prosthetic limb that mimics the stride length of the healthy limb. In addition, as depicted in FIG. 1, the foot unit 104 may comprise a split-toe configuration, which facilitates movement on uneven terrain. The foot unit 104 may also include a cosmesis or a foot cover such as, for example, a standard Flex-Foot cover available from Össur.



FIG. 2 depicts the prosthesis 100 with the cover 106 removed. As shown, a lower end of the lower limb member 102 is coupled to the foot unit 104 at a pivot assembly 114. As illustrated, the lower limb member 102 is coupled to an ankle plate 103 of the foot unit 104, which extends generally rearward and upward from a toe portion of the foot unit 104. The pivot assembly 114 allows for angular movement of the foot unit 104 with respect to the lower limb member 102. For example, in one embodiment, the pivot assembly 114 advantageously comprises at least one pivot pin. In other embodiments, the pivot assembly 114 comprises a hinge, a multi-axial configuration, a polycentric configuration, combinations of the same or the like. Preferably, the pivot assembly 114 is located on a portion of the foot unit 104 that is near a natural ankle location of the foot unit 104. In other embodiments of the invention, the pivot assembly 114 may be bolted or otherwise releasably connected to the foot unit 104.



FIG. 2 further depicts the prosthesis 100 having an actuator 116. In one embodiment, the actuator 116 advantageously provides the prosthesis 100 with the necessary energy to execute angular displacements synchronized with the amputee's locomotion. For example, the actuator 116 may cause the foot unit 104 to move similar to a natural human foot. In one embodiment, the lower end of the actuator 116 is coupled to the foot unit 104 at a first attachment point 118. As illustrated, the foot attachment point 118 is advantageously located on the upper surface of the foot unit 104 on a posterior portion thereof. The upper end of the actuator 116 is coupled to the lower limb member 102 at a second attachment point 120.


In one embodiment, the linear motion (or extension and contraction) of the actuator 116 controls, or actively adjusts, the angle between the foot unit 104 and the lower limb member 102. FIG. 2 depicts the actuator 116 comprising a double-screw motor, wherein the motor pushes or pulls a posterior portion of the foot unit 104 with respect to the lower limb member 102. In other embodiments, the actuator 116 comprises other mechanisms capable of actively adjusting an angle, or providing for motion between, multiple members. For example, the actuator 116 may comprise a single-screw motor, a piston cylinder-type structure, a servomotor, a stepper motor, a rotary motor, a spring, a fluid actuator, or the like. In yet other embodiments, the actuator 116 may actively adjust in only one direction, the angle between the lower limb member 102 and the foot unit 104. In such an embodiment, the weight of the user may also be used in controlling the angle caused by and/or the movement of the actuator 116.



FIG. 2 illustrates the actuator 116 in a posterior configuration, wherein the actuator 116 is located behind the lower limb member 102. In other embodiments, the actuator 116 may be used in an anterior configuration, wherein the actuator 116 is located in front of the lower limb member 102. In another embodiment of the invention, the actuator 116 comprises an auto adjusting ankle structure and incorporates a design, such as described in U.S. Pat. No. 5,957,981, the entirety of which is hereby incorporated by reference and is to be considered as a part of this specification. The particular configuration or structure may be selected to most closely imitate the movement and location of a natural human ankle joint and to facilitate insertion of the prosthesis 100 into an outer cosmesis.


Furthermore, the actuator 116 is advantageously configured to operate so as to not to emit loud noises, such as intermittent noises, perceptible by the user and/or others. The actuator 116 may also be configured to not operate or adjust if the prosthesis 100 experiences torque, such as in the sagittal plane, that exceeds a certain level. For example, if the torque level exceeds four Newton meters (Nm), the actuator 116 may cease to operate or may issue an alarm.


The actuator 116 may also be substantially enclosed within the cover 106 as shown in FIG. 1 such that the portions of the actuator 116 are not visible and/or exposed to the environment. In another embodiment, the actuator may be at least partially enclosed by the lower limb member 102.



FIG. 2 further depicts control circuitry 122 usable to control the operation of the actuator 116 and/or the foot unit 104. In one embodiment, the control circuitry 122 comprises at least one printed circuit board (PCB). The PCB may further comprise a microprocessor. Software may also reside on the PCB so as to perform signal processing and/or control the movement of the prosthesis 100.


In one embodiment, the prosthesis 100 includes a battery (not shown) that powers the control circuitry 122 and/or the actuator 116. In one embodiment, the battery comprises a rechargeable lithium ion battery that preferably has a power cycle of at least 12 to 16 hours. In yet other embodiments, the power cycle of the battery may be less than 12 hours or may be more than 16 hours. In other embodiments of the invention, the battery comprises a lithium polymer battery, fuel cell technology, or other types of batteries or technology usable to provide power to the prosthesis 100. In yet other embodiments, the battery is removably attached to a rear surface of the lower limb member 102, to other portions of the prosthesis 100, or is located remote the prosthesis 100. In further embodiments, the prosthesis 100 may be connected to an external power source, such as through a wall adapter or car adapter, to recharge the battery.


In one embodiment, the prosthesis 100 is configured to lock in a neutral position, such as the lower limb member 102 being aligned generally vertical relative to a level ground surface when the foot unit 104 is resting on the level ground surface, when the battery is out of power or enters a low power stage. Such locking provides for operational safety, reliability, and/or stability for a user. The prosthesis 100 may also provide a battery status display that alerts the user as to the status (i.e., charge) of the battery. In another embodiment, the prosthesis 100 locks into a substantially neutral position when the motion control functions of the prosthesis 100 are turned off or disabled by a user.


As discussed above, a cosmesis material or other dressings may be used with the prosthesis 100 so as to give the prosthesis 100 a more natural look or shape. In addition, the cosmesis, dressings, or other filler material may be used to prevent contaminants, such as dirt or water, from contacting the components of the prosthesis 100.



FIG. 3 depicts a side view of the prosthesis 100 according to one embodiment of the invention. As depicted in FIG. 3, the actuator 116 further comprises a main housing 124, a lower extendable portion 126, and an upper extendable portion 128. The lower extendable portion 126 couples the main housing 124 of the actuator 116 to the foot unit 104 at the first attachment point 118. The upper extendable portion 128 couples the main housing 124 of the actuator 116 to the lower limb member 102 at the second attachment point 120. During operation and active adjustment of the prosthesis 100, the lower extendable portion 126 and/or the upper extendable portion 128 move into and/or out of the main housing 124 of the actuator 116 to adjust an angle between the foot unit 104 and the lower limb member 102.


For example, to increase an angle between the foot unit 104 and the lower limb member 102, the actuator 116 causes the lower extendable portion 126 and/or the upper extendable portion 128 to contract or withdraw into the main housing 124. For example, at least one of the extendable portions 126, 128 may have a threaded surface such that rotation in one direction (e.g., clockwise) causes the extendable portion to withdraw into the main housing 124 of the actuator. In other embodiments, at least one of the extendable portions 126, 128 comprises multiple telescoping pieces such that, upon contraction, one of the multiple pieces of extendable portion contracts into another of the multiple pieces without withdrawing into the main housing 124. Likewise, to decrease an angle between the foot unit 104 and the lower limb member 102, the lower extendable portion 126 and/or the upper extendable portion 128 may extend from the main housing 124.


In embodiments of the invention having an anterior configuration for the actuator 116, extension of the lower extendable portion 126 and/or the upper extendable portion 128 causes an increase in the angle between the lower limb member 102 and the foot unit 104. Likewise, a contraction of the lower extendable portion 126 and/or the upper extendable portion 128 causes a decrease in the angle between the foot unit 104 and the lower limb member 102.



FIG. 4 illustrates a rear view of the prosthesis 100 depicted in FIGS. 1-3. In other embodiments of the invention, the cover 106 extends around the posterior portion of the prosthesis 100 to house at least a portion of the actuator 116 such that portions of the actuator 116 are not visible and/or not exposed to the environment.



FIGS. 5 and 6 illustrate one embodiment of the prosthesis 100 as it adjusts to inclines and declines. With reference to FIG. 5, the prosthesis 100 is depicted as adjusting to an incline. In this embodiment, the actuator 116 extends so as to decrease an angle θ between the lower limb member 102 and the foot unit 104 (or “dorsiflexion”). With respect to dorsiflexion, in one embodiment, the angular range of motion of the prosthesis 100 is from about 0 to 10 degrees from the neutral position. Other embodiments may also facilitate exaggerated dorsiflexion during swing phase.



FIG. 6 illustrates the prosthesis 100 as it adjusts to a decline. The actuator 116 extends so as to increase the angle θ between the lower limb member 102 and the foot unit 104 (or “plantarflexion”). With respect to plantarflexion, in one embodiment, the angular range of motion of the prosthesis 100 is from about 0 to 20 degrees from the neutral position. Such plantarflexion mimics natural ankle movement and provides for greater stability to an amputee or a user. In one embodiment, the total range of motion about the ankle pivot axis of the prosthesis 100, including both plantarflexion and dorsiflexion, is approximately 30 degrees or more.


In addition to operating on inclines and declines, the motion-controlled foot of the prosthesis 100 advantageously accommodates different terrain, operates while traveling up and down stairs, and facilitates level ground walking. In addition, the prosthesis 100 may provide for automatic heel height adjustability. Heel height may be measured, in one embodiment, from an ankle portion of the lower limb member 102 to a ground surface when the foot unit 104 is generally flat to the ground. For example, a user may adjust to various heel heights, such as through pressing one or more buttons, such that the prosthesis 100 automatically aligns itself to the appropriate heel height. In one embodiment, the prosthesis 100 includes a plurality of predetermined heel heights. In yet other embodiments, the prosthesis 100 may automatically adjust the heel height without the need for user input.



FIGS. 5 and 6 further illustrate one embodiment of the attachment portion 108. The attachment portion 108 provides alignment between the natural limb of the amputee and the prosthesis 100 and may be configured so as to decrease pressure peaks and shear forces. For example, the attachment portion 108 may be configured to attach to another prosthesis, to the stump of the amputee, or to another component. In one embodiment, the attachment portion 108 comprises a socket connector. The socket connector may be configured to receive a 32 mm-thread component, a male pyramid type coupler, or other components. In other embodiments, the attachment portion 108 may also comprise, or be configured to receive, a female pyramid adapter.


As depicted in FIGS. 5 and 6, the pivot assembly 114 is positioned to mimic a normal human ankle axis. FIG. 7 further illustrates a schematic drawing indicating the correlation between an ankle pivot point on a prosthetic foot unit 204 with the natural human ankle joint of a foot. In particular, the prosthetic foot unit 204 comprises a pivot assembly 214 that corresponds to an ankle joint 240 of a human foot 242. For example, in one embodiment of the invention, the pivot assembly 114 is located near the mechanical ankle center of rotation of the prosthesis 100.



FIG. 8 illustrates a graph depicting the possible range of ankle motion of an embodiment of the prosthesis 100 during one full stride on a level surface. As shown, the x-axis of the graph represents various points during one full stride of a user (i.e., 0 to 100 percent). The y-axis represents the ankle angle (Δ) of the prosthesis 100 relative to the ankle angle when the prosthesis is in a neutral position. During one full stride, the ankle angle (Δ) varies from approximately 20 degrees plantarflexion (i.e., neutral position angle+20 degrees) to approximately 10 degrees dorsiflexion (i.e., neutral position angle −10 degrees).


In embodiments as described above, no dampening is provided when adjusting the angular range of motion. In another embodiment of the invention, the prosthesis 100 is configured to provide dampening or passive, soft resistance to changes in the angle between the lower limb member 102 and the foot unit 104. An example of a system for controlling such dampening is disclosed in U.S. Pat. No. 6,443,993, which is hereby incorporated herein by reference and is to be considered as a part of this specification.


For example, when the user is in a standing position, the actuator 116 may provide for increased resistance, or dampening, so as to provide stability to the user. In one embodiment of the invention, dampening of the prosthesis 100 may be provided by hydraulic dampers. In other embodiments of the invention, other components or devices that are known in the art may be used to provide dampening for the prosthesis 100. In addition, in one embodiment of the invention, the dampers may be dynamically controlled, such as through an electronic control system, which is discussed in more detail below. In yet other embodiments, the dampers may be controlled through mechanical and/or fluid-type structures.


It is also recognized that, although the above description has been directed generally to prosthetic systems and devices, the description may also apply to an embodiment of the invention having an orthotic system or device. For example, in one embodiment of the invention, an orthotic system may comprise at least one actuator that actively controls the angle of an orthosis that is used with an injured or debilitated ankle. In addition, the orthotic system may, in addition to the electronic control of the orthotic system, provide for the user's control or natural movement of the injured ankle or leg.


In addition, the above-described systems may be implemented in prosthetic or orthotic systems other than transtibial, or below-the-knee, systems. For example, in one embodiment of the invention, the prosthetic or orthotic system may be used in a transfemoral, or above-the-knee, system, such as is disclosed in U.S. Provisional Application No. 60/569,512, filed May 7, 2004, and entitled “MAGNETORHEOLOGICALLY ACTUATED PROSTHETIC KNEE;” U.S. Provisional Application No. 60/624,986, filed Nov. 3, 2004, and entitled “MAGNETORHEOLOGICALLY ACTUATED PROSTHETIC KNEE;” and U.S. patent application Ser. No. 11/123,870, filed May 6, 2005, published as U.S. Pub. No. 2006/0136072 on Jun. 22, 2006, and entitled “MAGNETORHEOLOGICALLY ACTUATED PROSTHETIC KNEE;” each of which is hereby incorporated herein by reference in its entirety and is to be considered as part of this specification. For example, the prosthetic or orthotic system may include both a prosthetic or orthotic ankle and/or a prosthetic or orthotic knee.



FIG. 9 illustrates a block diagram of one embodiment of a system architecture of a control system 300 for an ankle-motion-controlled foot. In one embodiment of the invention, the control system 300 is usable by the lower limb prosthesis 100 depicted in FIGS. 1-6. In other embodiments of the invention the control system 300 is usable by an orthotic system or a rehabilitation system having an ankle-motion-controlled foot, or other motion-controlled limb. In one embodiment, the control system 300 is based on a distributed processing system wherein the different functions performed by the prosthetic or orthotic system, such as sensing, data processing, and actuation, are performed or controlled by multiple processors that communicate with each other. With reference to FIG. 9, the control system 300 includes a sensor module 302, an ankle device 304 (such as, for example, the prosthesis 100 depicted in FIG. 1), a central processing unit (“CPU”) 305, a memory 306, an interface module 308, a control drive module 310, an actuator 316 and a power module 318.


In one embodiment, the control system 300 depicted in FIG. 9 processes data received from the sensing module 302 with the CPU 305. The CPU 305 communicates with the control drive module 310 to control the operation of the actuator 316 so as to mimic natural ankle movement by the ankle device 304. Furthermore, the control system 300 may predict how the ankle device 304 may need to be adjusted in order to accommodate movement by the user. The CPU 305 may also receive commands from a user and/or other device through the interface module 308. The power module 318 provides power to the other components of the control system 300. Each of these components is described in more detail below.


In one embodiment, the sensor module 302 is used to measure variables relating to the ankle device 304, such as the position and/or the movement of the ankle device 304 throughout a gait cycle. In such an embodiment the sensor module 320 is advantageously located on the ankle device 304. For example, the sensor module 302 may be located near a mechanical ankle center of rotation of the ankle device 304, such as the pivot assembly 114 of the prosthesis 100 depicted in FIG. 2. In another embodiment, the sensor module 302 may be located on the user's natural limb that is attached to, or associated with, the ankle device 304. In such an embodiment, the sensors are used to capture information relating to the movement of the natural limb on the user's ankle-device side to adjust the ankle device 304.


In one embodiment, the sensor module 302 advantageously includes a printed circuit board housing, multiple sensors, such as accelerometers, which each measures an acceleration of the ankle device 304 in a different axis. For example, the sensor module 302 may comprise three accelerometers that measure acceleration of the ankle device 304 in three substantially, mutually perpendicular axes. Sensors of the type suitable for the sensor module 302 are available from, for example, Dynastream Innovations, Inc. (Alberta, Canada).


In other embodiments, the sensor module 302 may include one or more other types of sensors in combination with, or in place of, accelerometers. For example, the sensor module 302 may include a gyroscope configured to measure the angular speed of body segments and/or the ankle device 304. In other embodiments, the sensor module 302 includes a plantar pressure sensor configured to measure, for example, the vertical plantar pressure of a specific underfoot area. In yet other embodiments, the sensor module 302 may include one or more of the following: kinematic sensors, single-axis gyroscopes, single- or multi-axis accelerometers, load sensors, flex sensors or myoelectric sensors that may be configured to capture data from the user's natural limb. U.S. Pat. No. 5,955,667, U.S. Pat. No. 6,301,964, and U.S. Pat. No. 6,513,381, also illustrate examples of sensors that may be used with embodiments of the invention, which patents are herein incorporated by reference in their entireties and are to be considered as part of this specification.


Furthermore, the sensor module 302 may be used to capture information relating to, for example, one or more of the following: the position of the ankle device 304 with respect to the ground; the inclination angle of the ankle device 304; the direction of gravity with respect to the position of the ankle device 304; information that relates to a stride of the user, such as when the ankle device 304 contacts the ground (e.g., “heel strike”), is in mid-stride, or leaves the ground (e.g., “toe-off”), the distance from the ground of the prosthesis 100 at the peak of the swing phase (i.e., the maximum height during the swing phase); the timing of the peak of the swing phase; and the like.


In yet other embodiments, the sensor module 302 is configured to detect gait patterns and/or events. For example, the sensor module 302 may determine whether the user is in a standing/stopped position, is walking on level ground, is ascending and/or descending stairs or sloped surfaces, or the like. In other embodiments, the sensor module 302 is configured to detect or measure the heel height of the ankle device 304 and/or determine a static shank angle in order to detect when the user is in a sitting position.


As depicted in FIG. 9, in one embodiment of the invention, the sensor module 302 is further configured to measure environmental or terrain variables including one or more of the following: the characteristics of the ground surface, the angle of the ground surface, the air temperature and wind resistance. In one embodiment, the measured temperature may be used to calibrate the gain and/or bias of other sensors.


In other embodiments, the sensor module 302 captures information about the movement and/or position of a user's natural limb, such as a healthy leg. In such an embodiment, it may be preferable that when operating on an incline or a decline, the first step of the user be taken with the healthy leg. Such would allow measurements taken from the natural movement of the healthy leg prior to adjusting the ankle device 304. In one embodiment of the invention, the control system 300 detects the gait of the user and adjusts the ankle device 304 accordingly while the ankle device 304 is in a swing phase of the first step. In other embodiments of the invention, there may be a latency period in which the control system 300 requires one or two strides before being able to accurately determine the gait of the user and to adjust the ankle device 304 appropriately.


In one embodiment of the invention, the sensor module 302 has a default sampling rate of 100 hertz (Hz). In other embodiments, the sampling rate may be higher or lower than 100 Hz or may be adjustable by a user, or may be adjusted automatically by software or parameter settings. In addition, the sensor module 302 may provide for synchronization between types of data being sensed or include time stamping. The sensors may also be configured so as to have an angular resolution of approximately 0.5 degrees, allowing for fine adjustments of the ankle device 304.


