Systems and methods for adaptive active noise cancellation for multiple-driver personal audio device

Information

  • Patent Grant
  • 10013966
  • Patent Number
    10,013,966
  • Date Filed
    Tuesday, March 15, 2016
    8 years ago
  • Date Issued
    Tuesday, July 3, 2018
    6 years ago
Abstract
In accordance with embodiments of the present disclosure, a processing circuit may implement an adaptive filter, a first signal injection portion which injects a first additional signal into a first frequency range content source audio signal, and a second signal injection portion which injects a second additional signal into a second frequency range content source audio signal, wherein the first additional signal and the second additional signal are substantially different. The adaptive filter may have a response that generates the antinoise signal from the reference microphone signal to reduce the presence of the ambient audio sounds at the acoustic output, wherein the response of the adaptive filter is shaped in conformity with the reference microphone signal and the error microphone signal by adapting the response of the adaptive filter to minimize the ambient audio sounds in the error microphone signal, wherein the antinoise signal is combined with at least the first frequency range content source audio signal.
Description
FIELD OF DISCLOSURE

The present disclosure relates in general to adaptive noise cancellation in connection with an acoustic transducer, and more particularly, to detection and cancellation of ambient noise present in the vicinity of the acoustic transducer, and particularly for the cancellation of ambient noise in an audio system including multiple drivers for differing frequency bands.


BACKGROUND

Wireless telephones, such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as mp3 players, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing noise cancelling using a microphone to measure ambient acoustic events and then using signal processing to insert an antinoise signal into the output of the device to cancel the ambient acoustic events.


While many audio systems implemented for personal audio devices rely on a single output transducer, in the case of transducers mounted on the housing of a wireless telephone, or a pair of transducers when earspeakers are used or when a wireless telephone or other device employs stereo speakers, for high quality audio reproduction, it may be desirable to provide separate transducers for high and low frequencies, as in high quality earspeakers. However, when implementing active noise cancellation (ANC) in traditional systems, crossover filters present in an earspeaker housing may be present in the antinoise path, and thus may introduce latencies in the antinoise path, which may reduce the effectiveness of the ANC system.


Accordingly, it may be desirable to provide for a multiple transducer driver system that minimizes or reduces such latencies.


SUMMARY

In accordance with the teachings of the present disclosure, certain disadvantages and problems associated with existing approaches to adaptive active noise cancellation may be reduced or eliminated.


In accordance with embodiments of the present disclosure, an integrated circuit for implementing at least a portion of a personal audio device may include a first output, a second output, a reference microphone input, an error microphone, and a processing circuit. The first output may provide a first output signal to a first transducer for reproducing a first frequency range content source audio signal comprising first frequency range content of a source audio signal, the first output signal including both the first frequency range content source audio signal and an antinoise signal for countering the effects of ambient audio sounds in an acoustic output of an earspeaker comprising the first transducer and a second transducer. The second output may provide a second output signal to the second transducer for reproducing a second frequency range content source audio signal comprising second frequency range content of the source audio signal, the second output signal including at least the second frequency range content source audio signal. The reference microphone may be configured to receive a reference microphone signal indicative of the ambient audio sounds. The error microphone input may be configured to receive an error microphone signal indicative of the output of the earspeaker and the ambient audio sounds at the earspeaker. The processing circuit may include an adaptive filter, a first signal injection portion which injects a first additional signal into the first frequency range content source audio signal, and a second signal injection portion which injects a second additional signal into the second frequency range content source audio signal, wherein the first additional signal and the second additional signal are substantially different. The adaptive filter may have a response that generates the antinoise signal from the reference microphone signal to reduce the presence of the ambient audio sounds at the acoustic output, wherein the response of the adaptive filter is shaped in conformity with the reference microphone signal and the error microphone signal by adapting the response of the adaptive filter to minimize the ambient audio sounds in the error microphone signal.


In accordance with embodiments of the present disclosure, a method may include generating a source audio signal for playback to a listener, receiving a reference microphone signal indicative of ambient audio sounds, receiving an error microphone signal indicative of an output of an earspeaker and the ambient audio sounds at the earspeaker, wherein the earspeaker comprises a first transducer for reproducing a first frequency range content source audio signal comprising first frequency range content of the source audio signal and a second transducer for reproducing a second frequency range content source audio signal comprising second frequency range content of the source audio signal, adaptively generating an antinoise signal for countering the effects of ambient audio sounds at an acoustic output of the earspeaker by adapting a response of an adaptive filter that filters the reference microphone signal in conformity with the error microphone signal and the reference microphone signal to minimize the ambient audio sounds in the error microphone signal, injecting a first additional signal into the first frequency range content source audio signal, injecting a second additional signal into the second frequency range content source audio signal, wherein the first additional signal and the second additional signal are substantially different, combining the antinoise signal with the first frequency range content source audio signal to generate a first output signal provided to the first transducer, and generating a second output signal provided to the second transducer, the second output signal including at least the second frequency range content source audio signal.


Technical advantages of the present disclosure may be readily apparent to one of ordinary skill in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.


It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1A is an illustration of an example wireless telephone and a pair of earbuds, in accordance with embodiments of the present disclosure;



FIG. 1B is a schematic diagram of selected circuits within the wireless telephone depicted in FIG. 1A, in accordance with embodiments of the present disclosure;



FIG. 2 is a block diagram of selected circuits within the wireless telephone depicted in FIG. 1A, in accordance with embodiments of the present disclosure; and



FIG. 3 is a block diagram of selected signal processing circuits and selected functional blocks of an ANC circuit, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

The present disclosure encompasses noise cancelling techniques and circuits that can be implemented in a personal audio system, such as a wireless telephone and connected earbuds. The personal audio system may include an adaptive noise cancellation (ANC) circuit that may measure and attempt to cancel the ambient acoustic environment at the earbuds or another output transducer location such as on the housing of a personal audio device that receives or generates the source audio signal. Multiple transducers may be used, including a low-frequency and a high-frequency transducer that reproduce corresponding frequency bands of the source audio to provide a high quality audio output. The ANC circuit may generate one or more antinoise signals which may be respectively provided to one or more of the multiple transducers, to cancel ambient acoustic events at the transducers. A reference microphone may be provided to measure the ambient acoustic environment, which provides an input to one or more adaptive filters that may generate the one or more antinoise signals.



FIG. 1A illustrates a wireless telephone 10 and a pair of earbuds EB1 and EB2, each attached to a corresponding ear 5A, 5B of a listener, in accordance with embodiments of the present disclosure. Wireless telephone 10 may be an example of a device in which the techniques disclosed herein may be employed, but it is understood that not all of the elements or configurations illustrated in wireless telephone 10, or in the circuits depicted in subsequent illustrations, are required. Wireless telephone 10 may be coupled to earbuds EB1, EB2 by a wired or wireless connection (e.g., a BLUETOOTH™ connection). Earbuds EB1, EB2 may each have a corresponding pair of transducers SPKLH/SPKLL and SPKRH/SPKRL, respectively, which may reproduce source audio including distant speech received from wireless telephone 10, ringtones, stored audio program material, and injection of near-end speech (i.e., the speech of the user of wireless telephone 10). Transducers SPKLH and SPKRH may comprise high-frequency transducers or “tweeters” that reproduce the higher range of audible frequencies and transducers SPKLL and SPKRL may comprise low-frequency transducers or “woofers” that reproduce a lower range of audio frequencies. The source audio may also include any other audio that wireless telephone 10 is to reproduce, such as source audio from webpages or other network communications received by wireless telephone 10 and audio alerts, such as battery low and other system event notifications. Reference microphones R1, R2 may be provided on a surface of a housing of respective earbuds EB1, EB2 for measuring the ambient acoustic environment. Another pair of microphones, error microphones E1, E2, may be provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio reproduced by respective transducer pairs SPKLH/SPKLL and SPKRH/SPKRL close to corresponding ears 5A, 5B, when earbuds EB1, EB2 are inserted in the outer portion of ears 5A, 5B.


