Systems and methods for adaptive noise cancellation by biasing anti-noise level

Information

  • Patent Grant
  • 9460701
  • Patent Number
    9,460,701
  • Date Filed
    Tuesday, July 16, 2013
    11 years ago
  • Date Issued
    Tuesday, October 4, 2016
    8 years ago
Abstract
A processing circuit may comprise an adaptive filter having a response generating an anti-noise signal from a reference microphone signal, a secondary path estimate filter modeling an electro-acoustic path of a source audio signal, a biasing portion that generates a scaled anti-noise signal by applying a scaling factor and the response of the secondary path estimate filter to the anti-noise signal, and a coefficient control block that shapes the response of the adaptive filter in conformity with the reference microphone signal and a modified playback corrected error signal by adapting the response of the adaptive filter to minimize ambient audio sounds in the error microphone signal, wherein the playback corrected error is based on a difference between the error microphone signal and the source audio signal and the modified playback corrected error signal is based on a difference between the playback corrected error signal and the scaled anti-noise signal.
Description
FIELD OF DISCLOSURE

The present disclosure relates in general to adaptive noise cancellation in connection with an acoustic transducer, and more particularly, to detection and cancellation of ambient noise present in the vicinity of the acoustic transducer, including biasing an anti-noise level for anti-noise generated by adaptive noise cancellation.


BACKGROUND

Wireless telephones, such as mobile/cellular telephones, cordless telephones, and other consumer audio devices, such as mp3 players, are in widespread use. Performance of such devices with respect to intelligibility can be improved by providing noise canceling using a microphone to measure ambient acoustic events and then using signal processing to insert an anti-noise signal into the output of the device to cancel the ambient acoustic events.


Because the acoustic environment around personal audio devices, such as wireless telephones, can change dramatically, depending on the sources of noise that are present and the position of the device itself, it is desirable to adapt the noise canceling to take into account such environmental changes. For example, many adaptive noise cancelling systems utilize an error microphone for sensing acoustic pressure proximate to an output of an electro-acoustic transducer (e.g., a loudspeaker) and generating an error microphone signal indicative of the acoustic output of the transducer and the ambient audio sounds at the transducer. When the transducer is close to a listener's ear, the error microphone signal may approximate the actual acoustic pressure at a listener's eardrum (a location known as a drum reference point). However, because of the distance between the drum reference point and the location of the error microphone (known as the error reference point) the error microphone signal is only an approximation and not a perfect indication of acoustic pressure at the drum reference point. Thus, because noise cancellation attempts to reduce ambient audio sounds present in the error microphone signal, performance of a noise cancellation system may be the greatest when the distance between the drum reference point and the error reference point is small. As the distance increases (e.g., transducer held against the ear at a lower pressure), the performance of the noise cancellation system may degrade, partly because the gain of the transfer function from the error reference point to the drum reference point decreases with such increased distance. This degradation is not accounted for in traditional adaptive noise cancellation systems.


SUMMARY

In accordance with the teachings of the present disclosure, the disadvantages and problems associated with existing approaches to adaptive noise cancellation may be reduced or eliminated.


In accordance with embodiments of the present disclosure, a personal audio device may include a personal audio device housing, a transducer, a reference microphone, an error microphone, and a processing circuit. The transducer may be mounted on the housing and may be configured to reproduce an audio signal including both a source audio signal for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer. The reference microphone may be mounted on the housing and may be configured to provide a reference microphone signal indicative of the ambient audio sounds. The error microphone may be mounted on the housing in proximity to the transducer and may be configured to provide an error microphone signal indicative of the acoustic output of the transducer and the ambient audio sounds at the transducer. The processing circuit may comprise an adaptive filter having a response that generates an anti-noise signal from the reference microphone signal, a secondary path estimate filter configured to model an electro-acoustic path of the source audio signal having a response that generates a secondary path estimate from the source audio, a biasing portion that generates a scaled anti-noise signal by applying a scaling factor and the response of the secondary path estimate filter to the anti-noise signal, and a coefficient control block that shapes the response of the adaptive filter in conformity with the reference microphone signal and a modified playback corrected error signal by adapting the response of the adaptive filter to minimize the ambient audio sounds in the error microphone signal, wherein the playback corrected error is based on a difference between the error microphone signal and the source audio signal and the modified playback corrected error signal is based on a difference between the playback corrected error signal and the scaled anti-noise signal.


In accordance with these and other embodiments of the present disclosure, a method for canceling ambient audio sounds in the proximity of a transducer of a personal audio device may include measuring ambient audio sounds with a reference microphone to produce a reference microphone signal. The method may also include measuring an output of the transducer and the ambient audio sounds at the transducer with an error microphone to produce an error microphone signal. The method may additionally include generating a source audio signal for playback to a listener. The method may also include adaptively generating an anti-noise signal, from a result of the measuring with the reference microphone, countering the effects of ambient audio sounds at an acoustic output of the transducer by adapting a response of an adaptive filter that filters the reference microphone signal in conformity with the reference microphone signal and a modified playback corrected error signal to minimize the ambient audio sounds in the error microphone. The method may also include generating a secondary path estimate from the source audio signal by filtering the source audio signal with a secondary path estimate filter modeling an electro-acoustic path of the source audio signal. The method may additionally include generating a scaled anti-noise signal by applying a scaling factor and the response of the secondary path estimate filter to the anti-noise signal. The method may further include combining the anti-noise signal with a source audio signal to generate an audio signal provided to the transducer. The playback corrected error may be based on a difference between the error microphone signal and the source audio signal and the modified playback corrected error signal may be based on a difference between the playback corrected error signal and the scaled anti-noise signal.