In one embodiment, the sensor module 302 is configured to power down into a “sleep” mode when sensing is not needed, such as for example, when the user is relaxing while in a sitting or reclining position. In such an embodiment, the sensor module 302 may awake from the sleep state upon movement of the sensor module 302 or upon input from the user. In one embodiment, the sensor module 302 consumes approximately 30 milliamps (mA) when in an “active” mode and approximately 0.1 mA when in a “sleep” mode.



FIG. 9 illustrates the sensor module 302 communicating with the CPU 305. In one embodiment, the sensor module 302 advantageously provides measurement data to the CPU 305 and/or to other components of the control system 300. In one embodiment, the sensor module 302 is coupled to a transmitter, such as, for example, a Bluetooth® transmitter, that transmits the measurements to the CPU 305. In other embodiments, other types of transmitters or wireless technology may be used, such as infrared, WiFi®, or radio frequency (RF) technology. In other embodiments, wired technologies may be used to communicate with the CPU 305.


In one embodiment, the sensor module 302 sends a data string to the CPU 305 that comprises various types of information. For example, the data string may comprise 160 bits and include the following information:


[TS; AccX; AccY; AccZ; GyroX, GyroY, GyroZ, DegX, DegY, FS, M];


wherein TS=Timestamp; AccX=linear acceleration of foot along X axis; AccY=linear acceleration of foot along Y axis; AccZ=linear acceleration of foot along Z axis; GyroX=angular acceleration of foot along X axis; GyroY=angular acceleration of foot along Y axis; GyroZ=angular acceleration of foot along Z axis; DegX=foot inclination angle in coronal plane; DegY=foot inclination angle in sagittal plane; FS=logic state of switches in the ankle device 304; and M=orientation of the sensors. In other embodiments of the invention, other lengths of data strings comprising more or less information may be used.


The CPU 305 advantageously processes data received from other components of the control system 300. In one embodiment of the invention, the CPU 305 processes information relating to the gait of the user, such as information received from the sensor module 302, determines locomotion type (i.e., gait pattern), and/or sends commands to the control drive module 310. For example, the data captured by the sensor module 302 may be used to generate a waveform that portrays information relating to the gait or movement of the user. Subsequent changes to the waveform may be identified by the CPU 305 to predict future movement of the user and to adjust the ankle device 304 accordingly. In one embodiment of the invention, the CPU 305 may detect gait patterns from as slow as 20 steps per minute to as high as 125 steps per minute. In other embodiments of the invention, the CPU 305 may detect gait patterns that are slower than 20 steps per minute or higher than 125 steps per minute.


In one embodiment of the invention, the CPU 305 processes data relating to state transitions according to the following table (TABLE 1). In particular, TABLE 1 shows possible state transitions usable with the control system 300. The first column of TABLE 1 lists possible initial states of the ankle device 304, and the first row lists possible second states of the ankle device 304. The body of TABLE 1 identifies the source of data used by the CPU 305 in controlling, or actively adjusting, the actuator 316 and the ankle device 304 during the transition from a first state to a second state; wherein “N” indicates that no additional data is needed for the state transition; “L” indicates that the CPU 305 uses transition logic to determine the adjustments to the ankle device 304 during the state transition; and “I” indicates the CPU receives data from an interface (e.g., interface module 308, external user interface, electronic interface or the like). Transition logic usable with embodiments of the invention may be developed by one with ordinary skill in the relevant art. Examples of transition logic used in similar systems and methods to embodiments of the present invention are disclosed in U.S. Provisional Application No. 60/572,996, entitled “CONTROL SYSTEM AND METHOD FOR A PROSTHETIC KNEE,” filed May 19, 2004, and U.S. application Ser. No. 11/077,177, entitled “CONTROL SYSTEM AND METHOD FOR A PROSTHETIC KNEE,” filed Mar. 9, 2005, and published as U.S. Pub. No. 2005/0283257 on Dec. 22, 2005, each of which is hereby incorporated herein by reference in its entirety and is to be considered as a part of this specification.


















TABLE 1





TRANSITIONS











FROM STATE



NEU-



RE-


TO STATE
OFF
HEEL_HEIGHT_CAL
SENSOR_CAL
TRAL
WALK
STAIRS_UP
STAIRS_DOWN
LAX
PANTS







OFF
N
I
I
I
N
N
N
I
I


HEEL_HEIGHT_CAL
L
N
N
L
N
N
N
N
N


SENSOR_CAL
L
N
N
L
N
N
N
N
N


NEUTRAL
I
I
I
N
L
L
L
L
I


WALK
I
N
N
L
N
L
L
N
N


STAIRS_UP
I
N
N
L
L
N
L
N
N


STAIRS_DOWN
I
N
N
L
L
L
N
N
N


RELAX
I
N
N
L
N
N
N
N
I


PANTS
I
N
N
I
N
N
N
N
N









In one embodiment, the above described states in TABLE 1 are predefined states of the ankle device 304. For example, the “OFF” state may indicate that the functions of the ankle device 304 and the actuator 316 are in an off or suspend mode. The “REEL_HEIGHT_CAL” state relates to the measuring of a heel height from a static sensor angle such as, for example, when the ankle device 304 is not in motion. The “SENSOR_CAL” state relates to surface angle calibration when the user is walking on a level surface. The “NEUTRAL” state relates to when the ankle device 304 is locked in a substantially fixed position. The “WALK” state relates to when the user is walking, such as on a level or sloped surface. “The “STAIRS_UP” and “STAIRS_DOWN” states relate to when the user is walking, respectively, up and down stairs. The “RELAX” state relates to when the user is in a relaxed position. For example, in one embodiment, the “RELAX” state relates to when a user is in a sitting position with the limb having the ankle device 304 crossed over the other limb. In such an embodiment, the control system 300 may cause the ankle device 304 to move into a maximum plantarflexion position to mimic, for example, the natural position and/or look of a healthy foot. The “PANTS” state relates to when a user is putting on pants, trousers, shorts or the like. In such a state, the control system 300 may, in one embodiment, cause the ankle device 304 to move into a maximum plantarflexion position to facilitate putting the clothing on over the ankle device 304.


In other embodiments of the invention, other states are usable with the ankle device 304 in place of, or in combination with, the states identified in TABLE 1. For example, states may be defined that correspond to lying down, cycling, climbing a ladder or the like. Furthermore, in controlling the state transitions, the CPU 305 and/or control system 300 may process or derive data from sources other than those listed in TABLE 1.


In other embodiments, the CPU 305 may perform a variety of other functions. For example, the CPU 305 may use information received from the sensor module 302 to detect stumbling by the user. The CPU 305 may function as a manager of communication between the components of the control system 300. For example, the CPU 305 may act as the master device for a communication bus between multiple components of the control system 300. As illustrated, in one embodiment, the CPU 305 communicates with the power module 318. For example, the CPU 305 may provide power distribution and/or conversion to the other components of the control system 300 and may also monitor battery power or battery life. In addition, the CPU 305 may function so as to temporarily suspend or decrease power to the control system 300 when a user is in a sitting or a standing position. Such control provides for energy conservation during periods of decreased use. The CPU 305 may also process error handling, such as when communication fails between components, an unrecognized signal or waveform is received from the sensor module 302, or when the feedback from the control drive module 310 or the ankle device 304 causes an error or appears corrupt.


In yet other embodiments of the invention, the CPU 305 uses or computes a security factor when analyzing information from the sensor module 302 and/or sending commands to the control drive module 310. For example, the security factor may include a range of values, wherein a higher value indicates a higher degree of certainty associated with a determined locomotion type of the user, and a lower security factor indicates a lower degree of certainty as to the locomotion type of the user. In one embodiment of the invention, adjustments are not made to the ankle device 304 unless the locomotion type of the user is recognized with a security factor above a predetermined threshold value.


In one embodiment, the CPU 305 includes modules that comprise logic embodied in hardware or firmware, or that comprise a collection of software instructions written in a programming language, such as, for example C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpretive language such as BASIC. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software instructions may be embedded in firmware, such as an EPROM or EEPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors.



FIG. 9 further depicts CPU 305 including a memory 306 for storing instructions and/or data. For example, the memory 306 may store one or more of the following types of data or instructions: an error log for the other components of the control system 300; information regarding gait patterns or curves; information regarding past activity of the user (e.g., number of steps); control parameters and set points; information regarding software debugging or upgrading; preprogrammed algorithms for basic movements of the prosthetic or orthotic system; calibration values and parameters relating to the sensor module 302 or other components; instructions downloaded from an external device; combinations of the same or the like.


The memory 306 may comprise any buffer, computing device, or system capable of storing computer instructions and/or data for access by another computing device or a computer processor. In one embodiment, the memory 306 is a cache that is part of the CPU 305. In other embodiments of the invention, the memory 306 is separate from the CPU 305. In other embodiments of the invention, the memory 306 comprises random access memory (RAM) or may comprise other integrated and accessible memory devices, such as, for example, read-only memory (ROM), programmable ROM (PROM), and electrically erasable programmable ROM (EEPROM). In another embodiment, the memory 306 comprises a removable memory, such as a memory card, a removable drive, or the like.


In one embodiment, the CPU 305 may also be configured to receive through the interface module 308 user- or activity-specific instructions from a user or from an external device. The CPU 305 may also receive updates to already existing instructions. Furthermore, the CPU 305 may communicate with a personal computer, a personal digital assistant, or the like so as to download or receive operating instructions. Activity-specific instructions may include, for example, data relating to cycling, driving, ascending or descending a ladder, adjustments from walking in snow or sand, or the like.


In one embodiment, the interface module 308 comprises an interface that the user accesses so as to control or manage portions or functions of the prosthetic or orthotic system. In one embodiment, the interface module 308 is a flexible keypad having multiple buttons and/or multiple light emitting diodes (LEDs) usable to receive information from and/or convey information to a user. For example, the LEDs may indicate the status of a battery or may convey a confirmation signal to a user. The interface module 308 may be advantageously located on the ankle device 304. Furthermore, the interface module 308 may comprise a USB connector usable for communication to an external computing device, such as a personal computer.


In a further embodiment, the interface module 308 comprises an on/off switch. In another embodiment, the interface module 308 may receive input regarding the user-controlled heel height or a forced relaxed mode of the prosthetic or orthotic system. In other embodiments, the user may adjust the type of response desired of the prosthesis or enable/disable particular functions of the ankle device 304. The input from the user may be entered directly via the interface module 308, such as through actuating a button, or user input may be received via a remote control.


The interface module 308 may comprise a touch screen, buttons, switches, a vibrator, an alarm, or other input-receiving or output structures or devices that allow a user to send instructions to or receive information from the control system 300. In another embodiment of the invention, the interface module 308 comprises an additional structure, such as a plug, for charging a battery powering the control system 300, such as at home or in a vehicle. In other embodiments of the invention, the interface module 308 may also communicate directly or indirectly with components of the control system 300 other than the CPU 305.


The control drive module 310 is used to translate high-level plans or instructions received from the CPU 305 into low-level control signals to be sent to the actuator 316. In one embodiment, the control drive module 310 comprises a printed circuit board that implements control algorithms and tasks related to the management of the actuator 316. In addition, the control drive module 310 may be used to implement a hardware abstraction layer that translates the decision processes of the CPU 305 to the actual hardware definition of the actuator 316. In another embodiment of the invention, the control drive module 310 may be used to provide feedback to the CPU 305 regarding the position or movement of the actuator 316 or ankle device 304. The control drive module 310 may also be used to adjust the actuator 316 to a new “neutral” setting upon detection by the CPU 305 that the user is traveling on an angled surface.


In one embodiment of the invention, the control drive module 310 is located within the ankle device 304. In other embodiments, the control drive module 310 may be located on the outside of the ankle device 304, such as on a socket, or remote to the ankle device 304.


The actuator 316 provides for the controlled movement of the ankle device 304. In one embodiment, the actuator 316 functions similarly to the actuator 116 described with respect to FIGS. 1-6, which actuator 116 controls the ankle motion of the prosthesis 100. In other embodiments of the invention, the actuator 316 may be configured to control the motion of an orthotic device, such as a brace or other type of support structure.


The ankle device 304 comprises any structural device that is used to mimic the motion of a joint, such as an ankle, and that is controlled, at least in part, by the actuator 316. In particular, the ankle device 304 may comprise a prosthetic device or an orthotic device.


The power module 318 includes one or more sources and/or connectors usable to power the control system 300. In one embodiment, the power module 318 is advantageously portable, and may include, for example, a rechargeable battery, as discussed previously. As illustrated in FIG. 9, the power module 318 communicates with the control drive module 310 and the CPU 305. In other embodiments, the power module 318 communicates with other control system 300 components instead of, or in combination with, the control drive module 310 and the CPU 305. For example, in one embodiment, the power module 318 communicates directly with the sensor module 302. Furthermore, the power module 318 may communicate with the interface module 308 such that a user is capable of directly controlling the power supplied to one or more components of the control system 300.


The components of the control system 300 may communicate with each other through various communication links. FIG. 9 depicts two types of links: primary communication links, which are depicted as solid lines between the components, and secondary communication links, which are depicted as dashed lines. In one embodiment, primary communication links operate on an established protocol. For example, the primary communication links may run between physical components of the control system 300. Secondary communication links, on the other hand, may operate on a different protocol or level than the primary communication links. For example, if a conflict exists between a primary communication link and a secondary communication link, the data from the primary communication link will override the data from the secondary communication link. The secondary communication links are shown in FIG. 9 as being communication channels between the control system 300 and the environment. In other embodiments of the invention, the modules may communicate with each other and/or the environment through other types of communication links or methods. For example, all communication links may operate with the same protocol or on the same level of hierarchy.


It is also contemplated that the components of the control system 300 may be integrated in different forms. For example, the components can be separated into several subcomponents or can be separated into more devices that reside at different locations and that communicate with each other, such as through a wired or wireless network. For example, in one embodiment, the modules may communicate through RS232 or serial peripheral interface (SPI) channels. Multiple components may also be combined into a single component. It is also contemplated that the components described herein may be integrated into a fewer number of modules. One module may also be separated into multiple modules.


Although disclosed with reference to particular embodiments, the control system 300 may include more or fewer components than described above. For example, the control system 300 may further include an actuator potentiometer usable to control, or fine-tune, the position of the actuator 316. The user may also use the actuator potentiometer to adjust the heel height of the ankle device 304. In one embodiment, the actuator potentiometer communicates with the CPU 305. In other embodiments, the control system 300 may include a vibrator, a DC jack, fuses, combinations of the same, or the like.


Examples of similar or other control systems and other related structures and methods are disclosed in U.S. patent application Ser. No. 10/463,495, filed Jun. 17, 2003, entitled “ACTUATED LEG PROSTHESIS FOR ABOVE-KNEE AMPUTEES,” now published as U.S. Publication No. 2004/0111163; U.S. patent application Ser. No. 10/600,725, filed Jun. 20, 2003, entitled “CONTROL SYSTEM AND METHOD FOR CONTROLLING AN ACTUATED PROSTHESIS,” now published as U.S. Publication No. 2004/0049290; U.S. patent application Ser. No. 10/627,503, filed Jul. 25, 2003, entitled “POSITIONING OF LOWER EXTREMITIES ARTIFICIAL PROPRIOCEPTORS,” now published as U.S. Publication No. 2004/0088057; U.S. patent application Ser. No. 10/721,764, filed Nov. 25, 2003, entitled “ACTUATED PROSTHESIS FOR AMPUTEES,” now published as U.S. Publication No. 2004/0181289; and U.S. patent application Ser. No. 10/715,989,” filed Nov. 18, 2003, entitled “INSTRUMENTED PROSTHETIC FOOT,” now published as U.S. Publication No. 2005/0107889; each which is herein incorporated by reference in its entirety and is to be considered as part of this specification. In addition, other types of control systems that may be used in embodiments of the present invention are disclosed in U.S. Provisional Application No. 60/551,717, entitled “CONTROL SYSTEM FOR PROSTHETIC KNEE,” filed Mar. 10, 2004; U.S. Provisional Application No. 60/569,511, entitled “CONTROL SYSTEM AND METHOD FOR A PROSTHETIC KNEE,” filed May 7, 2004; and U.S. Provisional Application No. 60/572,996, entitled “CONTROL SYSTEM AND METHOD FOR A PROSTHETIC KNEE,” filed May 19, 2004, which are herein incorporated by reference in their entireties to be considered as part as this specification.



FIG. 10 is a table that depicts possible control signals that may be involved in adjusting the ankle angle of a prosthetic or orthotic device when a user is transitioning between different states, or types of locomotion, according to one embodiment of the invention. In particular, the states listed in a column 402 identify a first state of the user, and the states listed in a row 404 identify a second state of the user, or the state to which the user is transitioning. The remainder of the table identifies possible actions that may be taken by the prosthetic or orthotic device with respect to the ankle angle. “User set point” is the neutral, or default, value that may be set during shoe heel height adjustment. The angles specified are examples of changes to the ankle angle of the prosthetic or orthotic device. For example, when a user is transitioning from a “stance” state to an “ascending stairs” state, the ankle angle may be adjusted to the angle of the stairs, such as for example, −10 degrees (or 10 degrees dorsiflexion). Ankle angles given in the “Incline (up)” and “Decline” columns reflect threshold levels of ankle angle adjustment depending on the angle of the incline.


The following table (TABLE 2) illustrates possible ankle motion strategies for one embodiment of the invention. The first column of TABLE 2 lists different types of locomotion types or gait patterns that may be frequently detected. The second column of TABLE 2 identifies examples of ankle angle adjustment of the prosthetic or orthotic device during the swing phase of each of the identified locomotion types.










TABLE 2





Locomotion



Type/Gait


Pattern
Ankle Motion During Swing Phase of Ankle Device







Level Ground
Toe clearance during swing


Walking


Ascending
Ankle adjusts to dorsiflexion (e.g., 7.5°)


Stairs


Descending
Ankle adjusts to dorsiflexion (e.g., 5°)


Stairs


Incline (up)
Ankle adjust to dorsiflexion:



a) Two incline angle threshold levels (x°, y°)



b) Stepwise (2 steps) angle adjustment (z°, w°)



Example: If incline angle > x°, ankle will adjust to −z°;



if incline angle > y°, ankle will adjust to −w°,



wherein x = 2.5° and y = 5°.


Decline
Ankle adjusts to plantarflexion:



a) Two decline angle threshold levels (x°, y°)



b) Stepwise (2 steps) angle adjustment (z°, w°)



Example: If decline angle > x°, ankle will adjust to z°;



if decline angle > y°, ankle will adjust to w°,



wherein x = 2.5° and y = 5°.