Wireless telephone 10 may include ANC circuits and features that inject antinoise signals into one or more of transducers SPKLH, SPKLL, SPKRH and SPKRL to improve intelligibility of the distant speech and other audio reproduced by transducers SPKLH, SPKLL, SPKRH and SPKRL. A circuit 14 within wireless telephone 10 may include an audio integrated circuit 20 that receives the signals from reference microphones R1, R2, a near speech microphone NS, and error microphones E1, E2 and interfaces with other integrated circuits, such as an RF integrated circuit 12 containing the wireless telephone transceiver. In other implementations, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that comprises control circuits and other functionality for implementing the entirety of the personal audio device, such as, for example, an MP3 player-on-a-chip integrated circuit. Alternatively, the ANC circuits may be included within the housing of earbuds EB1, EB2 or in a module located along wired connections between wireless telephone 10 and earbuds EB1, EB2. For the purposes of illustration, the ANC circuits may be described as provided within wireless telephone 10, but the above variations are understandable by a person of ordinary skill in the art and the consequent signals that are required between earbuds EB1, EB2, wireless telephone 10, and a third module, if required, can be easily determined for those variations. Near speech microphone NS may be provided at a housing of wireless telephone 10 to capture near-end speech, which may be transmitted from wireless telephone 10 to the other conversation participant(s). Alternatively, near speech microphone NS may be provided on the outer surface of the housing of one of earbuds EB1, EB2, on a boom affixed to one of earbuds EB1, EB2, on a pendant located between wireless telephone 10 and either or both of earbuds EB1, EB2, or other suitable location.



FIG. 1B illustrates a simplified schematic diagram of audio integrated circuits 20A, 20B that include ANC processing, as coupled to reference microphones R1, R2, which provide a measurement of ambient audio sounds Ambient1, Ambient2 which may be filtered by ANC processing circuits within audio integrated circuits 20A, 20B located within corresponding earbuds EB1, EB2, or within a single integrated circuit such as integrated circuit 20 which combines audio integrated circuits 20A and 20B within wireless telephone 10. Audio integrated circuits 20A, 20B may generate outputs for their corresponding channels that are amplified by an associated one of amplifiers A1-A4 and which are provided to the corresponding transducer pairs SPKLH/SPKLL and SPKRH/SPKRL. Audio integrated circuits 20A, 20B may receive the signals (wired or wireless depending on the particular configuration) from reference microphones R1, R2, near speech microphone NS and error microphones E1, E2. Audio integrated circuits 20A, 20B may also interface with other integrated circuits such as RF integrated circuit 12 which may comprise a wireless telephone transceiver as shown in FIG. 1A. In other configurations, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that includes control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. Alternatively, multiple integrated circuits may be used, for example, when a wireless connection is provided from each of earbuds EB1, EB2 to wireless telephone 10 and/or when some or all of the ANC processing is performed within earbuds EB1, EB2 or a module disposed along a cable connecting wireless telephone 10 to earbuds EB1, EB2.


In general, the ANC techniques illustrated herein may measure ambient acoustic events (as opposed to the output of transducers SPKLH, SPKLL, SPKRH and SPKRL and/or the near-end speech) impinging on reference microphones R1, R2 and may also measure the same ambient acoustic events impinging on error microphones E1, E2. The ANC processing circuits of integrated circuits 20A, 20B may individually adapt an antinoise signal generated from the output of the corresponding reference microphone R1, R2 to have a characteristic that minimizes the amplitude of the ambient acoustic events at the corresponding error microphone E1, E2. Because acoustic path PL(z) extends from reference microphone R1 to error microphone E1, the ANC circuit in audio integrated circuit 20A may estimate acoustic path PL(z) and remove effects of electro-acoustic paths SLH(z) and SLL(z) that represent, respectively, the response of the audio output circuits of audio integrated circuit 20A and the acoustic/electric transfer function of transducers SPKLH and SPKLL. The estimated responses SLH(z) and SLL(z) may include the coupling between transducers SPKLH, SPKLL and error microphone E1 in the particular acoustic environment which may be affected by the proximity and structure of ear 5A and other physical objects and human head structures that may be in proximity to earbud EB1. Similarly, audio integrated circuit 20B may estimate acoustic path PR(z) and remove effects of electro-acoustic paths SRH(z) and SRL(z) that represent, respectively, the response of the audio output circuits of audio integrated circuit 20B and the acoustic/electric transfer function of transducers SPKRH and SPKRL.


Referring now to FIG. 2, circuits within earbuds EB1, EB2 and/or wireless telephone 10 are shown in a block diagram, in accordance with embodiments of the present disclosure. The circuit shown in FIG. 2 may further apply to other configurations mentioned above, except that signaling between CODEC integrated circuit 20 and other units within wireless telephone 10 may be provided by cables or wireless connections when audio integrated circuits 20A, 20B are located outside of wireless telephone 10, e.g., within corresponding earbuds EB1, EB2. In such a configuration, signaling between a single integrated circuit 20 that implements integrated circuits 20A-20B and error microphones E1, E2, reference microphones R1, R2 and transducers SPKLH, SPKLL, SPKRH and SPKRL may be provided by wired or wireless connections when audio integrated circuit 20 is located within wireless telephone 10. In the illustrated example, audio integrated circuits 20A, 20B are shown as separate and substantially identical circuits, so only audio integrated circuit 20A will be described in detail below.


Audio integrated circuit 20A may include an analog-to-digital converter (ADC) 21A for receiving the reference microphone signal from reference microphone R1 and generating a digital representation ref of the reference microphone signal. Audio integrated circuit 20A may also include an ADC 21B for receiving the error microphone signal from error microphone E1 and generating a digital representation err of the error microphone signal, and an ADC 21C for receiving the near speech microphone signal from near speech microphone NS and generating a digital representation of near speech microphone signal ns. (Audio integrated circuit 20B may receive the digital representation of near speech microphone signal ns from audio integrated circuit 20A via the wireless or wired connections as described above.) Audio integrated circuit 20A may generate an output for driving transducer SPKLH from an amplifier A1, which may amplify the output of a digital-to-analog converter (DAC) 23A that receives the output of a combiner 26A. A combiner 26C may combine downlink speech ds, which may be received from a radio frequency (RF) integrated circuit 22, and left-channel internal audio signal ial, which as so combined may comprise a left-channel source audio signal. Combiner 26A may combine source audio signal dsh+ialh, which is the high-frequency band component of the output of combiner 26C with high-frequency band antinoise signal antinoiselh generated by a left-channel ANC circuit 30, which by convention has the same polarity as the noise in reference microphone signal ref and may therefore be subtracted by combiner 26A. Combiner 26A may also combine an attenuated high-frequency portion of near speech signal ns, i.e., sidetone information sth, so that the user of wireless telephone 10 hears their own voice in proper relation to downlink speech ds. Near speech signal ns may also be provided to RF integrated circuit 22 and may be transmitted as uplink speech to a service provider via an antenna ANT. Similarly, left-channel audio integrated circuit 20A may generate an output for driving transducer SPKLL from an amplifier A2, which may amplify the output of a digital-to-analog converter (DAC) 23B that receives the output of a combiner 26B. Combiner 26B may combine source audio signal dsl-iall, which is the low-frequency band component of the output of combiner 26C with low-frequency band antinoise signal antinoisell generated by ANC circuit 30, which by convention has the same polarity as the noise in reference microphone signal ref and may therefore be subtracted by combiner 26B. Combiner 26B may also combine an attenuated portion of near speech signal ns, i.e., sidetone low-frequency information stl.


Referring now to FIG. 3, a block diagram of selected components of an ANC circuit 30A are shown, as may be used to implement at least a portion of audio integrated circuit 20A of FIG. 2. A substantially identical circuit may be used to implement audio integrated circuit 20B, with changes to the channel labels within the diagram as noted below. ANC circuit 30A may include high-frequency channel 50A and a low-frequency channel 50B, for generating antinoise signals antinoiselh and antinoisell, respectively. In the description below, where signal and response labels contained the letter “l” indicating the left channel, the letter would be replaced with “r” to indicate the right channel in another circuit according to FIG. 3 as implemented within audio integrated circuit 20B of FIG. 2. Where signals and responses are labeled with the letter “l” for low-frequency in low-frequency channel 50B, the corresponding elements in high-frequency channel 50A would be replaced with signals and responses labeled with the letter “r.”


In ANC circuit 30A, an adaptive filter 32 may receive reference microphone signal ref and under ideal circumstances, may adapt its transfer function Wll(z) to be Pl(z)/Sll(z) to generate a feedforward component of antinoise signal antinoisell (which may, as described below, be combined by combiner 40 with a feedback component of antinoise signal antinoisell to generate antinoise signal antinoisell). The coefficients of adaptive filter 32 may be controlled by a W coefficient control block 31 that uses a correlation of two signals to determine the response of adaptive filter 32, which may generally minimize, in a least-mean squares sense, those components of reference microphone signal ref that are present in error microphone signal err. While the example disclosed herein may use an adaptive filter 32 implemented in a feed-forward configuration, the techniques disclosed herein may be implemented in a noise-cancelling system having fixed or programmable filters, where the coefficients of adaptive filter 32 may be pre-set, selected or otherwise not continuously adapted, and also alternatively or in combination with the fixed-filter topology, the techniques disclosed herein can be applied in feedback ANC systems or hybrid feedback/feed-forward ANC systems. Signals received as inputs to W coefficient control block 31 may include the reference microphone signal ref as shaped by a copy of an estimate of the response Sll(z) of the secondary path provided by a filter 34B and a playback corrected error signal pbcel generated by a combiner 36 from error microphone signal err. By transforming reference microphone signal ref with a copy of the estimate of the response Sll(z) of the secondary path, SEllCOPY(z), and minimizing the portion of the error signal that correlates with components of reference microphone signal ref, adaptive filter 32 may adapt to the desired response of Pr(z)/Sll(z).


In addition, source audio signal ds+ial including downlink audio signal ds and internal audio signal ial may be processed by a secondary path filter 34A having response SEll(z), of which response SEllCOPY(z) is a copy. Low-pass filter 35B may filter source audio signal ds+ial before it is received by low-frequency channel 50B, passing only the frequencies to be rendered by low-frequency transducer SPKLL (or SPKRL in the case of ANC circuit 30B). Similarly, high-pass filter 35A may filter the source audio signal (ds+ial) before it is received by high-frequency channel 50A, passing only frequencies to be rendered by the high-frequency transducer SPKLH (or SPKRH in the case of ANC circuit 30B). Thus, high-pass filter 35A and low-pass filter 35B form a crossover filter with respect to source audio signal ds+ial, so that only the appropriate frequencies may be passed to high-frequency channel 50A and low-frequency channel 50B, respectively, and having bandwidths appropriate to respective transducers SPKLH, SPKLL or SPKRH, SPKRL. By injecting an inverted amount of source audio signal ds+ial that has been filtered by response SEll(z), adaptive filter 32 may be prevented from adapting to the relatively large amount of source audio present in error microphone signal err. That is, by transforming the inverted copy of source audio signal ds+ial with the estimate of the response of path Sll(z), the source audio that is removed from error microphone signal err before processing should match the expected version of source audio signal ds+ial reproduced at error microphone signal err. The source audio amounts may approximately match because the electrical and acoustical path of Sll(z) is the path taken by source audio signal ds+ial to arrive at error microphone E.


Filter 34B may not be an adaptive filter, per se, but may have an adjustable response that is tuned to match the response of secondary path adaptive filter 34A, so that the response of filter 34B tracks the adapting of secondary path adaptive filter 34A. To implement the above, secondary path adaptive filter 34A may have coefficients controlled by an SE coefficient control block 33A. For example, SE coefficient control block may correlate noise signal nll(z) and a playback corrected error signal pbcel in order to reduce the playback corrected error signal pbcel. Secondary path adaptive filter 34A may process the low or high-frequency source audio ds+ial to provide a signal representing the expected source audio delivered to error microphone E. Secondary path adaptive filter 34A may thereby be adapted to generate a signal from source audio signal ds+ial, that when subtracted from error microphone signal err, forms playback corrected error signal pbcel including the content of error microphone signal err that is not due to source audio signal ds+ial. Combiner 36 may remove the filtered source audio signal ds+ial from error microphone signal err to generate the above-described playback corrected error signal pbcel.


As a result of the foregoing, each of high-frequency channel 50A and low-frequency channel 50B may operate independently to generate respective antinoise signals antinoiselh and antinoisell.


As depicted in FIG. 3, in some embodiments ANC circuit 30A may also comprise feedback filter 44. Feedback filter 44 may receive the playback corrected error signal pbcel and may apply a response FBl(z) to generate a feedback antinoise component of the antinoise signal antinoisell based on the playback corrected error. The feedback antinoise component of the antinoise signal may be combined by combiner 40 with the low-frequency feedforward antinoise component of the antinoise signal generated by adaptive filter 32 to generate the low-frequency antinoise signal antinoisell which in turn may be provided to combiner 26B that combines the low-frequency antinoise signal with the low-frequency source audio signal to be reproduced by an output transducer (e.g., SPKLL or SPKRL). Because content of an ANC feedback signal is typically in lower-frequencies in many ANC systems, the feedback antinoise component generated by feedback filter 44 may be combined by combiner 40 with the low-frequency antinoise component generated by adaptive filter 32 of low-frequency channel 50B rather than being combined with the high-frequency antinoise component generated by adaptive filter 32 of high-frequency channel 50A. Although FIG. 3 depicts presence of a feedback filter 44, in some embodiments, feedback filter 44 may not be present and no feedback antinoise component may be generated, in which case combiner 40 may also not be present and the low-frequency antinoise signal antinoisell may be the low-frequency feedforward antinoise component of the antinoise signal generated by adaptive filter 32.


As shown in FIG. 3, a noise source 37A may inject a noise signal nlh(z) into the high-frequency component of the source audio signal ds+ial generated by high-pass filter 35A, such that a combiner 38A combines the noise signal nlh(z) and the high-frequency component of the source audio signal ds+ial into a combined signal that is processed by high-frequency channel 50A. Similarly, a noise source 37B may inject a noise signal nll(z) into the low-frequency component of the source audio signal ds+ial generated by low-pass filter 35B, such that a combiner 38B combines the noise signal nll(z) and the low-frequency component of the source audio signal ds+ial into a combined signal that is processed by low-frequency channel 50B. In order for the responses of the secondary path adaptive filters 34A of each of high-frequency channel 50A and low-frequency channel 50B to converge (e.g., for response SEll(z) to converge to Sll(z) and response SElh(z) to converge to Slh(z)), the noise signal nlh(z) generated by noise source 37A may be substantially different (e.g., uncorrelated with, phase delayed with respect to) the noise signal nll(z) generated by noise source 37B. These substantially different noise signals may comprise white noise signals which are shaped in the frequency domain to protect speaker drivers (e.g., amplifiers A1, A2, A3, A4) from certain frequency contents or to psychoacoustically mask the effect of the noise signals to a user's ears. For example, noise sources 37A and 37B may generate a noise signal in accordance with those techniques described in U.S. Pat. Pub. No. 20120308027 and U.S. Ser. No. 14/252,235 entitled “Frequency-Shaped Noise-Based Adaptation of Secondary Path Adaptive Response in Noise-Canceling Personal Audio Devices,” which are incorporated herein by reference. As shown in FIG. 3, noise signals nlh(z) and nll(z) may also be injected into each of high-frequency channel 50A and low-frequency channel 50B where such signals may be input to an SE coefficient control block (e.g., SE coefficient control block 33A) as described above.