Sitting/Relaxed
Set Heel Height


Adjust Heel
Stepless heel height adjustment up to 20° plantarflexion


Height










FIG. 11 depicts a graph that illustrates the interaction and relationship between the control of a prosthetic or orthotic leg and the measurements taken from a healthy, sound leg. In particular, FIG. 11 depicts the movement of a prosthetic or orthotic leg and a healthy leg during one full stride of a user. For example, during approximately the first 60% of the stride, the graph shows the prosthetic or orthotic leg as being in a “stance” position or being planted on a surface, such as the ground. In one embodiment, during the beginning portion of the stance phase the ankle angle of the prosthetic or orthotic leg may decrease (dorsiflexion). Toward the end of the stance phase the ankle angle of the prosthetic or orthotic leg may then increase (plantarflexion) to facilitate natural stride movements. In other embodiments of the invention, the ankle angle of the prosthetic or orthotic leg is not actively adjusted during the stance phase. During a portion of this same period, up to approximately point 40%, the healthy leg may be in a swinging position, wherein the healthy leg is not in contact with the ground. Between the points of approximately 40% and 60%, both legs are in contact with the ground.


From approximately point 60% to 100% (the end of the stride), the prosthetic or orthotic leg is in a swinging position, and the healthy leg is in contact with the ground. The graph in FIG. 11 shows that the ankle angle of the prosthetic or orthotic leg is adjusted during the swing phase. This angle adjustment may be based on previous measurements of the healthy leg during the swing phase of the healthy leg. In one embodiment, during the beginning portion of the swing phase of the prosthetic or orthotic leg, the ankle angle of the prosthetic or orthotic leg may decrease. This allows, for example, a toe portion of the prosthetic or orthotic leg to clear stairs. Toward the latter portion of the swing phase of the prosthetic or orthotic leg, the ankle angle of the prosthetic or orthotic leg may then increase before contacting the ground. In other embodiments, the angle adjustment is based on readings taken by sensors on the prosthetic side.


It is to be understood that FIG. 11 is illustrative of the functioning of one embodiment of the invention under certain conditions. Other embodiments or circumstances may require a longer or shorter stance or swing phase and require other adjustments to the angle of the ankle portion of the prosthetic leg.



FIGS. 12A-12C illustrate another embodiment of a lower limb prosthesis 100′ configured to be attached to a human limb. The lower limb prosthesis 100′ is similar to the lower limb prosthesis 100 illustrated in FIG. 2, except as noted below. Thus, the reference numerals used to designate the various components of the lower limb prosthesis 100′ are identical to those used for identifying the corresponding components of the lower limb prosthesis 100 in FIG. 2, except that a “′” has been added to the reference numerals.


The lower limb prosthesis 100′ comprises a first portion 102′ coupled to a second portion 104′, wherein the portions 102′, 104′ are moveable relative to each other to mimic a natural human joint. In the illustrated embodiment, the first portion is a lower limb member 102′ and the second portion is a prosthetic foot unit 104′ operatively coupled to the lower limb member 102′ to mimic a natural human ankle joint. The foot unit 104′ includes a heel portion 104a′ at a rear end of the foot unit 104′ and a toe portion 104b′ at a front end of the foot unit 104′. In one embodiment, the heel and toe portions 104a′, 104b′ can be unitary. In another embodiment, the heel and toe portions 104a′, 104b′ can be separate components fastened to each other via, for example, bolts, screws, adhesives and the like. In the illustrated embodiment, the prosthetic foot unit 104′ is an LP VARI-FLEX® prosthetic foot commercially available from Össur. However, the foot unit 104′ can have other configurations or designs. In another embodiment (not shown), the first and second portions can be an upper leg member and a lower leg member, respectively, which are coupled to mimic a natural human knee joint.


As shown in FIG. 12A, the lower limb prosthesis 100′ may also comprise a frame 106′ extending between the foot unit 104′ and the lower limb member 102′. As shown in FIGS. 12A and 12B, an attachment portion 108′ of the lower limb member 102′ facilitates the coupling of the lower limb member 102′ to another member, such as, for example, the pylon 110 depicted in FIGS. 1-4. In the illustrated embodiment, the attachment portion 108′ is a pyramid. Additionally, the lower limb member 102′, or support member, couples to the foot unit 104′ at its lower end via a pivot assembly 114′, which is attached to the prosthetic foot unit 104′. In the illustrated embodiment, the pivot assembly 114′ is attached at about the rear ⅓ of the foot unit 104′. However, the pivot assembly 114′ can be attached at other locations on the foot unit 104′. Preferably, the pivot assembly 114′ mimics a natural human ankle joint. Additionally, a cover 106b′ is disposed about an actuator 500 of the lower limb prosthesis 100′ to substantially protect the actuator 500 and inhibit the intrusion of foreign matter. In certain embodiments, the lower limb prosthesis 100′ may also include a control wire, such as the control wire 112 depicted in FIGS. 1-4, to provide power to and/or communicates control signals to the prosthesis 100′.


With continued reference to FIGS. 12A-12C, the actuator 500 provides the prosthesis 100′ with the necessary energy to execute angular displacements synchronized with an amputee's locomotion. The actuator 500 couples the first and second portions 102′, 104′ of the prosthesis 100′ together, which in the illustrated embodiment correspond to the lower limb member 102′ and the prosthetic foot unit 104′. As discussed further below, the actuator is configured to adjust an angle between the lower limb member 102′ and the foot unit 104′. The actuator 500 couples to the foot unit 104′ and the lower limb member 102′ at first and second attachment points 118′, 120′, respectively. In one embodiment, the prosthesis can include control circuitry to control the operation of the actuator 500, such as, for example, the control circuitry 122 depicted in FIGS. 2 and 3.



FIGS. 13-18 illustrate one embodiment of an actuator 500 that may be used with the lower limb prosthesis 100′ discussed above. The actuator 500 preferably comprises a stator or top unit 510 having an attachment end 512 and a bottom end 514. In the illustrated embodiment, the attachment end 512 is a C-shaped clamp (see FIG. 15) having a first opening 512a and a second opening 512b aligned along a first axis X1 that extends generally perpendicular to a longitudinal axis Y of the actuator 500. However, the attachment end 512 can have other suitable configurations. The openings 512a, 512b are preferably sized to receive a fastener therethrough, such as a bolt, screw, or pin (not shown), to allow the top unit 510 to be fastened to, for example, the upper end of the lower limb member 102′ at the second attachment point 120′.


The bottom end 514 of the top unit 510 preferably has a circumferential wall 514a and a bottom surface 516. In the illustrated embodiment, as shown in FIG. 17, the bottom surface 516 curves from the circumferential wall 514a toward a center of the bottom surface 516. The bottom surface 516 preferably includes a recess portion 518 located generally at the center of the bottom surface 516. The recess portion 518 on the bottom surface 516 of the top unit 510 is preferably sized to receive a ball bearing 522 therein, as further discussed below.


As illustrated in FIG. 17, the circumferential wall 514a includes a protrusion 520 that extends outward from the wall 514a. In one embodiment, the protrusion 520 extends substantially along the entire circumference of the wall 514a. In another embodiment, the protrusion 520 can be a plurality of protrusions positioned at discrete locations about the circumference of the wall 514a.


The actuator 500 also comprises a first elongate member or rotor 530 with a body extending from a top end 530a to a bottom end 530b along a length 532, and having a diameter 534. In one embodiment, the length 532 is between about 25 mm and about 70 mm. In one embodiment, the diameter 534 is between about 12 mm and about 40 mm. More preferably, the diameter 534 is about 17 mm. The rotor 530 has a circumferential flange 536 at the top end 530a, the flange 536 having a diameter greater than the diameter 534 of the body. The top end 530a has an outer surface 537 that curves generally upward from the circumferential flange toward a center 537a of the surface 537. The surface 537 defines a recessed portion 538 generally disposed at the center 537a thereof. The recessed portion 538 is preferably contoured to receive the ball bearing 522 therein, such that the ball bearing 522 couples the top unit 510 to the rotor 530. In one preferred embodiment, the top unit 510 and the rotor 530 couple to each other solely via the ball bearing 522. In the illustrated embodiment, the ball bearing 522 is a single ball bearing. However, other suitable bearings can be used. In one embodiment (not shown) a thrust bearing is disposed between the top unit 510 and the rotor 530. As shown in FIG. 17, the rotor 530 is preferably an elongate nut defining a hollow central portion 539, which defines a wall 539a with threads 540 disposed along at least a portion the length of the wall 539a.


As discussed above, the ball bearing 522 preferably couples the top unit 510 to the first elongate member 530. Preferably, the curvature of the surface 537 of the rotor 530 and the curvature of the bottom surface 516 of the top unit 510 define a gap 541 therebetween. The gap 541 extends preferably circumferentially about the center 537a of the surface 537. In a preferred embodiment, at least one magnet 542 is disposed in the gap 541 and attached to the surface 537 via, for example, an adhesive. In the embodiment illustrated in FIG. 18, a plurality of magnets 542 are disposed about the center 537a of the surface 537. In another embodiment, an annular magnet (not shown) can be disposed on the surface 537, with the annulus of the magnet aligned with the center 537a. The magnets 542 are preferably configured to exert a magnetic force on the top unit 510 and the rotor 530, so that the force draws the top unit 510 and the rotor 530 toward each other.


As best seen in FIGS. 17 and 18, the actuator 500 also includes a retainer 550 having a height 551 and a wall 552 defining an inner diameter 554. The retainer 550 includes a flange 556 having an inner portion 556a extending radially inward from the wall 552 and an outer portion 556b extending radially outward from the wall 522, wherein the inner and outer portions 556a, 556b are preferably disposed at a bottom end of the wall 552. Though the illustrated embodiment shows the flange 556 as being continuous around the circumference of the retainer 550, one of ordinary skill in the art will recognize that the flange 556 can instead be a plurality of flange members disposed at discrete locations about the circumference of the retainer 556. The inner diameter 554 of the retainer 550 is sized to receive the rotor 530 and the top unit 510 therein.


In the illustrated embodiment, the inner diameter 554 of the retainer 550 is preferably at least slightly greater than the diameter of the flange 536 of the rotor 530, so that the flange 536 of the rotor 530 does not engage the wall 552 of the retainer 550. Similarly, the inner diameter 554 of the retainer 550 is preferably at least slightly greater than the diameter of at least a portion of the circumferential wall 514a of the top unit 510. The protrusions 520 on the circumferential wall 514a of the top unit 510 preferably engage a portion of the wall 552 of the retainer 550, such that the top unit 510 and the retainer 550 are coupled to each other.


Preferably, rotor 530 rotates about, and translates along, the longitudinal axis Y, as further discussed below. In one embodiment, the rotor 530 remains coupled to the top unit 510 via the ball bearing 522, but selectively moves in and out of contact with the retainer 550 via the inner flange 556a, as further described below. In another embodiment, the rotor 530 moves between contact with the top unit 510, via the ball bearing 522, and contact with the retainer 550 via the inner flange 556a.


As best shown in FIGS. 17 and 18, a first magnet 560a and a second magnet 560b are disposed about a portion of the rotor 530. The first and second magnets 560a, 560b preferably have a height 562a, 562b and an inner diameter 564a, 564b larger than the diameter 534 of the rotor 530, so that the magnets 560a, 560b fit about the rotor 530. In one embodiment, the inner diameters 564a, 564b of the first and second magnets 560a, 560b are between about 12 mm and about 40 mm, and more preferably about 17 mm. In one embodiment, the magnets 560a, 560b are magnetized rings with 24 poles. Additionally, as shown in FIG. 17-18, a spacer 568 is disposed between the first and second magnets 560a, 560b. Preferably, the spacer 568 also has a diameter greater than the diameter 534 of the rotor 530, so that the spacer 568 fits about the rotor 530. Though the illustrated embodiment depicts two magnets 560a, 560b and one spacer 568, one of ordinary skill in the art will recognize that any number of magnets and spacers can be used.


The actuator 500 also comprises a sleeve 570 with a cylindrical body 571 having a length 572 and a diameter 574 such that the sleeve 570 fits about the rotor 530. In one embodiment, the length 572 is between about 10 mm and about 70 mm, and more preferably about 20 mm. The diameter 574 is preferably between about 12 mm and about 40 mm, and more preferably about 17 mm. Preferably, as shown in FIG. 17, the sleeve 570 has an inner diameter greater than the diameter 534 of the first elongate member 530, and has an outer diameter that is smaller than the inner diameter of the first and second magnets 560a, 560b and the spacer 568. Accordingly, the first and second magnets 560a, 560b and the spacer 568 fit about the sleeve 570, which in turn fits about the rotor 530. In a preferred embodiment, the rotor 530, sleeve 570, magnets 560a, 560b are disposed substantially adjacent each other.


As best illustrated in FIGS. 17 and 18, the sleeve 570 also has a lip 576 that extends circumferentially about the sleeve 570. In a preferred embodiment, the lip 576 extends continuously around the sleeve 570 at a radial distance away from a surface of the sleeve 570 substantially equal to a thickness of at least one of the first and second magnets 560a, 560b. The lip 576 is preferably positioned a distance away from a top end of the sleeve 570 so as to support the first and second magnets 560a, 560b and the spacer 568 about the sleeve 570 so that the first and second magnets 560a, 560b and the spacer 568 do not extend past the top end of the sleeve 570.


The actuator 500 also comprises a motor 580. In the illustrated embodiment, the motor 580 has a height 582 and an inner surface 586 with an inner diameter 584, such that the motor 580 can be disposed about the rotor 530. In one embodiment, the motor has a length of between about 10 mm and about 60 mm, and more preferably about 25 mm. the inner diameter 584 of the motor 580 is preferably between about 15 mm and about 50 mm. In a preferred embodiment, the diameter 584 of the motor 580 is about 22 mm. As illustrated in FIG. 17, the motor 580 extends about the rotor 530, such that the sleeve 570, the first and second magnets 560a, 560b and the spacer 568 are disposed between the rotor 530 and the inner diameter 584 of the motor 580. The motor 580 preferably comprises windings configured to rotate the rotor 530 via the magnets 560a, 560b. In the illustrated embodiment, the motor 580 is a stepper motor. However, other suitable motor types can be used. For example, the motor 580 can be a DC motor, a piezo-electric motor, a DC brushless motor, and a servo motor.


As best shown in FIG. 18, the actuator also comprises an o-ring 590 and a roller bearing 600 disposed between the motor 580 and a cover portion 610 having a protruding portion 612. The cover 610 preferably houses the motor 580 therein when the actuator 500 is fully assembled. A bellows 620 is preferably disposed adjacent a bottom end of the cover 610. The bellows 620 advantageously inhibits the entry of foreign particles, such as dust and water, into contact with the motor 580 and a second elongate member 630 of the actuator 500.


The second elongate member 630 extends along a length 632 and has a diameter 634. In the illustrated embodiment, the second elongate member 630 is a screw with threads 636 along a portion of the length 632. In the illustrated embodiment, the screw 630 has an attachment portion 638 at a bottom end thereof with an opening 638a that extends therethrough along an axis X2 generally orthogonal to the longitudinal axis Y of the actuator 500. The opening 638a is preferably sized to receive a fastener therethrough, such as a bolt, a screw or a pin. Accordingly, the attachment portion 638 can be fastened to, for example, the prosthetic foot unit 104′ at the first attachment point 118′.


In one preferred embodiment, the threads 636 of the screw 630 are adapted to threadingly engage the threads 540 on the nut 530. Preferably, the threads 636, 540 on the screw 630 and the nut 530, respectively, are designed to be on the boundary of a self-locking coupling. In one preferred embodiment, the threads 636, 540 of the nut 530 and the screw 630, respectively are trapezoidal threads. For example, the threads 636, 540 can be ACME centralized threads with a working diameter of about 14 mm, a pitch of about 2 mm, and about two leads. However, any suitable thread type can be used. In one embodiment, the threads 636, 540 are made of Aluminum Bronze and Stainless Steel. However, other suitable metals and alloys can be used. In one preferred embodiment, the threads 540 in the nut 530 are cut, while the threads 636 in the screw 630 and ground and coated with a coating, such as a permanent oil coating. Advantageously, the thread lengths in the nut 530 are configured to provide minimum friction during operation of the actuator 500, while delivering optimum support and strength to the actuator 500. However, one of ordinary skill in the art will recognize that the threads 540, 636 of the nut 530 and the screw 630 can have other configurations and be made of other materials to provide a desired performance characteristic. For example, the material and coating of the threads, as well as the pitch, working diameter, and number of leads can be varied to provide a different interface friction between the threads 636, 540. In one embodiment, the pitch and configuration of the threads 636, 530 can be chosen so that a load applied (e.g., along the longitudinal axis Y) to the screw 630 and/or nut 530 assembly will not initiate a self-generated movement of the actuator 500. That is, the pitch and configuration of the threads 636, 530 generate a friction force therebetween that is large enough to inhibit the relative rotation of the nut 530 and the screw 630. In another embodiment, the pitch and configuration of the threads 636, 530 can be chosen so that a load applied to the screw 630 and/or nut 530 along the longitudinal axis Y will initiate a self-generated movement of the actuator 500.


As shown in FIG. 17, the screw 630 preferably has a hollow portion 640 extending along a portion of the length 632. Advantageously, the hollow portion 640 reduces the weight of the screw 630, thereby reducing the weight of the actuator 500 as a whole. As shown in FIG. 18, an adoption ring 650 is disposed about the screw 630, wherein the ring 650 couples with the bottom end of the bellows 620.


Advantageously, the actuator 500 has a compact assembly. As discussed above, the motor 580 is disposed about the rotor 530, which is disposed about the elongate member or screw 630. Accordingly, the actuator 500 takes up less space and can have a lower height than other designs. In one preferred embodiment, the actuator 500 has a height of between about 40 mm to about 70 mm in a collapsed configuration, and a height of between about 65 mm to about 130 mm in a fully extended configuration. Additionally, the hollow portion 640 of the screw 630 advantageously reduces the weight of the actuator 500.


In operation, the actuator 500 advantageously minimizes friction between the stator or top unit 510 and the rotor or nut 530. The ball bearing 522 disposed between the top unit 510 and the nut 530 inhibits the generation of a friction force between the top unit 510 and the nut 530, thereby allowing the nut 530 to rotate generally freely relative to the top unit 510. Additionally, the magnets 542 draw the nut 530 toward the top unit 510, as discussed above. Such a magnetic force lifts the nut 530 from engagement with the inner flange 556a of the retainer 550, thereby inhibiting the generation of friction between the retainer 550 and the nut 530, as further discussed below. In a preferred embodiment, the magnetic force is strong enough to lift the rotor 530 from engagement with the inner flange 556a of the retainer in one desired phase of a gait cycle. In another embodiment, the magnetic force of the magnets 542 is strong enough to lift the rotor 530 from engagement with the inner flange 556a of the retainer 550 in more than one desired phase of a gait cycle.


The actuator 500 can also advantageously be selectively locked during a desired phase of a gait cycle. As illustrated in FIG. 17, the flange 536 of the rotor or nut 530 can engage the inner flange 556a of the retainer 550, generating a friction force between the rotor 530 and the retainer 550 to inhibit the rotation of the rotor 530. Thus, the friction force that is generated is effectively a locking force that locks the actuator 500. In one preferred embodiment, the flanges 536, 556a engage when the actuator 500 is in tension. Additionally, as discussed above, the interaction of the threads 636, 540 of the screw 630 and the nut 530 can also generate a friction force to inhibit the rotation of the screw 630 and the nut 530 relative to each other. Thus, the interaction of the threads 636, 540 also generates a locking force that contributes to the locking of the actuator 500.