In some embodiments, adaptation of feedforward adaptive filters 32 of high-frequency channel 50A and low-frequency channel 50B may be managed by adapting the feedforward adaptive filters 32 at different time intervals (e.g., feedforward adaptive filter 32 of high-frequency channel 50A adapts for an interval while adaptation of feedforward adaptive filter 32 of high-frequency channel 50B is halted, then in a successive interval, feedforward adaptive filter 32 of high-frequency channel 50B adapts for the successive interval while adaptation of feedforward adaptive filter 32 of high-frequency channel 50A is halted, and so on). In these and other embodiments, adaptation of feedforward adaptive filters 32 may be performed such that adaptation step sizes of the respective adaptive filters 32 are substantially different.


Although the discussion of FIG. 3 above contemplates that high-frequency channel 50A and low-frequency channel 50B of ANC circuit 30A each comprises respective adaptive filters 32, in some embodiments, ANC circuit 30A may comprise a single feedforward adaptive filter 32 which generates a single anti-noise signal from reference microphone signal ref. In such embodiments, such single anti-noise signal may be combined with the low-frequency source audio signal to generate the low-frequency output signal and separately combined with the high-frequency source audio signal to generate the high-frequency output signal. In such embodiments, ANC circuit 30A may also comprise a W coefficient control block 31 which may adapt the adaptive filter 32 based on a correlation between the playback corrected error signal (e.g., pbcel) and a second signal, wherein the second signal is the combination of the reference microphone signal ref as filtered by a filter (e.g., filter 34B) applying a low-frequency secondary path estimate response (e.g., a response of SEllCOPY(z) as applied by low-frequency channel 50B) and the reference microphone signal ref as filtered by a filter (e.g., filter 34B) applying a high-frequency secondary path estimate response (e.g., a response of SElhCOPY(z) as applied by high-frequency channel 50A).


Although the discussion of FIG. 3 above contemplates that in some embodiments, high-frequency channel 50A is substantially identical to low-frequency channel 50B, in some embodiments, high-frequency channel 50A may not include components present in low-frequency channel 50B. For example, in some embodiments, low-frequency channel 50B may include adaptive filter 32 and W coefficient control block 31, while high-frequency channel 50A may not include corresponding components. In such an embodiment, high-frequency channel 50A may not generate a high-frequency antinoise signal, and thus, the high-frequency audio signal may simply pass to its associated transducer without added anti-noise. Thus, in such embodiments, high-frequency channel 50A may only include components necessary for adaptation of its secondary path estimate filter 34A.


As used herein, when two or more elements are referred to as “coupled” to one another, such term indicates that such two or more elements are in electronic communication whether connected indirectly or directly, with or without intervening elements.


This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the example embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.


All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the disclosure and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present disclosures have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.

Claims
  • 1. An integrated circuit for implementing at least a portion of a personal audio device, comprising: a first output for providing a first output signal to a first transducer for reproducing a first frequency range content source audio signal comprising first frequency range content of a source audio signal, the first output signal including both the first frequency content source audio signal and an antinoise signal for countering the effects of ambient audio sounds in an acoustic output of an earspeaker comprising the first transducer and a second transducer;a second output for providing a second output signal to the second transducer for reproducing a second frequency range content source audio signal comprising second frequency range content of the source audio signal, the second output signal including at least the second frequency range content source audio signal;a reference microphone input for receiving a reference microphone signal indicative of the ambient audio sounds;an error microphone input for receiving an error microphone signal indicative of the output of the earspeaker and the ambient audio sounds at the earspeaker; anda processing circuit comprising: an adaptive filter having a response that generates the antinoise signal from the reference microphone signal to reduce the presence of the ambient audio sounds at the acoustic output, wherein the response of the adaptive filter is shaped in conformity with the reference microphone signal and the error microphone signal by adapting the response of the adaptive filter to minimize the ambient audio sounds in the error microphone signal;a first signal injection portion which injects a first additional signal into the first frequency range content source audio signal; anda second signal injection portion which injects a second additional signal into the second frequency range content source audio signal, wherein the first additional signal and the second additional signal are substantially different.
  • 2. The integrated circuit of claim 1, wherein the second output signal includes the second frequency range content source audio signal and the antinoise signal.
  • 3. The integrated circuit of claim 1, wherein: the second output signal includes the second frequency range content source audio signal and a second antinoise signal for countering the effects of ambient audio sounds in the acoustic output; andthe processing circuit further comprises a second adaptive filter that generates the second antinoise signal from the reference microphone signal to reduce the presence of the ambient audio sounds at the acoustic output, wherein the response of the adaptive filter is shaped in conformity with the reference microphone signal and the error microphone signal by adapting the response of the adaptive filter to minimize the ambient audio sounds in the error microphone signal.
  • 4. The integrated circuit of claim 3, wherein the adaptive filter and the second adaptive filter are adapted at different time intervals.
  • 5. The integrated circuit of claim 3, wherein an adaptation step size of the adaptive filter is substantially different than an adaptation step size of the second adaptive filter.
  • 6. The integrated circuit of claim 1, wherein the processing circuit comprises a feedback filter that generates a feedback antinoise component from the error microphone signal which is combined with a feedforward antinoise component generated by the adaptive filter to generate the antinoise signal.
  • 7. The integrated circuit of claim 1, wherein the first additional signal and the second additional signal are noise signals.
  • 8. The integrated circuit of claim 1, the processing circuit further comprising a crossover filter that generates the second frequency range content source audio signal and the first frequency range content source audio signal from the source audio signal.
  • 9. The integrated circuit of claim 1, the processing circuit further comprising: a first secondary path estimate filter configured to model an electro-acoustic path of the first frequency range content source audio signal and having a response that generates a first secondary path estimate from the first frequency range content source audio signal;a first secondary coefficient control block that shapes the response of the first secondary path estimate filter in conformity with the first additional signal and the error microphone signal by adapting the response of the first secondary path estimate filter to minimize the error microphone signal;a second secondary path estimate filter configured to model an electro-acoustic path of the second frequency range content source audio signal and having a response that generates a second secondary path estimate from the second frequency range content source audio signal; anda second secondary coefficient control block that shapes the response of the second secondary path estimate filter in conformity with the second additional signal and the error microphone signal by adapting the response of the second secondary path estimate filter to minimize the error microphone signal.
  • 10. The integrated circuit of claim 1, wherein: the first frequency range content of the source audio signal comprises lower-frequency range content of the source audio signal; andthe second frequency range content of the source audio signal comprises higher-frequency range content of the source audio signal.
  • 11. A method comprising: generating a source audio signal for playback to a listener;receiving a reference microphone signal indicative of ambient audio sounds;receiving an error microphone signal indicative of an output of an earspeaker and the ambient audio sounds at the earspeaker, wherein the earspeaker comprises a first transducer for reproducing a first frequency range content source audio signal comprising first frequency range content of the source audio signal and a second transducer for reproducing a second frequency range content source audio signal comprising second frequency range content of the source audio signal;adaptively generating an antinoise signal for countering the effects of ambient audio sounds at an acoustic output of the earspeaker by adapting a response of an adaptive filter that filters the reference microphone signal in conformity with the error microphone signal and the reference microphone signal to minimize the ambient audio sounds in the error microphone signal;injecting a first additional signal into the first frequency range content source audio signal;injecting a second additional signal into the second frequency range content source audio signal, wherein the first additional signal and the second additional signal are substantially different;combining the antinoise signal with the first frequency range content source audio signal to generate a first output signal provided to the first transducer; andgenerating a second output signal provided to the second transducer, the second output signal including at least the second frequency range content source audio signal.
  • 12. The method of claim 11, further comprising combining the antinoise signal with the second frequency range content source audio signal to generate the second output signal.
  • 13. The method of claim 11, wherein: adaptively generating a second antinoise signal for countering the effects of ambient audio sounds at the acoustic output by adapting a response of a second adaptive filter that filters the reference microphone signal in conformity with the error microphone signal and the reference microphone signal to minimize the ambient audio sounds in the error microphone signal; andcombining the second antinoise signal with the second frequency range content source audio signal to generate the second output signal.
  • 14. The method of claim 13, further comprising adapting the adaptive filter and the second adaptive filter at different time intervals.
  • 15. The method of claim 13, wherein an adaptation step size of the adaptive filter is substantially different than an adaptation step size of the second adaptive filter.
  • 16. The method of claim 11, further comprising: generating a feedback antinoise component from the error microphone signal; andcombining the feedback antinoise component with a feedforward antinoise component generated by the adaptive filter to generate the antinoise signal.