The operation of the actuator 500 during the operation of the lower limb prosthesis 100′ by a user will now be described. FIG. 19 illustrates a flow chart showing the different phases of a gait cycle 670 of the lower limb prosthesis 100′ illustrated in FIGS. 12A-12C. In a first phase 672 of the gait cycle 670, during heel strike of the foot unit 104′, the actuator 500 is initially in a state of compression, wherein the flange 536 on the rotor 530 is displaced relative to the inner flange 556a on the retainer 550.


The state of compression in the first phase arises from the operating relationship between the lower limb member 102′ and the prosthetic foot unit 104′. During heel strike, a load is applied on the heel portion 104a′ of the foot unit 104′ (e.g., due to the weight or locomotion force of the user). Said load applies an upward force on the heel portion 104a′ of the foot unit 104′, causing the toe portion 104b′ to move away from the lower limb member 102′ by rotating about the main pivot axis of the pivot assembly 114′, which in turn applies a compression force on the second elongate member 630 via the first attachment point 118′. The compression force is transferred from the second elongate member 630 onto the rotor 530, so that the flange 536 of the rotor 530 moves away from the inner flange 556a of the retainer 550.


In one preferred embodiment, the actuator 500 is not actuated during the first phase 672. However, to inhibit the rotation of the rotor 530 relative to the second elongate member 630 during the first phase 672 due to the applied load, the pitch of the threads 540, 636 between the rotor 530 and the second elongated member 630 advantageously generate an interface friction force between the threads 540, 636.


The lower limb prosthesis 100′ transitions into a second phase 674 where the foot unit 104′ is in a stance phase. During said transition, the actuator 500 transitions from a state of compression to a state of tension, so that a friction force is generated between the flange 536 of the rotor 530 and the inner flange 556a of the retainer 550, as discussed above.


The state of tension in the stance phase is generated by the movement of the lower limb member 102′ relative to the prosthetic foot member 104′ as the prosthesis 100′ transitions into the second phase 674. As the prosthesis 100′ moves through the second phase 674, the locomotion of the user (e.g., due to forward movement) applies a load on the lower limb member 102′, urging the lower limb member 102′ toward the toe portion 104b′ of the prosthetic foot unit 104′, thus placing a load on the toe portion 104b′. Said load causes a rear portion of the foot unit 104′ to move downward, away from the lower limb member 102′, which in turn applies a tension force on the second elongate member 630 via the first attachment point 118′. The tension force is transferred from the second elongate member 630 onto the rotor 530, so that the flange 536 of the rotor 530 moves toward, and into engagement with, the inner flange 556a of the retainer 550. As discussed above, said engagement between the flange 536 of the rotor 530 and the inner flange 556a of the retainer 550 generates a friction force to inhibit the rotation of the rotor 530. In one preferred embodiment, the friction force is high enough to act as a brake to prevent the rotation of the rotor 530. Furthermore, in one preferred embodiment, the actuator 500 is not actuated during the second phase 674.


In a third phase 676, the foot unit 104′ transitions from a stance phase to a toe-off phase. In toe-off, the toe portion 104b′ continues to be under load, as in the second phase. Accordingly, the actuator remains substantially in a state of tension, so that the rotor 530 is inhibited from rotating, as discussed above. In one embodiment, the load on the toe portion 104b′ is greater in the third phase than in the second phase of the gait cycle. In one preferred embodiment, the actuator 500 is not actuated during the third phase 676.


In a fourth phase 678, the prosthetic foot unit 104′ is in a swing phase between toe-off and heel-strike, wherein the foot 104′ is not in contact with a support surface. In the fourth phase 678, the actuator 500 is in a compression position. As discussed above, while in compression the flange 536 on the rotor 530 is separated from the inner flange 556a of the retainer 550, thereby allowing the rotor 530 to rotate generally freely relative to the retainer 550.


The state of compression during the swing phase arises from the operating relationship between the lower limb member 102′ and the prosthetic foot unit 104′. During the swing phase, a load is applied to the prosthetic foot unit 104′ due to the configuration of the foot unit 104′ (e.g., the weight of the foot unit 104′), which pulls the toe portion 104b′ downward, away from the lower limb member 102′. The downward force on the toe portion 104b′ in turn applies a compression force on the second elongate member 630 via the first attachment point 118′. The compression force is transferred from the second elongate member 630 onto the rotor 530, so that the flange 536 of the rotor 530 moves away from the inner flange 556a of the retainer 550. The rotor 530 is thus able to rotate generally freely relative to the retainer 550. In one embodiment, the movement of the flange 536 of the rotor 530 away from the inner flange 556a of the retainer 550 is facilitated by the magnets 542, which draw the rotor 530 toward the top unit or stator 510 and away from the retainer 550, thus inhibiting the generation of friction during the swing phase.


In one preferred embodiment, the actuator 500 is actuated during the swing phase to adjust the angle between the lower limb member 102′ and the prosthetic foot unit 104′. Advantageously, the ball bearing 522 disposed between the stator 510 and the rotor 530 also inhibit the generation of friction between the rotor 530 and the retainer 550. Therefore, the actuator 500 is actuated while under a light load, which advantageously reduces the wear and tear on the actuator 500, providing for an extended operating life.


As discussed above, in one embodiment the actuator 500 inhibits the rotation of the rotor 530 relative to the second elongate member 630 when in a state of tension. However, one of ordinary skill in the art will recognize that in another embodiment the actuator 500 can be operated to inhibit the rotation of the rotor 530 relative to the second elongate member 630 while in compression. Moreover, in another embodiment the actuator 500 can also be arranged so as to allow for the rotation of the rotor 530 relative to the second elongate member 630 when in a tension position. For example, in one embodiment the magnets 542 can generate a magnetic force sufficient to draw the rotor 530 away from the inner flange 556a of the retainer 550 while the actuator 500 is in a state of tension. Additionally, as discussed above, the actuator 500 is actuated during the swing phase 678 of a gait cycle. However, one of ordinary skill in the art will recognize that the actuator 500 can be actuated during more than one phase of a gait cycle.


Though the operation of the actuator 500 is discussed above in relation to a lower limb prosthesis 100′, one of ordinary skill in the art will recognize that the actuator 500 can also be used with an orthotic device to adjust the angle of a first portion and a second portion of the orthotic device. Additionally, the actuator 500, as described in the embodiments above, can advantageously be used to selectively lock the orthotic device during a desired phase of locomotion, as well as to minimize friction between the rotor 530 and the retainer 550 during the actuation of the actuator 500 to facilitate the operation of the orthotic device.


In certain embodiments of the invention, a lower limb prosthesis or orthosis includes at least one sensing device coupled thereto and that is substantially isolated from negative external effects or loads. For example, in certain embodiments, the sensing device is capable of measuring angular movement of a prosthetic foot in a single direction while disregarding or filtering out movement and/or loads of the prosthetic foot in other directions.


For example, FIG. 20 illustrates a disassembled view of a lower limb prosthesis 700 having an ankle-motion-controlled foot unit. For ease of reference and depiction, certain components, such as certain bolts, washers, bearing plugs and the like, are not shown and described with reference to the illustrated prosthesis 700. A skilled artisan would recognize however, from FIG. 20 and the disclosure herein which components, or equivalents thereof, may be used with the depicted components of the illustrated prosthesis 700.


In certain embodiments, the prosthesis 700 includes at least one sensor assembly that advantageously detects rotation of the foot unit about a single axis and substantially neglects axial and radial movement of the foot unit with respect to the axis. For example, such a sensor assembly may be coupled to and or located near an axis of rotation of the prosthesis 700.


With reference to FIG. 20, the illustrated lower limb prosthesis 700 comprises a foot member 702 connectable by screws 703 to a heel member 704. As shown, the foot member 702 and heel member 704 may comprise a foot unit, such as an LP VARI-FLEX® prosthetic foot commercially available from Össur. In yet other embodiments, the foot member 702 and/or heel member 704 may take on other configurations, or the lower limb prosthesis 700 may operate without a heel member 704.


As illustrated, the foot member 702 is configured to rotatably attach to a main frame 706, or attachment member, about a main pivot pin 708 extending through a base part 710. In certain embodiments, the main pivot pin 708 and the base part 710 form a pivot assembly that is configured to substantially mimic the natural motion of a healthy human ankle. For example, the main pivot pin 708 may allow for dorsiflexion and plantarflexion of the foot member 702, as is described in more detail previously with respect to the prosthesis 100 of FIGS. 1-6.


The prosthesis 700 further includes an actuator 712 operatively coupled to the foot member 702 through the base part 710. In particular, the actuator 712 couples to a lower pin 714 that allows for rotation of a bottom portion of the actuator 712 with respect to the base part 710 secured to a top, rear portion of the foot member 702. In certain embodiments, the actuator 712 is advantageously capable of adjusting at least one angle between the main frame 706 and the foot member 702, such that the foot member 702 rotates about the main pivot pin 708 of the pivot assembly. In certain embodiments, the actuator 712 comprises any one of the various types of actuators disclosed herein and is capable of actively adjusting the angle between the main frame 706 and the foot member 702 based on one or more signals received from an electronic control system.


As shown in FIG. 20, the lower limb prosthesis 700 optionally further includes a keypad 716 to receive user input and a rear cover 718 that partially covers the actuator 712. The prosthesis 700 may also include other devices and/or couplings to facilitate attachment of the prosthesis 700 to a limb, such as a stump, of an amputee.


The illustrated lower limb prosthesis 700 further includes a sensor assembly 720 configured to couple to and extend through the base part 710 of the pivot assembly. In certain embodiments, the sensor assembly 720 is configured to measure movement of at least one portion of the prosthesis 700 in at least one direction. In certain preferred embodiments, the sensor assembly 720 is configured and positioned to measure movement of a portion of the prosthesis 700 in a single direction.


For example, as illustrated in FIG. 20, at least a portion of the sensor assembly 720 is positioned within the main pivot pin 708 and extends along an axis (e.g., a pivot axis) substantially perpendicular to a longitudinal, or vertical, axis of the main frame 706. The illustrated sensor assembly 720 is capable of detecting, or measuring, rotation of the foot member 702 about the axis of the main pivot pin 708. Furthermore, in certain embodiments, the sensor assembly 720 is secured to the pivot assembly of the prosthesis 700 such that the sensor measurements are not affected by loads or forces in directions other than rotation about the main pivot pin 708. For example, in certain embodiments, axial or radial movements with respect to the axis of the main pivot pin 708 do not affect the measurements of the sensor assembly 720.



FIG. 21 illustrates a disassembled view showing further details of the components of the sensor assembly 720 of FIG. 20. As shown, the sensor assembly 720 includes a displacement measurement sensor 722 coupled to an elongated bellow portion 724 through an extender portion 726. In certain embodiments, relative rotation of the foot member 702 with respect to the main frame 706 is measured by the displacement measurement sensor 722.


Measurements of such rotation may be performed by the sensor assembly 720 in several ways. In certain embodiments, the main pivot pin 708 is rigidly attached to the base part 710, and the elongated bellow portion 724 is positioned at least partially within the main pivot pin 708. In such embodiments, relative movement of the foot member 702 (and attached base part 710) with respect to the main frame 706 causes relative rotation between the elongated bellow portion 724 (and attached extender portion 726) with respect to the displacement measurement sensor 722. For instance, rotation of the foot member 702 may cause rotation of the elongated bellow portion 724 with respect to the displacement measurement sensor 722, which may be fixed with respect to the main frame 706. In other embodiments, rotation of the foot member 702 may cause rotation of the displacement measurement sensor 722 with respect to the elongated bellow portion 722, which may be fixed with respect to the main frame 706.


In certain embodiments, the displacement measurement sensor 722 comprises a potentiometer, such as, for example, a linear or logarithmic potentiometer. In such embodiments, rotation of the elongated bellow portion 724 causes a corresponding rotation of the extender portion 726 and a rotatable input 727 of the potentiometer. In yet other embodiments, other types of displacement measurement sensors may be used, such as, for example, rotational position transducers, optical or mechanical encoders, combinations of the same or the like, to measure movement and/or rotation of a component of the prosthesis 700.


As illustrated in FIG. 21, the elongated bellow portion 724 further includes a plurality of ridges 728 around an outside surface of the bellow portion 724. In certain embodiments, the ridges 728 advantageously eliminate or substantially reduce the effects of axial (e.g., along the axis of the bellow portion 724) and/or radial (e.g., a direction perpendicular to the axis of the bellow portion 724) movements and/or loads on measurements by the displacement measurement sensor 722. For instance, at least some of the ridges 728 may be located within a component housing at least a portion of the elongated bellow portion 724. In certain preferred embodiments, such a component may include the main pivot pin 708 depicted in FIG. 20. In such embodiments, the ridges 728 may advantageously isolate movement of the elongated bellow portion 724 to rotation about the axis of the elongated bellow portion 724 and the main pivot pin 708.


In yet other embodiments, the elongated bellow portion 724 may include a plurality of grooves or other surface features that isolate movement of the elongated bellow portion 724 to a single direction. In yet other embodiments, the sensor assembly 720 may function without the extender portion 726 or the ridges 728. For example, the sensor assembly 720 may include a flexible compression membrane that couples the displacement measurement sensor 722 to the main pivot pin 708 and that absorbs unwanted movement (e.g., axial and/or radial movement).


Although the sensor assembly 720 has been described with reference to particular embodiments, other configurations for the sensor assembly 702 may be used with the prosthesis 700. For example, the main pivot pin 708 may be rigidly attached to the main frame 706. In such embodiments, either the displacement sensor 722 or the elongated bellow portion 724 may also be affixed to the main frame 706 such that relative movement of the foot member 702 with respect to the main frame 706 is detected by the displacement measurement sensor 722.


In yet other embodiments of the invention, the prosthesis 700 may include other types of sensor assemblies usable to detect movement of at least one component of the prosthesis 700. For example, the prosthesis 700 may comprise a ball joint assembly that has its movement constrained in at least one direction by geometric constraints surrounding the ball joint, which constraints may include, for example, one or more pins or flat surfaces that engage one or more surfaces of the ball joint. In yet other embodiments, the sensor assembly 720 may include a flexible material that is stiff against twisting forces but allows for longitudinal compression and/or radial movement.


Furthermore, it will be understood that the sensor assembly and/or prosthesis 700 may advantageously used with a variety of motion-controlled prosthetic and/or orthotic devices, examples of which are described in more detail herein and in U.S. patent application Ser. No. 11/056,344, filed on Feb. 11, 2005, entitled “SYSTEM AND METHOD FOR MOTION-CONTROLLED FOOT UNIT,” and issued as U.S. Pat. No. 7,811,334 on Oct. 12, 2010, which is hereby incorporated by reference herein in its entirety and is to be considered a part of this specification.


As mentioned above with reference to TABLE 1 and FIG. 9, in some embodiments of the invention, there are certain defined states of the ankle device 304. One of these states is the “RELAX” state. In one embodiment, when the sensor module 302 detects that the user has moved to a relaxed position, the control device 300 may initiate the “RELAX” state.


In one embodiment of the invention, the sensor module 302 detects when the user has moved to a relaxed position, such as sitting, crossing legs, reclining, lying down, crawling, leaning, etc. The sensor module 302 may detect these relaxed positions by measuring combinations of vertical acceleration (from which it may determined, for example, whether the overall ankle device 304, particularly the foot unit 104 (with reference to FIG. 1), is in a tilted position with respect to the ground, such as resting on the heel with legs outstretched in a sitting or lying down position), horizontal/lateral acceleration, and time. For instance, the sensor module 302 may comprise an accelerometer capable of measuring acceleration in the y-axis. In one embodiment, the measured vertical acceleration corresponds to the force of gravity. The accelerometer may be placed on the ankle device 304. In one embodiment, the accelerometer may be placed on the lower limb member 102 (with reference to FIG. 1), though the accelerometer may be placed anywhere on the ankle device 304. When placed on the lower limb member 102, the accelerometer may be used to measure an angle of the lower limb member 102 relative to vertical, which may then be used to determine an angle of the overall ankle device relative to the ground. As the ankle device 304 rotates from the upright, vertical position, the corresponding force of gravity will vary relative to the degree of rotation. For instance, when the ankle device 304 is in an upright, vertical position, the accelerometer may measure the standard force of gravity, 9.8 m/s2. As the ankle device 304 rotates from the vertical position, the accelerometer may measure a fraction of the Earth's global force of gravity relative to the changing angle of the ankle device 304 with respect to the ground. Thus, a sensor module 302 configured to measure acceleration in the vertical plane may be used to determine the stationary angle of the ankle device 304 with respect to the ground. For example, the sensor module 302 may indicate that the ankle device 304 is tilted at an angle of 90° with respect to the ground. This might indicate, for example, that the user is lying completely flat on the back. Alternatively, the sensor module 302 may indicate that the ankle device 304 is at an angle of 45° with respect to the ground, indicating perhaps that the user is sitting down with legs outstretched in such a manner as to form a 45° angle with respect to the ground.


In addition to the vertical acceleration, the sensor module 302 may also comprise an accelerometer configured to measure acceleration in the horizontal, or lateral, plane. This accelerometer may measure the ground acceleration of the ankle device 304 as the user moves in horizontal directions. Moreover, the control device 300 may also comprise a timer (not shown) that may be used to measure the amount of time during which the sensor module 302 detects certain conditions of acceleration.


To detect certain relaxed positions, the control device 300 may be configured to monitor the measurements of acceleration by the sensor module 302 over a period of time. In one embodiment, a range of angles of the ankle device 304 compared to the ground is defined that indicates the movement of the user to a relaxed position. To enter into the “RELAX” state, the control device 300 may determine that the angle between the ankle device 304 and the ground, as detected by the sensor module 302, is within the defined range. Additionally or alternatively, a range of lateral/horizontal acceleration of the ankle device 304 may be defined. To enter into the “RELAX” state, the control device 300 may determine that the lateral/horizontal acceleration of the ankle device 304, as detected by the sensor module 302, falls within the defined range. Additionally or alternatively, a range of time may be defined during which the above-mentioned conditions may be met. In other words, to enter the “RELAX” state, the control device 300 may determine that the ankle device, for a specified period of time, is at angle with respect to ground within the defined range and/or is accelerating within the defined range indicative of a user's movement to a relaxed position. Thus, an algorithm that triggers execution of the “RELAX” state might define the variables: start maximum acceleration delta (the upper limit of possible acceleration of the ankle device 304 that triggers the “RELAX” state), the start minimum angle (the lower limit of the angle of the ankle device 304 with respect to ground that triggers the “RELAX” state), the start maximum angle (the upper limit of the angle of the ankle device 304 with respect to ground that triggers the “RELAX” state), and start time (the amount of time that a combination of the other variables may be satisfied to trigger the “RELAX” state).