  • 17. The method of claim 11, wherein the first additional signal and the second additional signal are noise signals.
  • 18. The method of claim 11, further comprising generating the second frequency range content source audio signal and the first frequency range content source audio signal from the source audio signal with a crossover filter.
  • 19. The method of claim 11, further comprising: generating a first secondary path estimate from the first frequency range content source audio signal with a first secondary path estimate filter configured to model an electro-acoustic path of the first frequency range content source audio signal;shaping a response of the first secondary path estimate filter in conformity with the first additional signal and the error microphone signal by adapting the response of the first secondary path estimate filter to minimize the error microphone signal;generating a second secondary path estimate from the second frequency range content source audio signal with a second secondary path estimate filter configured to model an electro-acoustic path of the second frequency range content source audio signal; andshaping a response of the second secondary path estimate filter in conformity with the second additional signal and the error microphone signal by adapting the response of the second secondary path estimate filter to minimize the error microphone signal.
  • 20. The method of claim 11, wherein: the first frequency range content of the source audio signal comprises lower-frequency range content of the source audio signal; andthe second frequency range content of the source audio signal comprises higher-frequency range content of the source audio signal.
US Referenced Citations (277)
Number Name Date Kind
4649507 Inaba et al. Mar 1987 A
5117401 Feintuch May 1992 A
5204827 Fujita et al. Apr 1993 A
5251263 Andrea et al. Oct 1993 A
5278913 Delfosse et al. Jan 1994 A
5321759 Yuan Jun 1994 A
5337365 Hamabe et al. Aug 1994 A
5359662 Yuan et al. Oct 1994 A
5377276 Terai et al. Dec 1994 A
5410605 Sawada et al. Apr 1995 A
5425105 Lo et al. Jun 1995 A
5445517 Kondou et al. Aug 1995 A
5465413 Enge et al. Nov 1995 A
5481615 Eatwell et al. Jan 1996 A
5548681 Gleaves et al. Aug 1996 A
5563819 Nelson Oct 1996 A
5586190 Trantow et al. Dec 1996 A
5633795 Popovich May 1997 A
5640450 Watanabe Jun 1997 A
5668747 Ohashi Sep 1997 A
5696831 Inanaga Dec 1997 A
5699437 Finn Dec 1997 A
5706344 Finn Jan 1998 A
5740256 Castello Da Costa et al. Apr 1998 A
5768124 Stothers et al. Jun 1998 A
5815582 Claybaugh et al. Sep 1998 A
5832095 Daniels Nov 1998 A
5909498 Smith Jun 1999 A
5940519 Kuo Aug 1999 A
5946391 Dragwidge et al. Aug 1999 A
5991418 Kuo Nov 1999 A
6041126 Terai et al. Mar 2000 A
6118878 Jones Sep 2000 A
6219427 Kates et al. Apr 2001 B1
6278786 McIntosh Aug 2001 B1
6282176 Hemkumar Aug 2001 B1
6317501 Matsuo Nov 2001 B1
6418228 Terai et al. Jul 2002 B1
6434246 Kates et al. Aug 2002 B1
6434247 Kates et al. Aug 2002 B1
6522746 Marchok et al. Feb 2003 B1
6683960 Fuji et al. Jan 2004 B1
6766292 Chandran et al. Jul 2004 B1
6768795 Feltstrom et al. Jul 2004 B2
6850617 Weigand Feb 2005 B1
6940982 Watkins Sep 2005 B1
7058463 Ruha et al. Jun 2006 B1
7103188 Jones Sep 2006 B1
7181030 Rasmussen et al. Feb 2007 B2
7330739 Somayajula Feb 2008 B2
7365669 Melanson Apr 2008 B1
7406179 Ryan Jul 2008 B2
7466838 Moseley Dec 2008 B1
7555081 Keele, Jr. Jun 2009 B2
7680456 Muhammad et al. Mar 2010 B2
7742790 Konchitsky et al. Jun 2010 B2
7817808 Konchitsky et al. Oct 2010 B2
7885417 Christoph Feb 2011 B2
8019050 Mactavish et al. Sep 2011 B2
8144888 Berkhoff et al. Mar 2012 B2
8155334 Joho et al. Apr 2012 B2
8249262 Chua et al. Aug 2012 B2
8254589 Mitsuhata Aug 2012 B2
8290537 Lee et al. Oct 2012 B2
8311243 Tucker et al. Nov 2012 B2
8325934 Kuo Dec 2012 B2
8374358 Buck et al. Feb 2013 B2
8379884 Horibe et al. Feb 2013 B2
8401200 Tiscareno et al. Mar 2013 B2
8401204 Odent et al. Mar 2013 B2
8411872 Stothers et al. Apr 2013 B2
8442251 Jensen et al. May 2013 B2
8526627 Asao et al. Sep 2013 B2
8526628 Massie et al. Sep 2013 B1
8532310 Gauger, Jr. et al. Sep 2013 B2
8539012 Clark Sep 2013 B2
8848936 Kwatra et al. Sep 2014 B2
8907829 Naderi Dec 2014 B1
8908877 Abdollahzadeh Milani et al. Dec 2014 B2
8909524 Stoltz et al. Dec 2014 B2
8942976 Li et al. Jan 2015 B2
8948407 Alderson et al. Feb 2015 B2
8948410 Van Leest Feb 2015 B2
8958571 Kwatra et al. Feb 2015 B2
8977545 Zeng et al. Mar 2015 B2
9020160 Gauger, Jr. Apr 2015 B2
9066176 Hendrix et al. Jun 2015 B2
9082391 Yermech et al. Jul 2015 B2
9203366 Eastty Dec 2015 B2
9294836 Zhou et al. Mar 2016 B2
9392364 Milani et al. Jul 2016 B1
20010053228 Jones Dec 2001 A1
20020003887 Zhang et al. Jan 2002 A1
20030063759 Brennan et al. Apr 2003 A1
20030185403 Sibbald Oct 2003 A1
20040001450 He et al. Jan 2004 A1
20040017921 Mantovani Jan 2004 A1
20040047464 Yu et al. Mar 2004 A1
20040122879 McGrath Jun 2004 A1
20040165736 Hetherington et al. Aug 2004 A1
20040167777 Hetherington et al. Aug 2004 A1
20040196992 Ryan Oct 2004 A1
20040202333 Czermak et al. Oct 2004 A1
20040264706 Ray et al. Dec 2004 A1
20050004796 Trump et al. Jan 2005 A1
20050018862 Fisher Jan 2005 A1
20050110568 Robinson et al. May 2005 A1
20050117754 Sakawaki Jun 2005 A1
20050175187 Wright et al. Aug 2005 A1
20050207585 Christoph Sep 2005 A1
20050240401 Ebenezer Oct 2005 A1
20060013408 Lee Jan 2006 A1
20060018460 McCree Jan 2006 A1
20060035593 Leeds Feb 2006 A1
20060069556 Nadjar et al. Mar 2006 A1
20060153400 Fujita et al. Jul 2006 A1
20070030989 Kates Feb 2007 A1
20070033029 Sakawaki Feb 2007 A1
20070038441 Inoue et al. Feb 2007 A1
20070047742 Taenzer et al. Mar 2007 A1
20070053524 Haulick et al. Mar 2007 A1
20070076896 Hosaka et al. Apr 2007 A1
20070154031 Avendano et al. Jul 2007 A1
20070258597 Rasmussen et al. Nov 2007 A1
20070297620 Choy Dec 2007 A1
20080019548 Avendano Jan 2008 A1
20080101589 Horowitz et al. May 2008 A1
20080107281 Togami et al. May 2008 A1
20080144853 Sommerfeldt et al. Jun 2008 A1
20080177532 Greiss et al. Jul 2008 A1
20080181422 Christoph Jul 2008 A1
20080226098 Haulick et al. Sep 2008 A1
20080240455 Inoue et al. Oct 2008 A1
20080240457 Inoue et al. Oct 2008 A1
20090012783 Klein Jan 2009 A1
20090034748 Sibbald Feb 2009 A1
20090041260 Jorgensen et al. Feb 2009 A1
20090046867 Clemow Feb 2009 A1
20090060222 Jeong et al. Mar 2009 A1
20090080670 Solbeck et al. Mar 2009 A1
20090086990 Christoph Apr 2009 A1
20090175461 Nakamura et al. Jul 2009 A1
20090175466 Elko et al. Jul 2009 A1
20090196429 Ramakrishnan et al. Aug 2009 A1
20090220107 Every et al. Sep 2009 A1
20090238369 Ramakrishnan et al. Sep 2009 A1
20090245529 Asada et al. Oct 2009 A1
20090254340 Sun et al. Oct 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090296965 Kojima Dec 2009 A1
20090304200 Kim et al. Dec 2009 A1
20090311979 Husted et al. Dec 2009 A1
20100014683 Maeda et al. Jan 2010 A1
20100014685 Wurm Jan 2010 A1
20100061564 Clemow et al. Mar 2010 A1
20100069114 Lee et al. Mar 2010 A1
20100082339 Konchitsky et al. Apr 2010 A1
20100098263 Pan et al. Apr 2010 A1
20100098265 Pan et al. Apr 2010 A1
20100124336 Shridhar et al. May 2010 A1
20100124337 Wertz et al. May 2010 A1
20100131269 Park et al. May 2010 A1
20100150367 Mizuno Jun 2010 A1
20100158330 Guissin et al. Jun 2010 A1
20100166203 Peissig et al. Jul 2010 A1
20100195838 Bright Aug 2010 A1
20100195844 Christoph et al. Aug 2010 A1
20100207317 Iwami et al. Aug 2010 A1
20100246855 Chen Sep 2010 A1
20100266137 Sibbald et al. Oct 2010 A1
20100272276 Carreras et al. Oct 2010 A1
20100272283 Carreras et al. Oct 2010 A1
20100272284 Marcel et al. Oct 2010 A1
20100274564 Bakalos et al. Oct 2010 A1
20100284546 DeBrunner et al. Nov 2010 A1
20100291891 Ridgers et al. Nov 2010 A1
20100296666 Lin Nov 2010 A1
20100296668 Lee et al. Nov 2010 A1
20100310086 Magrath et al. Dec 2010 A1
20100316225 Saito et al. Dec 2010 A1
20100322430 Isberg Dec 2010 A1
20110007907 Park et al. Jan 2011 A1
20110026724 Doclo Feb 2011 A1
20110096933 Eastty Apr 2011 A1
20110099010 Zhang Apr 2011 A1
20110106533 Yu May 2011 A1
20110129098 Delano et al. Jun 2011 A1
20110130176 Magrath et al. Jun 2011 A1
20110142247 Fellers et al. Jun 2011 A1
20110144984 Konchitsky Jun 2011 A1
20110150257 Jensen Jun 2011 A1