In one embodiment, used for example when a user is sitting down, reclining or crawling, the start maximum acceleration delta may be about 1 m/s2, indicating a threshold such that movement artifacts from the user should be less than about 1 m/s2. Alternatively, the maximum acceleration delta may be between about 0.1 m/s2 and 50 m/s2. The start minimum angle of the foot member relative to the ground may be about 30 degrees, and the start maximum angle may be −90 degrees, for example, representing that a user is lying down on the stomach. Alternatively, the range of angles may be between about −90° and +90°, the latter representing, for example, that a user is lying down on the back. The start time may for example be about 1 second or more. When each of these variables is satisfied, the ankle device will move to a relaxed state, as described below.


In other embodiments, the control device 300 may detect conditions indicative of a user's movement out of a relaxed position and may initiate an “EXIT” state. The determination of a user's movement out of a relaxed position may be similar to the determination of a user's movement into a relaxed position. Thus, an algorithm that triggers execution of the “EXIT” state might define the variables: end minimum acceleration delta (the lower limit of possible acceleration of the ankle device 304 that triggers the “EXIT” state), the end minimum angle (the lower limit of the angle of the ankle device 304 with respect to ground that triggers the “EXIT” state), and the end maximum angle (the upper limit of the angle of the ankle device 304 with respect to ground that triggers the “EXIT” state). In some embodiments, the “EXIT” state may be initiated regardless of whether the “RELAX” state is initiated first. Thus, the “EXIT” state may adjust the device for a preferred configuration for exiting a relaxed position, even if the relaxed position is never detected and/or the “RELAX” state is never initiated. For instance, the control device 300 may detect that the user is in a sitting position without causing the device to adjust to a particular “RELAX” state. It may be advantageous, however, to adjust the device to an “EXIT” state even though a “RELAX” state is not initiated. For example, the “EXIT” state may cause the device to be adjusted to a particular configuration that is advantageous when a user stands up from a sitting position, such as causing the device to dorsiflex in order to help shift the user's center of momentum to be over his/her feet to facilitate standing. This “EXIT” state may be advantageous regardless of whether the device ever initiated a corresponding “RELAX” state.


In one embodiment, to execute the “EXIT” state, the end minimum acceleration delta may be about 25 m/s2, allowing the user to exit the “RELAX” state by moving the ankle device greater than about 25 m/s2, such as by kicking the ankle device to the ground. Alternatively, the end minimum acceleration delta may be between about 0.1 m/s2 and 50 m/s2. The “EXIT” state may also be defined by an angle of the ankle device relative to the ground being between an end minimum angle of about −80 degrees and an end maximum angle of 10 degrees. Alternatively, the range of angles may be between about −90° and 90°.


In one embodiment, the “RELAX” state specifies a particular angle between the foot unit 104 and lower limb member 102 to which the ankle device 304 should be adjusted. For instance, when the control device 300 initiates the “RELAX” state, the control drive module 310 may cause the actuator 316 to adjust the ankle device 304, for example, to a plantarflexion position of at least 10°, more preferably about 15°. (With respect to FIG. 1, a plantarflexion position of about 15° is when the lower limb prosthesis 100 is adjusted such that the angle between the foot unit 104 and the lower limb member 102 is about 15° more than the angle between the foot unit 104 and the lower limb member 102 in the neutral position. At the neutral position, there is 0° of plantarflexion and dorsiflexion. Generally, the “neutral position” is when the lower limb member 102 is vertical relative to a horizontal plane, such as the ground. This neutral position will translate to any range of actual ankle angle depending on the heel height of the foot unit 104.) The plantarflexion of the ankle device 304 may mimic the natural plantarflexion of a human foot, may be functionally advantageous, may be aesthetically appealing, etc. Similarly, when the control device initiates the “EXIT” state, the control drive module 310 may cause the actuator 316 to adjust the ankle device 304, for example, to a dorsiflexion position of at least 5°. In one embodiment, the range of angles may be between about 1° and 15° of dorsiflexion, and as discussed above, may be used either when the ankle is exiting from a “RELAX” state, a neutral position where there is 0° of plantarflexion and dorsiflexion, or any other desired configuration. (Again with reference to FIG. 1, a dorsiflexion position of 10° is when the lower limb prosthesis 100 is adjusted such that the angle between the foot unit 104 and the lower limb member 102 is 10° less than the angle between the foot unit 104 and the lower limb member 102 in the neutral position.)


In other embodiments, the “RELAX” state may specify a certain power mode, such as a low power mode, to which the control device 300 should automatically adjust. For instance, the control device 300 might instruct the power module 318 to enter a low power mode, such as a hibernation mode, when the control device 300 determines to initiate the “RELAX” state. Similarly, the “EXIT” state may specify another power mode, such as a normal power mode, to which the control device 300 should automatically adjust. In yet other embodiments, the “RELAX” state and the “EXIT” state may specify certain heel heights, to which the control device should automatically adjust. In still other embodiments, it may be advantageous not to initiate the “RELAX” state or “EXIT” state for a certain period of time after the conditions for initiating these states have been detected.


In addition to defining certain states, some embodiments of the invention may define certain optimal adjustments for particular terrain variables. For instance, in some embodiments, there are optimal adjustments made while the user is ascending an incline or descending a decline. Thus, embodiments of the invention may define optimal adjustments for responding to changes in inclination and declination, such as adjusting the angle of the ankle device with respect to the ground. FIGS. 5 and 6 illustrate embodiments of the invention engaging an inclining slope and declining slope, respectively. In FIG. 5, angle alpha (α) indicates the relative slope of the incline. Similarly, in FIG. 6, angle alpha (α) indicates the relative slope of the decline. In FIGS. 5 and 6, the angle theta (θ) indicates the angle between the lower limb member 102 and the foot unit 104 of a lower limb prosthesis 100 having an ankle-motion-controlled foot. When the lower limb prosthesis 100 is in its neutral, unadjusted state, the angle theta (θ) may be described as the neutral angle, or the angle of the lower limb prosthesis 100 on level ground. As the user maneuvers on inclined or declined slopes, the lower limb prosthesis 100 adjusts itself to engage the ground by contracting, for inclines, and by expanding, for declines, the angle theta (θ) between the lower limb member 102 and the foot unit 104. In FIGS. 5 and 6, the lower limb prosthesis 100 has been adjusted such that the angle theta (θ) between the lower limb member 102 and the foot unit 104 increases or decreases a desired amount based on the angle alpha (α), which is the measurement of the relative slope. Thus, in FIG. 5, for instance, the angle theta (θ) reflects the neutral angle, measured when the lower limb prosthesis is on level ground, minus the degree of inclination, reflected by the angle alpha (α). Similarly, the angle theta (θ) in FIG. 6 reflects the neutral angle plus the degree of declination. For some slopes, it may be desirable not to adjust the lower limb prosthesis 100 to reflect the entire degree of inclination/declination, or may even be desirable to adjust the lower limb prosthesis 100 to reflect more.


Thus, in some embodiments, it is advantageous to adjust the angle of the foot unit 104 to the lower limb member 102 to account for the relative incline and/or decline of the terrain. For example, the angle may decrease by about 0 to 30 degrees when adjusting to an incline, or may increase by about 0 to 30 degrees when adjusting to a decline. When the user is on level ground and the lower limb member 102 is vertical with respect to the horizontal ground surface, the angle between the lower limb member 102 and the foot unit 104 is said to be the neutral angle, or the angle of the device in the neutral position. As described in more detail below, when the device detects that the user is maneuvering on an incline and/or decline, then the device may adjust the changing relative position of the foot unit 104 to the lower limb member 102 during the user's gait according to a response angle based on the detected degree of incline and/or decline. In a sense, the device defines an adjusted neutral angle relative to the incline and/or decline. In other words, when the lower limb member 102 is in the vertical position while the foot unit 104 flatly engages an inclined and/or declined surface, then the angle between the lower limb member 102 and the foot unit 104 may be defined as the adjusted neutral angle for the device with respect to the degree of incline and/or decline.


Subsequent adjustments to the ankle angle between the lower limb member 102 and the foot unit 104 may be made relative to this adjusted neutral angle. In some embodiments, the adjustment may occur only during the swing phase, such that during stance, the angle of the ankle between the lower limb member 102 and the foot unit 104 remains substantially constant at the adjusted neutral angle. Alternatively, the adjustment relative to the adjusted neutral angle may occur during both swing and stance phases. As the user leaves the stance phase and the device moves through the air without contact to the ground, the device may be adjusted as described above relative to the adjusted neutral angle (such as described by FIGS. 8 and 11). In other embodiments, the adjustments may also occur during the stance phase, when the foot unit 104 at least partially engages the ground. In some embodiments, for example on an incline, the foot unit 104 may be adjusted relative to the lower limb member 102 so as to dorsiflex at the heel strike and midstance phase and then at toe off may be adjusted to a plantarflexion angle to provide natural push off. In other embodiments, for example on a decline, the foot unit 104 may be adjusted relative to the lower limb member 102 so as to plantarfex at the heel strike phase and then during late stance and toe off may be adjusted to a dorsiflexion angle to aid roll over. It will be appreciated that these adjustments made during stance may also be utilized when walking on level ground. It will be further appreciated that the adjustments described above for inclined surfaces may be used for declined surfaces, and vice versa.


In some embodiments, the sensor module 302 (with reference to FIG. 9) may be configured to determine if the user is walking up an incline or down a decline. This may be accomplished via dynamic analysis that traces the path of the ankle device 304 in the vertical plane. In one embodiment, two acceleration sensors with two axes measure the relative position of the ankle device to ground (gravity) during the stance phase. In one embodiment, these sensors are located on the lower limb member 102 (with respect to FIG. 1). In other embodiments, the sensors may be located in the soles of shoes, in foot covers, on braces, etc. By measuring the gait from heel strike to toe off and how the foot is lifted in swing, the relative angle of incline and decline may be measured. This is because a user's gait exhibits different characteristics when walking on an incline, on a decline, and on level ground. For instance, there is more toe function than heel strike during incline. Additionally, while walking on an incline, the user lifts the foot more than on level ground and shortens the swing of the gait. Other characteristics may be observed for gait patterns while walking on a decline. Based on an understanding of the differences in gait patterns, the measurements of acceleration may be used to determine the surface angle. Sensors capable of determining the surface angle are available from Dynastream Innovations, Inc. (Alberta, Canada). In some embodiments, the surface angle may be filtered by averaging a number of measurements, such as five measurements.


In some embodiments, the surface angle (or the filtered surface angle) may be applied to a formula that yields an ankle response angle. The ankle response angle is the optimal angle by which the lower limb prosthesis 100 (with respect to FIG. 1) should be adjusted for the specified surface angle, thereby configuring the lower limb prosthesis 100 to an adjusted neutral angle. The ankle response angle may be measured with respect to level surface ground. By way of example, if the response angle is 10°, then lower limb prosthesis 100 should be adjusted such that the toe end of the foot member 104 is rotated 10° toward the lower limb member 102, making a 10° angle between the foot member 104 and the ground, assuming that the lower limb member 102 remains fixed with respect to level ground. If the lower limb prosthesis 100 were adjusted 10° in response to the detection of an incline of 10°, then the foot unit 104 of the lower limb prosthesis 100 would completely engage the ground, as illustrated in FIG. 5, for example. If, on the other hand, the response angle is −10°, then lower limb prosthesis 100 should be adjusted such that the toe end of the foot member 104 is rotated 10° away from the lower limb member 102, making a −10° angle between the foot member and the ground, assuming that the lower limb member 102 remains fixed with respect to level ground. If the lower limb prosthesis 100 were adjusted −10° in response to the detection of a decline of 10°, then the foot unit 104 of the lower limb prosthesis 100 would completely engage the ground, as illustrated in FIG. 6, for example.


In one embodiment, the optimal ratio between the surface angle and the response angle for inclined slopes is 1:1. In another embodiment, the optimal ration between the surface angle and the response angle for declined slopes is nonlinear, and in one embodiment is given by the formula: y=−0.017x2+0.1501×, where y is the ankle response angle and x is the detected (and possibly filtered) surface angle. Other embodiments may result in the response angle for declined slopes being between about 10% and 100% of the measured surface angle, more preferably between about 10% and 50%. FIG. 22 illustrates an x-y graph depicting above-defined ratios between surface angles and ankle response angles for inclines and declines, respectively. Thus, if it is detected that the surface angle of the incline is 5°, then the corresponding response angle is also 5°, representing a 1:1 ratio for inclined surfaces. For declined surfaces, however, the ankle response angles correspond to the above-identified formula. Thus, if it is detected that the surface angle of the decline is −10°, then the corresponding response angle is approximately −2.5°. According to the illustrated embodiment, the optimal response angle for declining surfaces is a fraction of the angle of decline. This result is intuitively understood. As a user walks down a decline, the momentum created by the pull of gravity causes the user to roll through the gait pattern, resulting in less need for the foot unit 104 to automatically rotate downward to engage the ground. While walking up inclines, however, it is desirable for the foot unit 104 to automatically engage the ground without forcing the user to roll over the unbent lower limb prosthesis 100.


While certain embodiments of the inventions have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. For example, the foregoing may be applied to the motion-control of joints other than the ankle, such as a knee or a shoulder. Furthermore, various omissions, substitutions and changes in the form of the methods and systems described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.

Claims
  • 1. A prosthetic system comprising: a prosthetic ankle joint comprising: a foot unit; anda lower limb member operatively coupled to the foot unit and movable in relation thereto by a pivoting motion;an actuator configured to power the pivoting motion;a sensor module configured to measure variables relating to the prosthetic system; anda controller configured to process data received from the sensor module and control adjustments of the angle between the foot unit and the lower limb member according to a plurality of predefined states, wherein the control system is configured to determine adjustments during a transition from a first state to a second state,wherein when a user of the prosthetic system is in a relaxed position the controller is configured to cause the actuator to power a pivoting motion causing the prosthetic system to plantarflex, andwherein the controller is configured to actively power the pivoting motion to provide a decrease in angle between the foot unit and the lower limb member such that the foot unit becomes more dorsiflexed relative to the lower limb member, while exiting a relaxed position, based on receiving data from the sensor module indicative of a user of the prosthetic system exiting a relaxed position.
  • 2. The prosthetic system of claim 1, wherein the relaxed position relates to when a user is in a sitting position.
  • 3. The prosthetic system of claim 2, wherein power is temporarily suspended or decreased when a user is in a sitting position.
  • 4. The prosthetic system of claim 2, wherein the system causes the movement into a maximum plantarflexion position when a user is in a sitting position.
  • 5. The prosthetic system of claim 1, wherein the actuator actively adjusts the angle between the foot unit and the lower limb member.
  • 6. A prosthetic system comprising: a prosthetic ankle joint comprising:a foot unit; anda lower limb member operatively coupled to the foot unit and movable in relation thereto by a pivoting motion;an actuator configured to actively power the pivoting motion during at least one or more portions of a user's gait cycle;one or more sensors configured to measure one or more variables relating to the prosthetic system; anda controller configured to process data received from the one or more sensors, wherein the controller is configured to control the actuator based on data received from the one or more sensors;wherein when the user of the prosthetic system is in or has moved toward a relaxed position, an angle between the foot unit and the lower limb member is configured to be increased by the actuator applying a force, such that the foot unit becomes more plantarflexed relative to the lower limb member; andwherein the controller is configured to control the actuator to actively power the pivoting motion to provide a decrease in angle between the foot unit and the lower limb member such that the foot unit becomes more dorsiflexed relative to the lower limb member, while exiting a relaxed position, based on receiving data from the one or more sensors indicative of a user of the prosthetic system exiting a relaxed position.
  • 7. The prosthetic system of claim 6, wherein the controller is configured to determine when the user is in a position indicative of a relaxed state based on data received from the one or more sensors.
  • 8. The prosthetic system of claim 6, wherein the angle between the foot unit and the lower limb member is configured to be increased when the user of the prosthetic system is in the relaxed position by actively powering the pivoting motion to adjust the angle between the foot unit and the lower limb member using the actuator.
  • 9. The prosthetic system of claim 6, wherein the controller is configured to assist the increase in the angle between the foot unit and the lower limb member based on receiving the data from the one or more sensors indicative of when the user of the prosthetic system is in the relaxed position.
  • 10. The prosthetic system of claim 9, wherein the controller is configured to control the actuator to actively increase the angle between the foot unit and the lower limb member based on receiving the data from the one or more sensors indicative of when the user of the prosthetic system is in the relaxed position.
  • 11. The prosthetic system of claim 9, wherein the controller is configured to control dampening between the foot unit and the lower limb member.
  • 12. The prosthetic system of claim 6, wherein the controller is configured to process data received from the one or more sensors and control the angle between the foot unit and the lower limb member according to a plurality of predefined states, wherein the controller comprises transition logic configured to determine a transition from a first state to a second state.
  • 13. The prosthetic system of claim 6, wherein the relaxed position relates to when a user is in a sitting position.
  • 14. The prosthetic system of claim 6, wherein the controller is configured to transition to a low power state wherein power is temporarily suspended or decreased based on receiving the data from the one or more sensors indicative of the user of the prosthetic system being in a relaxed position.
  • 15. The prosthetic system of claim 6, wherein the one or more sensors comprises an accelerometer.
  • 16. The prosthetic system of claim 6 , wherein exiting a relaxed position relates to when a user is standing up from a sitting position.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 11/367,049, filed Mar. 1, 2006, and issued as U.S. Pat. No. 7,896,927 on Mar. 1, 2011, which is a continuation-in-part of U.S. application Ser. No. 11/056,344, filed Feb. 11, 2005, and issued as U.S. Pat. No. 7,811,334 on Oct. 12, 2010, and U.S. application Ser. No. 11/057,391, filed Feb. 11, 2005, and issued as U.S. Pat. No. 7,431,737 on Oct. 7, 2008, both of which claim the benefit of U.S. Provisional Application 60/544,259, filed Feb. 12, 2004 and 60/588,232, filed Jul. 15, 2004. The entirety of all of these applications is hereby incorporated by reference.

US Referenced Citations (478)
Number Name Date Kind
909859 Apgar Jan 1909 A
2568051 Catranis Sep 1951 A
2619652 Vesper Dec 1952 A
2843853 Mauch Jul 1958 A
2859451 Mauch Nov 1958 A
3316558 Mortensen May 1967 A
3417409 Prahl Dec 1968 A
3501776 Beeker et al. Mar 1970 A
3589134 Hackmann Jun 1971 A
3659294 Glabiszewski May 1972 A
3701368 Stern Oct 1972 A
3791375 Pfeifer Feb 1974 A
3820168 Horvath Jun 1974 A
3866246 Seamone et al. Feb 1975 A
3871032 Karas Mar 1975 A
3953900 Thompson May 1976 A
3995324 Burch Dec 1976 A
4005496 Wilkes Feb 1977 A
4023215 Moore May 1977 A
4030141 Graupe Jun 1977 A
4064569 Campbell Dec 1977 A
4065815 Sen-Jung Jan 1978 A
4094086 Gevers Jun 1978 A
4100918 Glancy Jul 1978 A
4179759 Smith Dec 1979 A
4209860 Graupe Jul 1980 A
4212087 Mortensen Jul 1980 A
4310932 Nader et al. Jan 1982 A
4314379 Tanie et al. Feb 1982 A
4354676 Ariel Oct 1982 A
4370977 Mauldin et al. Feb 1983 A
4386891 Riefel et al. Jun 1983 A
4387472 Wilson Jun 1983 A
4433679 Mauldin et al. Feb 1984 A
4441644 Farian Apr 1984 A
4458367 May Jul 1984 A
4518307 Bloch May 1985 A
4521924 Jacobsen et al. Jun 1985 A
4556956 Dickenson et al. Dec 1985 A
4558704 Petrofsky Dec 1985 A
4569352 Petrofsky et al. Feb 1986 A
4578083 Williams Mar 1986 A
4579558 Ramer Apr 1986 A
4600357 Coules Jul 1986 A
4602619 Wolf et al. Jul 1986 A
4617920 Carsalade Oct 1986 A
4649934 Fraser et al. Mar 1987 A
4657000 Hepburn Apr 1987 A
4657470 Clarke et al. Apr 1987 A
4685926 Haupt Aug 1987 A
4685927 Haupt Aug 1987 A
4711242 Petrofsky Dec 1987 A
4711450 McArthur Dec 1987 A
4726404 Haber et al. Feb 1988 A
4730625 Fraser et al. Mar 1988 A
4760850 Phillips et al. Aug 1988 A
4770662 Giampapa Sep 1988 A
4776326 Roung et al. Oct 1988 A
4776852 Rubic Oct 1988 A
4790522 Drutchas Dec 1988 A
4795474 Horvath Jan 1989 A
4805455 DelGiorno et al. Feb 1989 A
4808187 Patterson et al. Feb 1989 A
4814661 Ratzlaff et al. Mar 1989 A
4838251 Chignon et al. Jun 1989 A
4843921 Kremer Jul 1989 A
4854428 Horvath Aug 1989 A
4865024 Hensley et al. Sep 1989 A
4872803 Asakawa Oct 1989 A
4876944 Wilson et al. Oct 1989 A
4878913 Aebischer et al. Nov 1989 A
4892554 Robinson Jan 1990 A
4893648 Horvath Jan 1990 A
4919418 Miller Apr 1990 A
4928676 Pansiera May 1990 A
4944755 Hennequin et al. Jul 1990 A
4958705 Horvath Sep 1990 A
4989161 Oaki Jan 1991 A
4994086 Edwards Feb 1991 A
5020790 Beard et al. Jun 1991 A
5033291 Podoloff et al. Jul 1991 A
5044360 Janke Sep 1991 A
5062673 Mimura Nov 1991 A
5062856 Sawamura et al. Nov 1991 A
5062857 Berringer Nov 1991 A
5086785 Gentile et al. Feb 1992 A
5092902 Adams et al. Mar 1992 A
5112296 Beard et al. May 1992 A
5112356 Harris et al. May 1992 A
5133773 Sawamura et al. Jul 1992 A
5133774 Sawamura et al. Jul 1992 A
5139525 Kristinsson Aug 1992 A
5153496 LaForge Oct 1992 A
5174168 Takagi et al. Dec 1992 A
5181931 Van de Veen Jan 1993 A
5197488 Kovacevic Mar 1993 A
5201772 Maxwell Apr 1993 A
5217500 Phillips Jun 1993 A
5219365 Sabolich Jun 1993 A
5230672 Brown et al. Jul 1993 A
5246465 Rincoe et al. Sep 1993 A
5252102 Singer et al. Oct 1993 A
5252901 Ozawa et al. Oct 1993 A
5253656 Rincoe et al. Oct 1993 A
5265890 Balsells Nov 1993 A
5277281 Carlson et al. Jan 1994 A
5282460 Boldt Feb 1994 A
5284330 Carlson et al. Feb 1994 A
5314498 Gramnäs May 1994 A
5323650 Fullen et al. Jun 1994 A
5327790 Levin et al. Jul 1994 A
5336269 Smits Aug 1994 A
5357696 Gray et al. Oct 1994 A
5376128 Bozeman, Jr. Dec 1994 A
5376133 Gramnas Dec 1994 A
5376137 Shorter et al. Dec 1994 A
5376138 Bouchard et al. Dec 1994 A
5376141 Phillips Dec 1994 A
5382373 Carlson et al. Jan 1995 A
5383939 James Jan 1995 A
5394132 Poil Feb 1995 A
5397287 Lindfors Mar 1995 A
5405407 Kodama et al. Apr 1995 A
5405409 Knoth Apr 1995 A
5405410 Arbogast et al. Apr 1995 A
5405510 Betts et al. Apr 1995 A
5408873 Schmidt et al. Apr 1995 A
5413611 Haslam, II et al. May 1995 A
5422558 Stewart Jun 1995 A
5437611 Stern Aug 1995 A
5443521 Knoth et al. Aug 1995 A
5443524 Sawamura et al. Aug 1995 A
5443528 Allen Aug 1995 A
5455497 Hirose et al. Oct 1995 A
5472412 Knoth Dec 1995 A
5476441 Durfee et al. Dec 1995 A
5504415 Podrazhansky et al. Apr 1996 A
D372536 Grifka Aug 1996 S
5545232 Van de Veen Aug 1996 A
5545233 Fitzlaff Aug 1996 A
5551525 Pack et al. Sep 1996 A
5563458 Ericson Oct 1996 A
5566479 Gray et al. Oct 1996 A
5571205 James Nov 1996 A
5571210 Lindh Nov 1996 A
5571212 Cornelius Nov 1996 A
5571213 Allen Nov 1996 A
5583476 Langford Dec 1996 A
5586557 Nelson et al. Dec 1996 A
5624389 Zepf Apr 1997 A
5642096 Leyerer et al. Jun 1997 A
5645590 Van de Veen Jul 1997 A
5645752 Weiss et al. Jul 1997 A
5650704 Pratt et al. Jul 1997 A
5656915 Eaves Aug 1997 A
D383542 Wellershaus et al. Sep 1997 S
5662693 Johnson et al. Sep 1997 A
5670077 Carlson et al. Sep 1997 A
5678448 Fullen et al. Oct 1997 A
5683615 Munoz Nov 1997 A
5695527 Allen Dec 1997 A
5704945 Wagner et al. Jan 1998 A
5704946 Greene Jan 1998 A
5711746 Carlson Jan 1998 A
5728170 Becker et al. Mar 1998 A
5728174 Fitzlaff Mar 1998 A
5746774 Kramer et al. May 1998 A
5749533 Daniels May 1998 A
5755812 Becker et al. May 1998 A
5755813 Krukenberg May 1998 A
5779735 Molino Jul 1998 A
5800561 Rodriguez Sep 1998 A
5800568 Atkinson et al. Sep 1998 A
5810752 Grifka Sep 1998 A
5823309 Gopalswamy et al. Oct 1998 A
D402368 Holzapfel Dec 1998 S
5842547 Carlson et al. Dec 1998 A
D407490 Zepf et al. Mar 1999 S
5878851 Carlson et al. Mar 1999 A
5888212 Petrofsky et al. Mar 1999 A
5888213 Sears et al. Mar 1999 A
5888236 van de Veen Mar 1999 A
5888239 Wellershaus et al. Mar 1999 A
5888246 Gow Mar 1999 A
5893891 Zahedi Apr 1999 A
5895430 O'Connor Apr 1999 A
5899869 Barrack, Jr. et al. May 1999 A
5900184 Weiss et al. May 1999 A
5906767 Karol et al. May 1999 A
5919149 Allum Jul 1999 A
5929332 Brown Jul 1999 A
5941913 Woolnough et al. Aug 1999 A
5947238 Jolly et al. Sep 1999 A
5948021 Radcliffe Sep 1999 A
5955667 Fyfe Sep 1999 A
5957981 Gramnas Sep 1999 A
5960918 Moser et al. Oct 1999 A
5967273 Hampton Oct 1999 A
5972035 Blatchford Oct 1999 A
5982156 Weimer et al. Nov 1999 A
5984972 Huston et al. Nov 1999 A
5998930 Upadhyay et al. Dec 1999 A
6006412 Bergmann et al. Dec 1999 A
6007582 May Dec 1999 A
RE36521 Hiemisch Jan 2000 E
6039091 Rodgers et al. Mar 2000 A
6061577 Andrieu et al. May 2000 A
6080123 Pansiera Jun 2000 A
6086616 Okuda et al. Jul 2000 A
6091977 Tarjan et al. Jul 2000 A
6093162 Fairleigh et al. Jul 2000 A
6095486 Ivers et al. Aug 2000 A
6113642 Petrofsky et al. Sep 2000 A
6117177 Chen et al. Sep 2000 A
6129690 Hamlin et al. Oct 2000 A
6129766 Johnson et al. Oct 2000 A
6139586 Wagner et al. Oct 2000 A
6151624 Teare et al. Nov 2000 A
6164967 Sale Dec 2000 A
6165226 Wagner Dec 2000 A
6168634 Schmitz Jan 2001 B1
6183425 Whalen et al. Feb 2001 B1
6185614 Cuomo et al. Feb 2001 B1
6187051 Gerad van de Veen Feb 2001 B1
D439339 Sawatzki Mar 2001 S
6195921 Truong Mar 2001 B1
6206932 Johnson Mar 2001 B1
6206933 Shorter et al. Mar 2001 B1
6206934 Phillips Mar 2001 B1
6241775 Blatchford Jun 2001 B1
D446304 Sawatzki Aug 2001 S
6301964 Fyfe et al. Oct 2001 B1
6342076 Lundborg Jan 2002 B1
6350286 Atkinson et al. Feb 2002 B1
6352144 Brooks Mar 2002 B1
6361570 Gow Mar 2002 B1
6373152 Wang et al. Apr 2002 B1
6378190 Akeel Apr 2002 B2
6379393 Mavroidis et al. Apr 2002 B1
6395193 Kintz et al. May 2002 B1
6409695 Connelly Jun 2002 B1
6423098 Biedermann Jul 2002 B1
6425925 Grundei Jul 2002 B1
6430843 Potter et al. Aug 2002 B1
6436149 Rincoe Aug 2002 B1
6443993 Koniuk Sep 2002 B1
6443995 Townsend et al. Sep 2002 B1
6451481 Lee et al. Sep 2002 B1
6485519 Meyers et al. Nov 2002 B2
6494039 Pratt et al. Dec 2002 B2
6500210 Sabolich et al. Dec 2002 B1
6513381 Fyfe et al. Feb 2003 B2
6517585 Zahedi et al. Feb 2003 B1
6517858 Le Moel et al. Feb 2003 B1
6522266 Soehren et al. Feb 2003 B1
6537322 Johnson et al. Mar 2003 B1
6543987 Ehrat Apr 2003 B2
6574655 Libert et al. Jun 2003 B1
6587728 Fang et al. Jul 2003 B2
6589287 Lundborg Jul 2003 B2
6599439 Iyengar Jul 2003 B2
6602295 Doddroe et al. Aug 2003 B1
6610101 Herr et al. Aug 2003 B2
6613097 Cooper Sep 2003 B1
6645252 Asai et al. Nov 2003 B2
6663673 Christensen Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6679920 Biedermann et al. Jan 2004 B2
6695885 Schulman et al. Feb 2004 B2
6704024 Robotham et al. Mar 2004 B2
6704582 Le-Faucheur et al. Mar 2004 B2
6719806 Zahedi et al. Apr 2004 B1
6733180 Nakamura May 2004 B2
6740123 Davalli et al. May 2004 B2
6740125 Mosler May 2004 B2
6743260 Townsend et al. Jun 2004 B2
6755870 Biedermann et al. Jun 2004 B1
6761743 Johnson Jul 2004 B1
6764520 Deffenbaugh et al. Jul 2004 B2
6770045 Naft et al. Aug 2004 B2
6780343 Hata et al. Aug 2004 B2
6805677 Simmons Oct 2004 B2
6811571 Phillips Nov 2004 B1
6813582 Levi et al. Nov 2004 B2
6824569 Okediji Nov 2004 B2
D499487 Bedard et al. Dec 2004 S
D501925 Bedard et al. Feb 2005 S
6855170 Gramnas Feb 2005 B2
6875241 Christensen Apr 2005 B2
6876135 Pelrine et al. Apr 2005 B2
6908488 Passivaara et al. Jun 2005 B2
6910331 Asai et al. Jun 2005 B2
6918308 Biedermann Jul 2005 B2
6955692 Grundei Oct 2005 B2
6966882 Horst Nov 2005 B2
6966933 Christensen Nov 2005 B2
7025792 Collier Apr 2006 B2
7029500 Martin Apr 2006 B2
7042197 Turner et al. May 2006 B2
7063727 Phillips et al. Jun 2006 B2
7066896 Kiselik Jun 2006 B1
7066964 Wild Jun 2006 B2
7101487 Hsu et al. Sep 2006 B2
7118601 Yasui et al. Oct 2006 B2
7131998 Pasolini Nov 2006 B2
7137998 Bedard et al. Nov 2006 B2
7147667 Bedard Dec 2006 B2
7150762 Caspers Dec 2006 B2
7164967 Etienne-Cummings et al. Jan 2007 B2
7182738 Bonutti et al. Feb 2007 B2
7198071 Bisbee, III et al. Apr 2007 B2
7209788 Nicolelis et al. Apr 2007 B2
7279009 Herr et al. Oct 2007 B2
7295892 Herr et al. Nov 2007 B2
7300240 Brogardh Nov 2007 B2
7308333 Kern et al. Dec 2007 B2
7313463 Herr et al. Dec 2007 B2
7314490 Bedard et al. Jan 2008 B2
7381192 Brodard et al. Jun 2008 B2
7393364 Martin Jul 2008 B2
7396337 McBean et al. Jul 2008 B2
7410338 Schiele et al. Aug 2008 B2
7410471 Campbell et al. Aug 2008 B1
7410472 Yakimovich et al. Aug 2008 B2
7431737 Ragnarsdottir et al. Oct 2008 B2
7455696 Bisbee, III et al. Nov 2008 B2
7462201 Christensen Dec 2008 B2
7485152 Haynes et al. Feb 2009 B2
7503900 Goswami Mar 2009 B2
7520904 Christensen Apr 2009 B2
7531006 Clausen et al. May 2009 B2
7552664 Bulatowicz Jun 2009 B2
7575602 Amirouche et al. Aug 2009 B2
7578799 Thorsteinsson et al. Aug 2009 B2
7588604 Okuda et al. Sep 2009 B2
7637957 Ragnarsdottir et al. Dec 2009 B2
7637959 Clausen et al. Dec 2009 B2
7641700 Yasui Jan 2010 B2
7655050 Palmer et al. Feb 2010 B2
7691154 Asgeirsson et al. Apr 2010 B2
7736394 Bedard et al. Jun 2010 B2
7794505 Clausen et al. Sep 2010 B2
7799091 Herr et al. Sep 2010 B2
7811333 Jonsson et al. Oct 2010 B2
7811334 Ragnarsdottir et al. Oct 2010 B2
7815689 Bedard et al. Oct 2010 B2
7862620 Clausen et al. Jan 2011 B2
7867284 Bedard Jan 2011 B2
7867285 Clausen et al. Jan 2011 B2
7896927 Clausen et al. Mar 2011 B2
7918808 Simmons Apr 2011 B2
7942935 Iversen et al. May 2011 B2
7955398 Bedard et al. Jun 2011 B2
7992849 Sugar et al. Aug 2011 B2
8007544 Jonsson et al. Aug 2011 B2
8048172 Jonsson et al. Nov 2011 B2
8057550 Clausen Nov 2011 B2
8075633 Herr et al. Dec 2011 B2
8083807 Auberger et al. Dec 2011 B2
8087498 Dupuis et al. Jan 2012 B2
8109890 Kamiar et al. Feb 2012 B2
8122772 Clausen et al. Feb 2012 B2
8142370 Weinberg et al. Mar 2012 B2
8231687 Bédard et al. Jul 2012 B2
8287477 Herr et al. Oct 2012 B1
8323354 Bedard et al. Dec 2012 B2
8376971 Herr et al. Feb 2013 B1
8403997 Sykes et al. Mar 2013 B2
8435309 Gilbert et al. May 2013 B2
8500823 Herr et al. Aug 2013 B2
8512415 Herr et al. Aug 2013 B2
8551184 Herr Oct 2013 B1
8601897 Lauzier et al. Dec 2013 B2
8617254 Bisbee, III et al. Dec 2013 B2
8657886 Clausen et al. Feb 2014 B2
8702811 Ragnarsdottir et al. Apr 2014 B2
8790282 Jung et al. Jul 2014 B2
8801802 Oddsson et al. Aug 2014 B2
8814949 Gramnaes Aug 2014 B2
8852292 Ragnarsdottir et al. Oct 2014 B2
8986397 Bédard et al. Mar 2015 B2
9044346 Langlois et al. Jun 2015 B2
9060884 Langlois Jun 2015 B2
9066819 Gramnaes Jun 2015 B2
20010029400 Deffenbaugh et al. Oct 2001 A1
20020007690 Song et al. Jan 2002 A1
20020079857 Ishii et al. Jun 2002 A1
20020087216 Atkinson et al. Jul 2002 A1
20020138153 Koniuk Sep 2002 A1
20030019700 Wittig Jan 2003 A1
20030125814 Paasivaara et al. Jul 2003 A1
20040054423 Martin Mar 2004 A1
20040064195 Herr Apr 2004 A1
20040083007 Molino et al. Apr 2004 A1
20040153484 Unno Aug 2004 A1
20040215111 Bonutti et al. Oct 2004 A1
20050010139 Aminian et al. Jan 2005 A1
20050049719 Wilson Mar 2005 A1
20050070834 Herr et al. Mar 2005 A1
20050107889 Bedard et al. May 2005 A1
20050113973 Endo et al. May 2005 A1
20050137717 Gramnas et al. Jun 2005 A1
20050216097 Rifkin Sep 2005 A1
20050234562 Okuda Oct 2005 A1
20050283257 Bisbee et al. Dec 2005 A1
20060069336 Krebs et al. Mar 2006 A1
20060122710 Bedard Jun 2006 A1
20060122711 Bedard et al. Jun 2006 A1
20060136072 Bisbee et al. Jun 2006 A1
20060173552 Roy Aug 2006 A1
20060184252 Oddsson et al. Aug 2006 A1
20060184280 Oddsson et al. Aug 2006 A1
20060189899 Flaherty et al. Aug 2006 A1
20060249315 Herr et al. Nov 2006 A1
20060259153 Harn et al. Nov 2006 A1
20070027557 Jonsson et al. Feb 2007 A1
20070043449 Herr et al. Feb 2007 A1
20070050044 Haynes et al. Mar 2007 A1
20070123997 Herr et al. May 2007 A1
20070129653 Sugar et al. Jun 2007 A1
20070162152 Herr et al. Jul 2007 A1
20070233279 Kazerooni et al. Oct 2007 A1
20080004718 Mosler Jan 2008 A1
20080046096 Bedard et al. Feb 2008 A1
20080097269 Weinberg et al. Apr 2008 A1
20080141813 Ehrat Jun 2008 A1
20080249315 Benson Oct 2008 A1
20080306612 Mosler Dec 2008 A1
20090030344 Moser et al. Jan 2009 A1
20090088912 Rajaraman Apr 2009 A1
20090265018 Goldfarb et al. Oct 2009 A1
20090299480 Gilbert et al. Dec 2009 A1
20100023133 Fairbanks et al. Jan 2010 A1
20100113980 Herr et al. May 2010 A1
20100131101 Engeberg et al. May 2010 A1
20100160844 Gilbert et al. Jun 2010 A1
20100161077 Boone et al. Jun 2010 A1
20100179668 Herr et al. Jul 2010 A1
20100185124 Bisbee, III et al. Jul 2010 A1
20100185301 Hansen et al. Jul 2010 A1
20100262260 Bédard et al. Oct 2010 A1
20100275718 Stuart et al. Nov 2010 A1
20100305716 Pusch et al. Dec 2010 A1
20100324699 Herr et al. Dec 2010 A1
20110125290 Langlois May 2011 A1
20110130847 Bedard et al. Jun 2011 A1
20110132131 Worz Jun 2011 A1
20110137429 Bedard Jun 2011 A1
20110202144 Palmer et al. Aug 2011 A1
20110208322 Rifkin et al. Aug 2011 A1
20110224804 Clausen et al. Sep 2011 A1
20110295384 Herr et al. Dec 2011 A1
20120016492 Clausen Jan 2012 A1
20120078415 Kubo et al. Mar 2012 A1
20120191221 Bedard et al. Jul 2012 A1
20120209405 Herr et al. Aug 2012 A1
20120232672 Ragnarsdottir et al. Sep 2012 A1
20130035769 Bedard et al. Feb 2013 A1
20130118287 Holgate May 2013 A1
20130142608 Zhang et al. Jun 2013 A1
20130144402 Clausen et al. Jun 2013 A1
20130173022 Arabian et al. Jul 2013 A1
20130204395 Gramnaes Aug 2013 A1
20130218295 Holgate et al. Aug 2013 A1
20130268093 Gilbert et al. Oct 2013 A1
20130297041 Bedard et al. Nov 2013 A1
20140074243 Holgate Mar 2014 A1
20140081424 Herr et al. Mar 2014 A1
20140114437 Herr et al. Apr 2014 A1
20140121782 Herr et al. May 2014 A1