20110158419 Theverapperuma et al. Jun 2011 A1
20110206214 Christoph et al. Aug 2011 A1
20110222698 Asao et al. Sep 2011 A1
20110222701 Donaldson Sep 2011 A1
20110249826 Van Leest Oct 2011 A1
20110288860 Schevciw et al. Nov 2011 A1
20110293103 Park et al. Dec 2011 A1
20110299695 Nicholson Dec 2011 A1
20110305347 Wurm Dec 2011 A1
20110317848 Ivanov et al. Dec 2011 A1
20120057720 Van Leest Mar 2012 A1
20120084080 Konchitsky et al. Apr 2012 A1
20120135787 Kusunoki et al. May 2012 A1
20120140917 Nicholson et al. Jun 2012 A1
20120140942 Loeda Jun 2012 A1
20120140943 Hendrix et al. Jun 2012 A1
20120148062 Scarlett et al. Jun 2012 A1
20120155666 Nair Jun 2012 A1
20120170766 Alves et al. Jul 2012 A1
20120179458 Oh et al. Jul 2012 A1
20120185524 Clark Jul 2012 A1
20120207317 Abdollahzadeh Milani et al. Aug 2012 A1
20120215519 Park et al. Aug 2012 A1
20120250873 Bakalos et al. Oct 2012 A1
20120259626 Li et al. Oct 2012 A1
20120263317 Shin et al. Oct 2012 A1
20120300958 Klemmensen Nov 2012 A1
20120300960 Mackay et al. Nov 2012 A1
20120308021 Kwatra et al. Dec 2012 A1
20120308024 Alderson et al. Dec 2012 A1
20120308025 Hendrix et al. Dec 2012 A1
20120308026 Karnath et al. Dec 2012 A1
20120308027 Kwatra Dec 2012 A1
20120308028 Kwatra et al. Dec 2012 A1
20120310640 Kwatra et al. Dec 2012 A1
20120316872 Stoltz et al. Dec 2012 A1
20130010982 Elko et al. Jan 2013 A1
20130022213 Alcock Jan 2013 A1
20130083939 Fellers et al. Apr 2013 A1
20130156238 Birch et al. Jun 2013 A1
20130182792 Wyville Jul 2013 A1
20130243198 Van Rumpt Sep 2013 A1
20130243225 Yokota Sep 2013 A1
20130259251 Bakalos Oct 2013 A1
20130272539 Kim et al. Oct 2013 A1
20130287218 Alderson et al. Oct 2013 A1
20130287219 Hendrix et al. Oct 2013 A1
20130301842 Hendrix et al. Nov 2013 A1
20130301846 Alderson et al. Nov 2013 A1
20130301847 Alderson et al. Nov 2013 A1
20130301848 Zhou et al. Nov 2013 A1
20130301849 Alderson Nov 2013 A1
20130315403 Samuelsson Nov 2013 A1
20130343556 Bright Dec 2013 A1
20130343571 Rayala et al. Dec 2013 A1
20140044275 Goldstein et al. Feb 2014 A1
20140050332 Nielsen et al. Feb 2014 A1
20140072135 Bajic et al. Mar 2014 A1
20140086425 Jensen et al. Mar 2014 A1
20140126735 Gauger, Jr. May 2014 A1
20140169579 Azmi Jun 2014 A1
20140177851 Kitazawa et al. Jun 2014 A1
20140177890 Hojlund et al. Jun 2014 A1
20140211953 Alderson et al. Jul 2014 A1
20140226827 Abdollahzadeh Milani et al. Aug 2014 A1
20140270223 Li et al. Sep 2014 A1
20140270224 Zhou et al. Sep 2014 A1
20140277022 Hendrix et al. Sep 2014 A1
20140294182 Axelsson Oct 2014 A1
20140307887 Alderson et al. Oct 2014 A1
20140307888 Alderson et al. Oct 2014 A1
20140307890 Zhou et al. Oct 2014 A1
20140307899 Hendrix et al. Oct 2014 A1
20140314244 Yong et al. Oct 2014 A1
20140314246 Hellman Oct 2014 A1
20140314247 Zhang Oct 2014 A1
20140341388 Goldstein Nov 2014 A1
20140369517 Zhou et al. Dec 2014 A1
20150078572 Abdollahzadeh Milani et al. Mar 2015 A1
20150092953 Abdollahzadeh Milani et al. Apr 2015 A1
20150104032 Kwatra et al. Apr 2015 A1
20150161980 Alderson et al. Jun 2015 A1
20150161981 Kwatra Jun 2015 A1
20150163592 Alderson Jun 2015 A1
20150195646 Kumar et al. Jul 2015 A1
20160180830 Lu et al. Jun 2016 A1
Foreign Referenced Citations (85)
Number Date Country
101552939 Oct 2009 CN
102011013343 Sep 2012 DE
0412902 Feb 1991 EP
0756407 Jan 1997 EP
0898266 Feb 1999 EP
1691577 Aug 2006 EP
1880699 Jan 2008 EP
1921603 May 2008 EP
1947642 Jul 2008 EP
2133866 Dec 2009 EP
2259250 Dec 2010 EP
2216774 Aug 2011 EP
2395500 Dec 2011 EP
2395501 Dec 2011 EP
2551845 Jan 2013 EP
2583074 Apr 2013 EP
2401744 Nov 2004 GB
246657 Oct 2007 GB
2455821 Jun 2009 GB
2455824 Jun 2009 GB
2455828 Jun 2009 GB
2484722 Apr 2012 GB
2539280 Dec 2016 GB
H05265468 Oct 1993 JP
06006246 Jan 1994 JP
H06186985 Jul 1994 JP
H06232755 Aug 1994 JP
07098592 Apr 1995 JP
H0732558 Dec 1995 JP
H07334169 Dec 1995 JP
H08227322 Sep 1996 JP
H1032891 Feb 1998 JP
H10247088 Sep 1998 JP
H10257159 Sep 1998 JP
H11305783 Nov 1999 JP
2000059876 Feb 2000 JP
2000089770 Mar 2000 JP
2002010355 Jan 2002 JP
2004007107 Jan 2004 JP
2006217542 Aug 2006 JP
2007060644 Mar 2007 JP
2008015046 Jan 2008 JP
2008124564 May 2008 JP
2010277025 Dec 2010 JP
2011061449 Mar 2011 JP
9304529 Mar 1993 WO
9407212 Mar 1994 WO
2003015074 Feb 2003 WO
2003015275 Feb 2003 WO
2004009007 Jan 2004 WO
2004017303 Feb 2004 WO
2006125061 Nov 2006 WO
2006128768 Dec 2006 WO
2007007916 Jan 2007 WO
2007011337 Jan 2007 WO
2007110807 Oct 2007 WO
2007113487 Nov 2007 WO
2009041012 Apr 2009 WO
2009110087 Sep 2009 WO
2009155696 Dec 2009 WO
2010117714 Oct 2010 WO
2011035061 Mar 2011 WO
2012134874 Oct 2012 WO
2012166273 Dec 2012 WO
2012166388 Dec 2012 WO
2013106370 Jul 2013 WO
2014158475 Oct 2014 WO
2014168685 Oct 2014 WO
2014172005 Oct 2014 WO
2014172006 Oct 2014 WO
2014172010 Oct 2014 WO
2014172019 Oct 2014 WO
2014172021 Oct 2014 WO
2014200787 Dec 2014 WO
2015038255 Mar 2015 WO
2015088639 Jun 2015 WO
2015088639 Jun 2015 WO
2015088651 Jun 2015 WO
2015088651 Jun 2015 WO
2015088653 Jun 2015 WO
2015191691 Dec 2015 WO
2016054186 Apr 2016 WO
2016100602 Jun 2016 WO
2016198481 Dec 2016 WO
2017035000 Mar 2017 WO
Non-Patent Literature Citations (69)
Entry
International Patent Application No. PCT/US2014/061548, International Search Report and Written Opinion, dated Feb. 12, 2015, 13 pages.
International Patent Application No. PCT/US2014/060277, International Search Report and Written Opinion, dated Mar. 9, 2015, 11 pages.
Ray, Laura et al., Hybrid Feedforward-Feedback Active Noise Reduction for Hearing Protection and Communication, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, New York, NY, vol. 120, No. 4, Jan. 2006, pp. 2026-2036.
International Patent Application No. PCT/US2014/017112, International Search Report and Written Opinion, dated May 8, 2015, 22 pages.
International Patent Application No. PCT/US2015/017124, International Search Report and Written Opinion, dated Jul. 13, 2015, 19 pages.
International Patent Application No. PCT/US2015/035073, International Search Report and Written Opinion, dated Oct. 8, 2015, 11 pages.
Kou, Sen and Tsai, Jianming, Residual noise shaping technique for active noise control systems, J. Acoust. Soc. Am. 95 (3), Mar. 1994, pp. 1665-1668.
Pfann, et al., “LMS Adaptive Filtering with Delta-Sigma Modulated Input Signals,” IEEE Signal Processing Letters, Apr. 1998, pp. 95-97, vol. 5, No. 4, IEEE Press, Piscataway, NJ.
Toochinda, et al., “A Single-Input Two-Output Feedback Formulation for ANC Problems,” Proceedings of the 2001 American Control Conference, Jun. 2001, pp. 923-928, vol. 2, Arlington, VA.
Kuo, et al., “Active Noise Control: A Tutorial Review,” Proceedings of the IEEE, Jun. 1999, pp. 943-973, vol. 87, No. 6, IEEE Press, Piscataway, NJ.
Johns, et al., “Continuous-Time LMS Adaptive Recursive Filters,” IEEE Transactions on Circuits and Systems, Jul. 1991, pp. 769-778, vol. 38, No. 7, IEEE Press, Piscataway, NJ.
Shoval, et al., “Comparison of DC Offset Effects in Four LMS Adaptive Algorithms,” IEEE Transactions on Circuits and Systems II: Analog and Digital Processing, Mar. 1995, pp. 176-185, vol. 42, Issue 3, IEEE Press, Piscataway, NJ.
Mali, Dilip, “Comparison of DC Offset Effects on LMB Algorithm and its Derivatives,” International Journal of Recent Trends in Engineering, May 2009, pp. 323-328, vol. 1, No. 1, Academy Publisher.
Kates, James M., “Principles of Digital Dynamic Range Compression,” Trends in Amplification, Spring 2005, pp. 45-76, vol. 9, No. 2, Sage Publications.
Gao, et al., “Adaptive Linearization of a Loudspeaker,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 14-17, 1991, pp. 3589-3592, Toronto, Ontario, CA.
Silva, et al., “Convex Combination of Adaptive Filters With Different Tracking Capabilities,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 15-20, 2007, pp. III 925-928, vol. 3, Honolulu, HI, USA.
Akhtar, et al., “A Method for Online Secondary Path Modeling in Active Noise Control Systems,” IEEE International Symposium on Circuits and Systems, May 23-26, 2005, pp. 264-267, vol. 1, Kobe, Japan.
Davari, et al., “A New Online Secondary Path Modeling Method for Feedforward Active Noise Control Systems,” IEEE International Conference on Industrial Technology, Apr. 21-24, 2008, pp. 1-6, Chengdu, China.