20140156025 Bisbee, III et al. Jun 2014 A1
20140200680 Holgate et al. Jul 2014 A1
20140243997 Clausen et al. Aug 2014 A1
20140277586 Clausen Sep 2014 A1
20140330393 Ward et al. Nov 2014 A1
20150032225 Oddsson et al. Jan 2015 A1
20150073566 Ragnarsdottir et al. Mar 2015 A1
20150164661 Ragnarsdottir et al. Jun 2015 A1
Foreign Referenced Citations (117)
Number Date Country
2405356 Oct 2001 CA
2494365 Mar 2004 CA
2543061 Jun 2005 CA
543277 Dec 1973 CH
2043873 Sep 1989 CN
1215614 May 1999 CN
2400072 Oct 2000 CN
1929797 Mar 2007 CN
3543291 Jun 1987 DE
3923056 Jan 1991 DE
3923057 Jan 1991 DE
4305213 Aug 1993 DE
4318901 Jan 1994 DE
4229330 Mar 1994 DE
195 21 464 Mar 1997 DE
0358056 Mar 1990 EP
0380060 Aug 1990 EP
0503775 Sep 1992 EP
0549855 Jul 1993 EP
0628296 Dec 1994 EP
0654254 May 1995 EP
0718951 Jun 1996 EP
0902547 Mar 1999 EP
1066 793 Jan 2001 EP
1125825 Jan 2001 EP
1107420 Jun 2001 EP
1166726 Jan 2002 EP
1169982 Jan 2002 EP
1 410 780 Apr 2004 EP
1417942 May 2004 EP
1 442 704 Aug 2004 EP
1 547 567 Jun 2005 EP
1 792 597 Jun 2007 EP
2 564 817 Mar 2013 EP
2 702 963 Mar 2014 EP
2293185 Jul 1976 FR
2623086 Nov 1987 FR
2816463 May 2002 FR
2201260 Aug 1988 GB
2 244 006 Nov 1991 GB
2 260 495 Apr 1993 GB
2 268 070 Jan 1994 GB
2 301 776 Dec 1996 GB
2 302 949 Feb 1997 GB
2 334 891 Sep 1999 GB
2 338 653 Dec 1999 GB
2 343 848 May 2000 GB
2 367 753 Apr 2002 GB
5932453 Feb 1984 JP
59-071747 Apr 1984 JP
5971747 Apr 1984 JP
59-088147 May 1984 JP
60081530 May 1985 JP
60-177102 Sep 1985 JP
59-189843 Oct 1985 JP
01-244748 Sep 1989 JP
03-181633 Aug 1991 JP
04-78337 Mar 1992 JP
05-123348 May 1993 JP
5-161668 Jun 1993 JP
7-24766 Jan 1995 JP
11056885 Mar 1999 JP
11000345 Jun 1999 JP
11-215793 Aug 1999 JP
2001277175 Oct 2001 JP
2002191654 Jul 2002 JP
2003250824 Sep 2003 JP
2004-089359 Mar 2004 JP
2005-500 Jan 2005 JP
2005-536317 Dec 2005 JP
2009-153660 Jul 2009 JP
20020041137 Jun 2002 KR
1447366 Dec 1988 SU
1731210 May 1992 SU
WO 9324080 Dec 1993 WO
WO 9406374 Mar 1994 WO
WO 9409727 May 1994 WO
WO 9526171 Oct 1995 WO
WO 9639110 Dec 1996 WO
WO 9641599 Dec 1996 WO
WO 9700661 Jan 1997 WO
WO 9727822 Aug 1997 WO
WO 9825552 Jun 1998 WO
WO 9838951 Sep 1998 WO
WO 9900075 Jan 1999 WO
WO 9905991 Feb 1999 WO
WO 9908621 Feb 1999 WO
WO 9929272 Jun 1999 WO
WO 9955261 Nov 1999 WO
WO 0027318 May 2000 WO
WO 0071061 Nov 2000 WO
WO 0117466 Mar 2001 WO
WO 02080825 Oct 2002 WO
WO 03003953 Jan 2003 WO
WO 03088373 Oct 2003 WO
WO 2004017872 Mar 2004 WO
WO 2004017873 Mar 2004 WO
WO 2004017890 Mar 2004 WO
WO 2004092606 Oct 2004 WO
WO 2005041819 May 2005 WO
WO 2005048887 Jun 2005 WO
WO 2005051248 Jun 2005 WO
WO 2005079712 Sep 2005 WO
WO 2006024876 Mar 2006 WO
WO 2006076164 Jul 2006 WO
WO 2007025116 Mar 2007 WO
WO 2008080231 Jul 2008 WO
WO 2008080232 Jul 2008 WO
WO 2008080233 Jul 2008 WO
WO 2008080234 Jul 2008 WO
WO 2010027968 Mar 2010 WO
WO 2011005482 Jan 2011 WO
WO 2011096965 Aug 2011 WO
WO 2011100117 Aug 2011 WO
WO 2011100118 Aug 2011 WO
WO 2013006585 Jan 2013 WO
WO 2013148726 Oct 2013 WO
Non-Patent Literature Citations (186)
Entry
2007/0050047, including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Mar. 1, 2007, Ragnarsdottlr et al.
2010/0324456, including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Dec. 23, 2010, Jónsson et al.
2011/0106274, including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, May 5, 2011, Ragnarsdottir et al.
2011/0245931, including its ongoing prosecution history, including without limitation Office Actions, Amendments, Remarks, and any other potentially relevant documents, Oct. 6, 2011, Clausen et al.
“MT9 Inertial 3D Motion Tracker,” Xsens Technologies B.V., available at http://www.xsens.com/download/MT9—brochure.pdf (at least as early as Oct. 2004), printed Jul. 20, 2006.
Blaya, et al., “Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, No. 1; pp. 24-31, Mar. 2004.
Blaya, Force-Controllable Ankle Foot Orthosis (AFO) to Assist Drop Foot Gait, Feb. 2003 (believed to be catalogued on or after Jul. 8, 2003).
Blumentritt, Siegmar, Ph.D., et al., Design Principles, Biomedical Data and Clinical Experience With A Polycentric Knee Offering Controlled Stance Phase Knee Flexion: a Preliminary Report, Journal of Prothetics and Orthotics, 1997, vol. 1, Issue 9, pp. 18-24.
Complaint for Patent Infringement, Ossur v. iWalk, Nov. 15, 2011, pp. 85.
Defendant iWalk's Answer and Counterclaim to Plaintiffs Complaint for Patent Infringement, Ossurv. iWalk, Jan. 6, 2012, pp. 95.
Elliott, Scott B., MR Microprocessor-Controlled Swing and Stance, Presentation to American Academy of Orthotists & Prosthetists, Feb. 4, 2004.
Flowers, et al., Journal of Biomechanical Engineering: Transactions of the ASME; Feb. 1977, pp. 3-8.
Gelat, Thierry et al., Adaptation of the gait initiation process for stepping on to a new level using a single step, Exp Brain Res (2000) 133:538-546, Jun. 21, 2000, pp. 9.
Gronqvist, Raoul et al., Human-centered approaches in slipperiness measurement, Ergonomics, Oct. 20, 2001, vol. 44, Issue 13, pp. 1167-1199 (32 pages).
Hanson, James P. et al., Predicting slips and falls considering required and available friction, Ergonomics, 1999, vol. 42, Issue 12, pp. 1619-1633 (15 pages).
Herr, et al., “User-adaptive control of a magnetorheological prosthetic knee”, Industrial Robot: an International Journal, vol. 30, No. 1, (2003) pp. 42-55.
Herr, et al., Patient-Adaptive Prosthetic and Orthotic Leg Systems, 12th Nordic Baltic Conference on Biomedical Engineering and Medical Physics, Proceedings of the International Federation for Medical & Biological Engineering, 2002.
Hill, Stephen W. et al., Altered kinetic strategy for the control of swing limb elevation over obstacles in unilateral below-knee amputee gait, Journal of Biomechanics, 1999, vol. 32, pp. 545-549 (5 pages).
Jones, S. F. et al., The gait initiation process in unilateral lower-limb amputees when stepping up and stepping down to a new level, Clinical Biomechanics, 2005, vol. 20, pp. 405-419 (9 pages).
Kirsner, Scott, A Step in the Right Direction Biomedical Horizons Expanding, Boston Globe, Mar. 17, 2003.
Kuster, M., et al., Kinematic and kinetic comparison of downhill and level walking, Clinical Biomechanics, 1995, vol. 10, Issue 2, pp. 79-84 (6 pages).
Lelas, et al., Hydraulic versus Magnetorheological-based Electronic Knee Protheses: A Clinical Comparison, Harvard Medical School, Dept . . . of Phys. Med. and Rehab., Boston, MA, pp. 16-Jan.
Michel, V. et al., The strategies to regulate and to modulate the propulsive forces during gait initiation in lower limb amputees, Exp Brain Res, May 27, 2004, vol. 158, pp. 356-365 (10 pages).
Moseley, Anne M. et al., High- and low-ankle flexibility and motor task performance, Gait and Posture, 2003, vol. 18, pp. 73-80 (8 pages).
Nadeau, S. et al., Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking?, Clinical Biomechanics, 2003, vol. 18, pp. 950-959 (10 pages).
Otto Bock Orthopadische Industrie, C-Leg A new dimension in amputee mobility, Otto Bock Data Sheet, 1997.
Otto Bock Orthopadische Industrie, The Electronic C-Leg Compact Leg Prosthesis System: Instructions for Use, 2002.
Otto Bock Orthopadische Industrie, The Electronic C-Leg Knee Joint System: Instructions for Use, available at http://www.ottobockus.com/products/lower—limb—prosthetics/c-leg—instructions.pdf, 32 pages (printed Jul. 20, 2006).
Popovik, D., et al., Optimal Control for an Above-Knee Prosthesis With Two Degrees Of Freedom, J. Biomechanics, 1995, vol. 1, Issue 28, pp. 89-98.
Powers, Christopher M. et al., Stair ambulation in persons with transtibial amputation: An analysis of the Seattle LightFootTM, Journal of Rehabilitation Research and Development, Jan. 1997, vol. 34, Issue 1, pp. 9-18 (10 pages).
Rao, Sreesha S. et al., Segment Velocities in Normal and Transtibial Amputees: Prosthetic Design Implications, IEEE Transactions on Rehabilitation Engineering, Jun. 1998, vol. 6, Issue 2, pp. 219-226 (8 pages).
Redfern, Mark S. et al., Biomechanics of descending ramps, Gait and Posture, 1997, vol. 6, pp. 119-125 (7 pages).
Reiner, Robert et al., Stair ascent and descent at different inclinations, Gait and Posture, 2002, vol. 15, pp. 32-44 (13 pages).
State-Of-The Art Prosthetic Leg Incorporates Magneto-Rheological Technology, Medical Product Manufacturing News, Nov. 2000, pp. 42.
Suga, T., et al., “Newly designed computer controlled knee-ankle-foot orthosis (Intelligent Orthosis)”, Prosthetics and Orthotics International, 1998, 22, 230-239.
Thakkar, Sneha, Energy Economy Gait Analysis of an Autoadaptive Prosthetic Knee, Master's Thesis submitted to the Dept. of Electrical Engineering and Computer Science, MIT, Dept. of Electrical Engineering and Computer Science, MIT, 2002, pp. 1-58.
Townsend M A et al., “Biomechanics and modeling of bipedal climbing and descending.” Journal of Biomechanics 1976, vol. 9, No. 4, pp. 227-239, XP008078405.
Van Der Loos, H.F.M., et al, ProVAR Assistive Robot System Architecture, Proceedings of the 1999 IEEE International Conference on Robotics & Automation; Detroit, Michigan, May 1999.
Wilkenfeld, Ari Ph.D., et al., An Auto-Adaptive External Knee Prosthesis, Artificial Intelligence Laboratory, MIT, Cambridge, Massachusetts, Sep. 2000, pp. 3.
Wilkenfeld, Ari, Ph.D., Biologically inspired autoadaptive control of a knee prosthesis, Dissertation Abstract, MIT, Cambridge, Massachusetts, Sep. 2000, pp. 1.
U.S. Appl. No. 13/754,298, Clausen et al.
Abbas, et al., Neural Network Control of Functional Neuromuscular Stimulation Systems: Computer Stimulation Studies, 1995.
Andrews, BIJ., et al., Hybrid FES Orthosis Incorporating Closed Loop Control and Sensory Feedback, J. Biomed. Eng. 1988, vol. 10, April, 189-195.
Au, S. K., et al. Powered Ankle-Foot Prosthesis for the Improvement of Amputee Ambulation, Proceedings of the 29th Annual International Conference of the IEEE, Aug. 23-26, 2007.
Bachmann, et al., Inertial and Magnetic Tracking of Limb Segment Orientation for Inserting Humans into Synthetic Environments, 2000.
Bar, A., et al., “Adaptive Microcomputer Control of an Artificial Knee in Level Walking,” J. Biomechanical Eng., vol. 5, pp. 145-150, 1983.
Baten, Inertial Sensing in Ambulatory Back Load Estimation, 1996.
Benedetti, Gait Analysis of Patients Affected by Post-Traumatic Ankle Arthrosis Treated with Osteochondral Allograft Transplantation, SIAMOC 2006 Congress Abstracts/Gait & Posture.
Bogert, et al., A Method for Inverse Dynamic Analysis Using Accelerometry, 1995.
Bortz, A New Mathematical Formulation for Strapdown Inertial Navigation, 1971.
Bouten, A Triaxial Accelerometer and Portable Data Processing Unit for the Assessment of Daily Physical Activity, 1997.
Bouten, Carlifin V., et al., Assessment of Energy Expenditure for Physical Activity Using a Triaxial Accelerometer. Med. Sci. Sports Exerc., vol. 26, No. 12, pp. 151-1523, 1994.
Crago, et al., New Control Strategies for Neuroprosthetic Systems, 1996.
Dai R, et al., Application of Tilt Sensors in Functional Electrical Stimulation. IEEE Trans. Rehab. Eng. 1996; 4(2):63-71.
Ferrari, A., First in vivo Assessment of “Outwalk”, A Novel Protocol for Clinical Gait Analysis Based on Inertial and Magnetic Sensors, Med Biol. Eng. Comput (2010) 48:1-15, published online Nov. 13, 2009.
Fisekovic, et al., New Controller for Functional Electrical Stimulation Systems, 2000.
Foerster, et al., Detection of Posture and Motion by Accelerometry—A Validation Study in Ambulatory Monitoring, 1999.
Foxlin, et al., Miniature 6-DOF Inertial System for Tracking HMDs, 1998.
Frank, K., Reliable Real-Time Recognition of Motion Related Human Activities Using MEMS Inertial Sensors.
Fujita, K. et al., Joint Angle Control with Command Filter for Human Ankle Movement Using Functional Electrical Stimulation, Proceedings of the 9th Annual Conference of the IEEE Engineering in Medicine and Biology Society, Nov. 13-16, 1987.
Gard, Steven A., Ph.D., Use of Quantitative Gait Analysis for the Evaluation of Prosthetic Walking Performance, Journal of Prosthetics & Orthotics, vol. 18, Issue 6, pp. P93-P104, Jan. 2006.
Godha, S., et al., Integrated GPS/INS System for Pedestrian Navigation in a Signal Degraded Environment. ION GNSS 2006, Fort Worth TX, Sep. 26-29, 2006, p. 1-14.
Graps, A., An Introduction to Wavelets, IEEE Computational Science & Engineering, 1995.
Hanafusa et al., “A Robot Hand with Elastic Fingers and Its Application to Assembly Process,” pp. 337-359, Robot Motion, Brady et al., MIT Press, Cambridge, MA, 1982.
Hashimoto et al., “An instrumented compliant wrist using a parallel mechanism,” Japan/USA Symposium on Flexible Automation, vol. 1, pp. 741-744, ASME, 1992.
Hayes, W.C., et al., Leg Motion Analysis During Gait by Multiaxial Accelerometry: Theoretical Foundations and Preliminary Validations. Journal of Biomechanical Engineering, vol. 105, Aug. 1983, p. 283-289.
Heyn, Andreas, et al., The Kinematics of the Swing Phase Obtained From Accelerometer and Gyroscope Measurements, 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Amsterdam 1996, p. 463-464.
Howard, “Joint and Actuator Design for Enhanced Stability in Robotic Force Control,” Ph.D. thesis, Massachusetts Inst. of Technology, Dept. of Aeronautics and Astronautics, 1990.
Jonic, et al., Three Machine Learning Techniques for Automatic Determination of Rules to Control Locomotion, 1999.
Kidder, Steven M., et al., A System for the Analysis of Foot and Ankle Kinematics During Gait. EEE Transactions on Rehabilitation Engineering, vol. 4, No. 1, Mar. 1996.
Kirkwood, et al., Automatic Detection of Gait Events: A Case Study Using Inductive Learning Techniques, 1989.
Kooij, et al., A Multisensory Integration Model of Human Stance Control, 1998.
Kostov, et al., Machine Learning in Control of Functional Electrical Stimulation Systems for Locomotion, 1995.
LaFortune, Mario A., Three Dimensional Acceleration of the Tibia During Walking and Running. J. Biomechanics vol. 24, No. 10, pp. 877-886, 1991.
Lee, S., Activity and Location Recognition Using Wearable Sensors, Pervasive Computing, IEEE, 2002.
Light, L.H., et al., Skeletal Transients on Heel Strike in Normal Walking with Different Footwear, . Biomechanics, vol. 13, 1980, pp. 477-480.
Luinge, H.J., Inertial Sensing of Movement. Doctoral Thesis, Twente University Press, Enschede, Netherlands (2002) p. 9-13.
Martens, W., Exploring Information Content and Some Application of Body Mounted Piezo-Resistive Accelerometers, Phy Vision b.v., Gemert, The Netherlands.
Mayagoitia, Ruth E., et al., Accelerometer and Rate Gyroscope Measurement of Kinematics: An Inexpensive Alternative to Optical Motion Analysis Systems. Journal of Biomechanics 35 (2002) 537-542.
McNealy, Lexyne L. and Steven A. Gard, Effect of Prosthetic Ankle Units on the Gait of Persons with Bilateral Trans-Femoral Amputations, Prosthetics and Orthotics International, 2008 32:111.
Moe-Nilssen, A New Method for Evaluating Motor Control in Gait Under Real-Life Environmental Conditions, Parts 1—The instrument; Part 2: Gait Analysis, 1997.
Morris, J.R. W., Accelerometry—A Technique for the Measurement of Human Body Movements, J. Biomechanis, 1973, vol. 6, pp. 729-736.
Murray, M. Pat, et al. Walking Patterns of Normal Men, The Journal of Bone and Joint Surgery, vol. 46-A, No. 2, Mar. 1964.
Otto Bock's C-Leg, see http://web.archive.org/web/20040215152410/http:/www.ottobockus.com/products/lower—limb—prosthetics/c-leg.asp.
Perry, Jacquelin, MD, Gait Analysis: Normal and Pathological Function, Ch. 4, pp. 51-53, 85-87, 1992.
Petrofsky, Jerrold S., et. al., Feedback Control System for Walking in Man. Comput. Biol. Med. vol. 14, No. 2, pp. 135-149, 1984.
Pfeffer et al. , “Experiments with a Dual-Armed, Cooperative, Flexible-Drivetrain Robot System,” Proc. 1993 IEEE Int. Conf. on Robotics & Automation, vol. 3, pp. 601-608, May 5, 1993.
Raggi, M., et al. Wearable Sensors for the Real-Time Assessment of Gait Temporal Symmetry in Above-Knee Amputees: The ‘SEAG’ Protocol, Abstracts of the 2007 SIAMOC Congress.
Raggi, M., et al., Gait Analysis Through Inertial Sensors in Transfemoral Amputees: Step and Stride Regularity, SIAMOC 2006 Congress Abstracts/Gait & Posture.
Rietman, J. S., et al., Gait Analysis in Prosthetics: Opinions, Ideas, and Conclusions, Prosthetics and Orthotics International, 2002, 26, 50-57.
Robinson, David W. et al., Series Elastic Actuator Development for a Biomimetic Walking Robot, MIT Leg Laboratory, 1999.
Robinson, David William, Design and Analysis of Series Elasticity in Closed-Loop Actuator Force Control, MIT Department of Mechanical Engineering, Jun. 1996.
Sekine, et al., Classification of Waist-Acceleration Signals in a Continuous Walking Record, 2000.
Sin S. W., et al., Significance of Non-Level Walking on Transtibial Prosthesis Fitting with Particular Reference to the Effects of Anterior-Posterior Alignment, Journal of Rehabilitation Research and Development vol. 38 No. 1, Jan./Feb. 2001, p. 1-6.
Smidt, G.L., et al., An Automated Accelerometry System for Gait Analysis, J. Biomechanics. 1977, vol. 10, pp. 367-375.
Su, P-F, et al., The Effects of Increased Prosthetic Ankle Motions on the Gait of Persons with Bilateral Transtibial Amputations, Am. J. Phys. Med. Rehabil., vol. 89, No. 1, Jan. 2010.
Sugano et al., “Force Control of the Robot Finger Joint equipped with Mechanical Compliance Adjuster,” Proc. 1992 IEEE/RSJ Int. Conf. on Intell. Robots & Sys., pp. 2005-2013, Jul. 1992.
Tong, et al., Virtual Artificial Sensor Technique for Functional Electrical Stimulation, 1998.
Tong, Kaiyu and Malcolm H. Granat, A Practical Gait Analysis System Using Gyroscopes, Medical Engineering & Physics, vol. 21, No. 2, Mar. 1999, at 87-94.
Veltink, et al., Detection of Static and Dynamic Activities Using Uniaxial Accelerometers, 1996.
Willemsen, A. TH. M., et al., Real-Time Gait Assessment Utilizing a New Way of Accelerometry. J. Biomechanics vol. 23, No. 8, pp. 859-863, 1990.
Willemsen, Antoon Th. M., et al., Automatic Stance-Swing Phase Detection from Accelerometer Data for Peroneal Nerve Stimulation. IEEE Trasnactions on Biomedical Engineering, vol. 37, No. 12, Dec. 1990, p. 1201-1208.
Williamson, Matthew M., Series Elastic Actuators, Massachusetts Institute of Technology Artificial Intelligence Laboratory, A.I. Technical Report No. 1524, Jan. 1995.
Woodward, M I, et al., Skeletal Accelerations Measured During Different Exercises. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering Medicine 1993 207:79, DOI: 10.1243/PIME—PROC—1993—207—274—02.
Wu, Ge, The Study of Kinematic Transients in Locomotion Using the Integrated Kinematic Sensor, IEEE Transactions on Rehabilitation Engineering, vol. 4, No. 3, Sep. 1996, p. 193-200.
Redacted version of Plaintiff Ossur's Disclosure of Asserted Claims and Infringement Contentions, filed Jun. 11, 2012, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. SACV11-01759 JST (MLGx), 223 pages.
Plaintiff Ossur's Preliminary Proposed Claim Constructions, served Sep. 20, 2012, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061-FDS, 10 pages.
Ossur's Claim Construction and Prehearing Statement filed Oct. 1, 2012, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061-FDS, 17 pages.
Defendant iWalk's Preliminary Invalidity Contentions filed Nov. 30, 2012, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061 FDS, 157 pages.
Redacted version of Defendant iWalk's Preliminary Non-Infringement Contentions filed Nov. 30, 2012, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061 FDS, 20 pages.
Ossur's Identification of Claim Terms and Proposed Constructions served Feb. 1, 2013, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061-FDS, 8 pages.
iWalk's Identification of Disputed Claim Terms and Proposed Constructions, served Feb. 1, 2013, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061-FDS, 5 pages.
Ossur and iWalk's Disputed Claim Terms and Proposed Constructions, exchanged Feb. 5, 2013, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061-FDS, 7 pages.
Ossur's Opening Claim Construction Brief filed Feb. 8, 2013, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061 FDS, 48 pages.
iWalk's Opening Claim Construction Brief filed Feb. 8, 2013, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061 FDS, 33 pages.
Ossur's Responsive Claim Construction Brief filed Feb. 19, 2013, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061 FDS, 23 pages.
iWalk's Responsive Claim Construction Brief filed Feb. 19, 2013, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061 FDS, 19 pages.
Declaration of Steven A. Gard, Ph.D., in Support of Ossur's Responsive Claim Construction Brief Regarding Purported Indefiniteness of Three Disputed Claim Terms, filed Feb. 19, 2013, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061 FDS, 47 pages.
iWalk's Markman Tutorial and Presentation, Feb. 25, 2013, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061 FDS, 94 pages.
Össur's Claim Construction Presentation, Feb. 25, 2013,Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061 FDS, 81 pages.
Transcript of Markman Hearing held Feb. 25, 2013, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061 FDS, 120 pages.
Request for Ex Parte Reexamination of U.S. Pat. No. 7,431,737 (without Appendices A2-A10), Control No. 90/012,731, filed Dec. 5, 2012.
Request for Ex Parte Reexamination of U.S. Pat. No. 7,896,927 (without Appendices A1-A7), Control No. 90/012,732, filed Dec. 5, 2012.
Declaration of Diane Geraci dated Jun. 26, 2012, including Exhibits A, B, and C, submitted as Appendix A3 to the Request for Ex Parte Reexamination of U.S. Pat. No. 7,431,737, filed Dec. 5, 2012, and submitted as Appendix A5 to the Request for Ex Parte Reexamination of U.S. Pat. No. 7,896,927, filed Dec. 5, 2012.
Advanced Materials & Processes, Sep. 2003, vol. 9, Issue 161, pp. 29-30, 3 pages.
Assembly and Adjustment Instructions for 1P50-R, pp. 1-21, PROTEOR, Sep. 2004.
Au S K et al., “An EMG-Position Controlled System for an Active Ankle-Foot Prosthesis: An Initial Experimental Study” Rehabilitation Robotics, 2005. ICORR 2005., 9th International Conference in Chicago, IL, USA Jun. 28-Jul. 1, 2005, Piscataway, NJ, IEEE, Jun. 28, 2005, pp. 375-379, XP008078417.
Carlson et al., “Smart Prosthetics Based on Magnetorheological Fluids”, 8th Annual Symposium on Smart Structures and Materials, Mar. 2001.
Carlson, J. David, What makes a Good MR Fluid?, 8th International Conference on Electrorheological (ER) Fluids and magnetorheological (MR) Suspensions, Nice 7 pages, Jul. 9-13, 2001.
Claiborne Jr., C.J., “Making Inodes Behave,”, Linux Journal, Publ. by SSC Inc, USA, Feb. 2001, No. 82, pp. 94-99.
Copes/Bionic Ankle, The Most Significant Development in Ankle Prosthetics in Over a Half Century, 1985.
Dietl, H. Bargehr, Der Einsatz von Elektronik bei Prothesen zur Versorgung der unteren Extremitat, Med. Orth. Tech. 117 1997, pp. 31-35.
Ferris, D. P., et al., An Ankle-Foot Orthosis Powered by Artificial Pneumatic Muscles, Journal of Applied Biomechanics, May 21, 2005, pp. 189-197.
Grimes, Donald L., An Active Multi-Mode Above-Knee Prosthesis Controller, Massachusetts Institute of Technology 1979, 158 pages, 1979.
LeFebvre, W., “Permissions and Access Control Lists”, UNIX Review's Performance Computing, Publ. by Miller Freeman, USA, Oct. 1998, vol. 16, No. 11, pp. 59-61.
Namespaces in XML, World Wide Web Consortium Working Draft Sep. 16, 1998; Tim bray (Textuality); Dave Hollander (Hewlett-Packard Company); Andrew Layman (Microsoft).
Ossur Academy, 2004 Course Descriptions, Ossur North America, 16 pages.
Otto Bock Orthopadische Industrie GMBH & Co., C-Leg Fitting Statistics (Abstract), Mar. 2000, 4 pages.
Otto Bock, Quality for Life, Software C-Soft, Menu-driven setting of the C-Leg, 2004 1 page.
Otto, Judith, “Prosthetic Knees: What's on the Way?”, The O&P edge, http://www.oandp.com/edge/issues/ articles/2003 -10—02 .asp, Oct. 2003, 5 pages.
Otto, Judith, “Prosthetic Knees: What's Currently New and Impressive?”, The O&P Edge, http://www.oandp.com/edge/issues/articles/2003-10—03.sp, Oct. 2003, 4 pages.
Proteor, Assembly and Adjustrnent Instructions for IP50-R, pp. 1-21, Sep. 2004.
Schmalz T. et al., Energy Efficiency of Trans-Femoral Amputees Walking on Computer-Controlled Prosthetic Knee Joint C-Leg in 3 pages, International Society for Prosthetics and Orthotics: Conference book IXth World Congress ISPO, 1998.
Zamiska, Nicholas, Bionic Knee ‘Learns’ How to Walk, 1 page, The Wall Street Journal, Jul. 6, 2004.
Defendant iWalk's First Amended Answer and Counterclaim to Plaintiffs' Complaint for Patent Infringement, Ossur v iWalk, Jan. 26, 2012, 20 pages.
Defendant's Amended Answer and Counterclaim, filed Feb. 3, 2012, Case No. SACV11-01759 (involving U.S. Pat. No. 7,431,737), Össur Hf v. iWalk, Inc.
Defendant's Reply in Support of Its Motion to Transfer Venue, filed Apr. 23, 2012, Case No. SACV11 01759 (involving U.S. Pat. No. 7,431,737), Össur Hf v. iWalk, Inc.
Memorandum of Points and Authorities in Support of Defendant's Motion to Transfer Venue, filed Apr. 2, 2012, Case No. SACV11-01759 (involving U.S. Pat. No. 7,431,737), Össur Hf v. iWalk, Inc.
Ossur's Reply to iWalk's Amended Counterclaims and Demand for Jury Trial, Ossur v iWalk, Feb. 9, 2012, 8 pages.
R. Tomovic et al., A Finite State Approach to the Synthesis of Bioengineering Control Systems, IEEE Transactions on Human Factors in Electronics, vol. HFE-7, No. 2, Jun. 1966.
Kamiar Aminian et al., Estimation of Speed and Incline of Walking Using Neural Network, IEEE Transactions on Instrumentation and Measurement, vol. 44, No. 3, Jun. 1995, at 743.
Dejan Popovic et al., Control Aspects of Active Above-Knee Prosthesis, International Journal of Man-Machine Studies, vol. 35, Issue 6, Dec. 1991, at 751.
A. Nakagawa, Intelligent Knee Mechanism and the Possibility to Apply the Principle to the Other Joints, Engineering in Medicine and Biology Society, Proceedings of the 20th Annual International Conference of the IEEE, vol. 20, No. 5, Dec. 1998, at 2282.
Peter H. Veltink et al. (1993), The Feasibility of Posture and Movement Detection by Accelerometry, in 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Oct. 28-31, 1993, San Diego, CA, 1230-1231.
U.S. Appl. No. 60/371,974 to Martin, filed Apr. 12, 2002.
Perry, Jacquelin, MD, Gait Analysis: Normal and Pathological Function, 1992.
Sowell, T.T., A Preliminary Clinical Evaluation of the Mauch Hydraulic Foot-Ankle System, 5 Prosthetics and Orthotics International 87 (1981).
Response to Office Action of Jun. 20, 2013 in the Ex Parte Reexamination of U.S. Pat. No. 7,431,737, Control No. 90/012,731, filed Sep. 19, 2013.
Declaration of Steven A. Gard dated Sep. 19, 2013 in Ex Parte Reexamination of U.S. Pat. No. 7,431,737, Control No. 90/012,731, with Exhibits 1, 2, 4, 5, and 6.
Response to Office Action of Jun. 14, 2013 in the Ex Parte Reexamination of U.S. Pat. No. 7,896,927, Control No. 90/012,732, filed Sep. 16, 2013.
Declaration of Steven A. Gard dated Sep. 13, 2013 in Ex Parte Reexamination of U.S. Pat. No. 7,896,927, Control No. 90/012,732.
Office Action in the Ex Parte Reexamination of U.S. Pat. No. 7,431,737, Control No. 90/012,731, dated Jun. 20, 2013.
Office Action in the Ex Parte Reexamination of U.S. Pat. No. 7,896,927, Control No. 90/012,732, dated Jun. 14, 2013.
Ossur's First Amended Preliminary Infringement Disclosures, served Jan. 2013, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061 FDS, 192 pages.
Memorandum and Order on Claim Construction, Aug. 8, 2013, Össur hf v. iWalk, Inc. (involving U.S. Pat. Nos. 7,431,737 and 7,896,927), Case No. 12-CV-11061 FDS, 51 pages.
Flowers, A Man-Interactive Simulator System for Above-Knee Prosthetics Studies, Aug. 1972.
Office Action in the Ex Parte Reexamination of U.S. Pat. No. 7,896,927, Control No. 90/012,732, dated Oct. 25, 2013.
Response to Office Action of Oct. 25, 2013 in the Ex Parte Reexamination of U.S. Pat. No. 7,896,927, Control No. 90/012,732, filed Dec. 23, 2013.
Sigurdsson et al., “12th Nordic Baltic Conference on Biomedical Engineering and Medical Physics,” Proceeding of the International Federation for Medical & Biological Engineering, Jun. 18-22, 2002, Reykjavik, Iceland, pp. 6.
Official Communication in Canadian Application No. 2644222 dated Jun. 26, 2013.
Official Communication in Canadian Application No. 2644222 dated May 21, 2014.
Official Communication in Chinese Application No. 200780015877.6 dated Sep. 16, 2010.
Official Communication in Chinese Application No. 200780015877.6 dated Jul. 30, 2012.
International Preliminary Report on Patentability in PCT Application No. PCT/US2007/005292 dated Sep. 12, 2008.
Office Action in Australian Patent Application No. 2005215769 dated Apr. 6, 2010.
Office Action in Canadian Patent Application No. 2,556,041 dated Nov. 25, 2013.
Office Action in Chinese Patent Application No. 200580008119.2 dated Feb. 6, 2009.
Official Communication in European Application No. 05723136.7 dated Sep. 7, 2010.
Official Communication in European Application No. 12183603.5 dated Jul. 22, 2013.
Official Communication in Japanese Application No. 2006-553355 dated Jun. 2, 2010.
Official Communication in Japanese Application No. 2012-014833 dated May 21, 2013.
Official Communication in Japanese Application No. 2012-014833 dated Feb. 18, 2014.
DIGINFO TV, “Powered Prosthetic Thigh and Leg”, uploaded Nov. 7, 2008 http://www.youtube.com/watch?v=lqjtTzNEd54&feature=youtu.be%3E [Screenshots retrieved Oct. 23, 2014 in 9 pages].
“Extension Spring Design Theory, Spring Rate of Extension Springs,” http://web.archive.org/web/20131209120508/http://springipedia.com/extension-design-theory.asp as archived Dec. 9, 2013 in 1 page.
Otto Bock, Modular Knee Joints, http://www.healthcare.ottobock.com/technical—orthopedics/beinprothesen/sites/knee.htm, printed Jul. 10, 2002, 4 pages.
Perry, Jacquelin MD, “Gait Analysis: Normal and Pathological Function,” Entire Book, 1992.
Related Publications (1)
Number Date Country
20110224804 A1 Sep 2011 US
Provisional Applications (2)
Number Date Country
60544259 Feb 2004 US
60588232 Jul 2004 US
Continuations (1)
Number Date Country
Parent 11367049 Mar 2006 US
Child 13037147 US
Continuation in Parts (2)
Number Date Country
Parent 11056344 Feb 2005 US
Child 11367049 US
Parent 11057391 Feb 2005 US
Child 11367049 Mar 2006 US