Lan, et al., “An Active Noise Control System Using Online Secondary Path Modeling With Reduced Auxiliary Noise,” IEEE Signal Processing Letters, Jan. 2002, pp. 16-18, vol. 9, Issue 1, IEEE Press, Piscataway, NJ.
Liu, et al., “Analysis of Online Secondary Path Modeling With Auxiliary Noise Scaled by Residual Noise Signal,” IEEE Transactions on Audio, Speech and Language Processing, Nov. 2010, pp. 1978-1993, vol. 18, Issue 8, IEEE Press, Piscataway, NJ.
Booji, P.S., Berkhoff, A.P., Virtual sensors for local, three dimensional, broadband multiple-channel active noise control and the effects on the quiet zones, Proceedings of ISMA2010 including USD2010, pp. 151-166.
Lopez-Caudana, Edgar Omar, Active Noise Cancellation: The Unwanted Signal and The Hybrid Solution, Adaptive Filtering Applications, Dr. Lino Garcia, ISBN: 978-953-307-306-4, InTech.
D. Senderowicz et al., “Low-Voltage Double-Sampled Delta-Sigma Converters,” IEEE J. Solid-State Circuits, vol. 32,, No. 12, pp. 1907-1919, Dec. 1997, 13 pages.
Hurst, P.J. and Dyer, K.C., “An improved double sampling scheme for switched-capacitor delta-sigma modulators,” IEEE Int. Symp. Circuits Systems, May 1992, vol. 3, pp. 1179-1182, 4 pages.
Milani, et al., “On Maximum Achievable Noise Reduction in ANC Systems”, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, Mar. 14-19, 2010 pp. 349-352.
Ryan, et al., “Optimum near-field performance of microphone arrays subject to a far-field beampattern constraint”, 2248 J. Acoust. Soc. Am. 108, Nov. 2000.
Cohen, et al., “Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement”, IEEE Signal Processing Letters, vol. 9, No. 1, Jan. 2002.
Martin, “Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics”, IEEE Trans. on Speech and Audio Processing, col. 9, No. 5, Jul. 2001.
Martin, “Spectral Subtraction Based on Minimum Statistics”, Proc. 7th EUSIPCO '94, Edinburgh, U.K., Sep. 13-16, 1994, pp. 1182-1195.
Cohen, “Noise Spectrum Estimation in Adverse Environments: Improved Minima Controlled Recursive Averaging”, IEEE Trans. on Speech & Audio Proc., vol. 11, Issue 5, Sep. 2003.
Black, John W., “An Application of Side-Tone in Subjective Tests of Microphones and Headsets”, Project Report No. NM 001 064.01.20, Research Report of the U.S. Naval School of Aviation Medicine, Feb. 1, 1954, 12 pages (pp. 1-12 in pdf), Pensacola, FL, US.
Lane, et al., “Voice Level: Autophonic Scale, Perceived Loudness, and the Effects of Sidetone”, The Journal of the Acoustical Society of America, Feb. 1961, pp. 160-167, vol. 33, No. 2., Cambridge, MA, US.
Liu, et al., “Compensatory Responses to Loudness-shifted Voice Feedback During Production of Mandarin Speech”, Journal of the Acoustical Society of America, Oct. 2007, pp. 2405-2412, vol. 122, No. 4.
Paepcke, et al., “Yelling in the Hall: Using Sidetone to Address a Problem with Mobile Remote Presence Systems”, Symposium on User Interface Software and Technology, Oct. 16-19, 2011, 10 pages (pp. 1-10 in pdf), Santa Barbara, CA, US.
Peters, Robert W., “The Effect of High-Pass and Low-Pass Filtering of Side-Tone Upon Speaker Intelligibility”, Project Report No. NM 001 064.01.25, Research Report of the U.S. Naval School of Aviation Medicine, Aug. 16, 1954, 13 pages (pp. 1-13 in pdf), Pensacola, FL, US.
Therrien, et al., “Sensory Attenuation of Self-Produced Feedback: The Lombard Effect Revisited”, PLOS ONE, Nov. 2012, pp. 1-7, vol. 7, Issue 11, e49370, Ontario, Canada.
Campbell, Mikey, “Apple looking into self-adjusting earbud headphones with noise cancellation tech”, Apple Insider, Jul. 4, 2013, pp. 1-10 (10 pages in pdf), downloaded on May 14, 2014 from http://appleinsider.com/articles/13/07/04/apple-looking-into-self-adjusting-earbud-headphones-with-noise-cancellation-tech.
International Patent Application No. PCT/US2014/017096, International Search Report and Written Opinion, dated May 27, 2014, 11 pages.
Jin, et al., “A simultaneous equation method-based online secondary path modeling algorithm for active noise control”, Journal of Sound and Vibration, Apr. 25, 2007, pp. 455-474, vol. 303, No. 3-5, London, GB.
Erkelens et al., “Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation”, IEEE Transactions on Audio Speech, and Language Processing, vol. 16, No. 6, Aug. 2008.
Rao et al., “A Novel Two Stage Single Channle Speech Enhancement Technique”, India Conference (INDICON) 2011 Annual IEEE, IEEE, Dec. 15, 2011.
Rangachari et al., “A noise-estimation algorithm for highly non-stationary environments” Speech Communication, Elsevier Science Publishers, vol. 48, No. 2, Feb. 1, 2006.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017343, dated Aug. 5, 2014, 22 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/018027, dated Sep. 4, 2014, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017374, dated Sep. 8, 2014, 13 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019395, dated Sep. 9, 2014, 12 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019469, dated Sep. 12, 2014, 13 pages.
Feng, Jinwei et al., “A broadband self-tuning active noise equaliser”, Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 62, No. 2, Oct. 1, 1997, pp. 251-256.
Zhang, Ming et al., “A Robust Online Secondary Path Modeling Method with Auxiliary Noise Power Scheduling Strategy and Norm Constraint Manipulation”, IEEE Transactions on Speech and Audio Processing, IEEE Service Center, New York, NY, vol. 11, No. 1, Jan. 1, 2003.
Lopez-Gaudana, Edgar et al., “A hybrid active noise cancelling with secondary path modeling”, 51st Midwest Symposium on Circuits and Systems, 2008, MWSCAS 2008, Aug. 10, 2008, pp. 277-280.
Widrow, B. et al., Adaptive Noise Cancelling: Principles and Applications, Proceedings of the IEEE, IEEE, New York, NY, U.S., vol. 63, No. 13, Dec. 1975, pp. 1692-1716.
Morgan, Dennis R. et al., A Delayless Subband Adaptive Filter Architecture, IEEE Transactions on Signal Processing, IEEE Service Center, New York, NY, U.S., vol. 43, No. 8, Aug. 1995, pp. 1819-1829.
International Patent Application No. PCT/US2014/040999, International Search Report and Written Opinion, dated Oct. 28, 2014, 12 pages.
International Patent Application No. PCT/US2013/049407, International Search Report and Written Opinion, dated Jun. 18, 2014, 13 pages.
International Patent Application No. PCT/US2014/049600, International Search Report and Written Opinion, dated Jan. 14, 2015, 12 pages.
International Patent Application No. PCT/US2014/061753, International Search Report and Written Opinion, dated Feb. 9, 2015, 8 pages.
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Application No. GB1611064.5, dated Dec. 28, 2016.
Combined Search and Examination Report under Sections 17 and 18(3), United Kingdom Application No. GB1611080.1, dated Dec. 28, 2016.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2016/047828, dated Dec. 1, 2016.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/US2016/039523, dated Dec. 7, 2016.
Wu, Lifu et al., “Decoupling feedforward and feedback structures in hybrid active noise control systems for uncorrelated narrowband disturbances”, Journal of Sound and Vibration, vol. 350, Aug. 18, 2015, pp. 1-10, Section 2, figures 1-3.
Lopez-Caudana, Edgar et al., “A Hybrid Noise Cancelling Algorithm with Secondary Path Estimation”, WSEAS Transactions on Signal Processing, vol. 4, No. 12, Dec. 1, 2008, pp. 677-687, Sections 2 and 3, figures 4-8.
International Search Report and Written Opinion of the International Searching Authority, International Application No. PCT/EP2016/063079, dated Dec. 12, 2016.
Goeckler, H.G. et al.: Efficient Multirate Digital Filters Based on Fractional Polyphase Decomposition for Subnyquist Processing, Proceedings of the European Conference on Circuit Theory and Design, vol. 1, Jan. 1, 1999, pp. 409-412.
Examination Report under Section 18(3), United Kingdom Application No. GB1512832.5, dated Feb. 2, 2017.
Combined Search and Examination Report, Application No. GB1512832.5, dated Jan. 28, 2016, 7 pages.
International Patent Application No. PCT/US2015/066260, International Search Report and Written Opinion, dated Apr. 21, 2016, 13 pages.
English machine translation of JP 2006-217542 A (Okumura, Hiroshi; Howling Suppression Device and Loudspeaker, published Aug. 2006).
Combined Search and Examination Report, Application No. GB1519000.2, dated Apr. 21, 2016, 5 pages.
Related Publications (1)
Number Date Country
20170270906 A1 Sep 2017 US