In accordance with these and other embodiments of the present disclosure, an integrated circuit for implementing at least a portion of a personal audio device may include an output, a reference microphone input, an error microphone input, and a processing circuit. The output may be configured to provide a signal to a transducer including both a source audio signal for playback to a listener and an anti-noise signal for countering the effect of ambient audio sounds in an acoustic output of the transducer. The reference microphone input may be configured to receive a reference microphone signal indicative of the ambient audio sounds. The error microphone input may be configured to receive an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer. The processing circuit may comprise an adaptive filter having a response that generates an anti-noise signal from the reference microphone signal, a secondary path estimate filter configured to model an electro-acoustic path of the source audio signal having a response that generates a secondary path estimate from the source audio, a biasing portion that generates a scaled anti-noise signal by applying a scaling factor and the response of the secondary path estimate filter to the anti-noise signal, and a coefficient control block that shapes the response of the adaptive filter in conformity with the reference microphone signal and a modified playback corrected error signal by adapting the response of the adaptive filter to minimize the ambient audio sounds in the error microphone signal, wherein the playback corrected error is based on a difference between the error microphone signal and the source audio signal and the modified playback corrected error signal is based on a difference between the playback corrected error signal and the scaled anti-noise signal.


Technical advantages of the present disclosure may be readily apparent to one skilled in the art from the figures, description and claims included herein. The objects and advantages of the embodiments will be realized and achieved at least by the elements, features, and combinations particularly pointed out in the claims.


It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory and are not restrictive of the claims set forth in this disclosure.





BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present embodiments and advantages thereof may be acquired by referring to the following description taken in conjunction with the accompanying drawings, in which like reference numbers indicate like features, and wherein:



FIG. 1 is an illustration of an example wireless mobile telephone, in accordance with embodiments of the present disclosure;



FIG. 2 is a block diagram of selected circuits within the wireless telephone depicted in FIG. 1, in accordance with embodiments of the present disclosure; and



FIG. 3 is a block diagram depicting selected signal processing circuits and functional blocks within an example adaptive noise canceling (ANC) circuit of a coder-decoder (CODEC) integrated circuit of FIG. 3, in accordance with embodiments of the present disclosure.





DETAILED DESCRIPTION

The present disclosure encompasses noise canceling techniques and circuits that can be implemented in a personal audio device, such as a wireless telephone. The personal audio device includes an ANC circuit that may measure the ambient acoustic environment and generate a signal that is injected in the speaker (or other transducer) output to cancel ambient acoustic events. A reference microphone may be provided to measure the ambient acoustic environment and an error microphone may be included for controlling the adaptation of the anti-noise signal to cancel the ambient audio sounds and for correcting for the electro-acoustic path from the output of the processing circuit through the transducer.


Referring now to FIG. 1, a wireless telephone 10 as illustrated in accordance with embodiments of the present disclosure is shown in proximity to a human ear 5. Wireless telephone 10 is an example of a device in which techniques in accordance with embodiments of the invention may be employed, but it is understood that not all of the elements or configurations embodied in illustrated wireless telephone 10, or in the circuits depicted in subsequent illustrations, are required in order to practice the inventions recited in the claims. Wireless telephone 10 may include a transducer such as speaker SPKR that reproduces distant speech received by wireless telephone 10, along with other local audio events such as ringtones, stored audio program material, injection of near-end speech (i.e., the speech of the user of wireless telephone 10) to provide a balanced conversational perception, and other audio that requires reproduction by wireless telephone 10, such as sources from webpages or other network communications received by wireless telephone 10 and audio indications such as a low battery indication and other system event notifications. A near-speech microphone NS may be provided to capture near-end speech, which is transmitted from wireless telephone 10 to the other conversation participant(s).


Wireless telephone 10 may include ANC circuits and features that inject an anti-noise signal into speaker SPKR to improve intelligibility of the distant speech and other audio reproduced by speaker SPKR. A reference microphone R may be provided for measuring the ambient acoustic environment, and may be positioned away from the typical position of a user's mouth, so that the near-end speech may be minimized in the signal produced by reference microphone R. Another microphone, error microphone E, may be provided in order to further improve the ANC operation by providing a measure of the ambient audio combined with the audio reproduced by speaker SPKR close to ear 5 at an error microphone reference position ERP, when wireless telephone 10 is in close proximity to ear 5. In different embodiments, additional reference and/or error microphones may be employed. Circuit 14 within wireless telephone 10 may include an audio CODEC integrated circuit (IC) 20 that receives the signals from reference microphone R, near-speech microphone NS, and error microphone E, and interfaces with other integrated circuits such as a radio-frequency (RF) integrated circuit 12 having a wireless telephone transceiver. In some embodiments of the disclosure, the circuits and techniques disclosed herein may be incorporated in a single integrated circuit that includes control circuits and other functionality for implementing the entirety of the personal audio device, such as an MP3 player-on-a-chip integrated circuit. In these and other embodiments, the circuits and techniques disclosed herein may be implemented partially or fully in software and/or firmware embodied in computer-readable media and executable by a controller or other processing device.


In general, ANC techniques of the present disclosure measure ambient acoustic events (as opposed to the output of speaker SPKR and/or the near-end speech) impinging on reference microphone R, and by also measuring the same ambient acoustic events impinging on error microphone E, ANC processing circuits of wireless telephone 10 adapt an anti-noise signal generated from the output of reference microphone R to have a characteristic that minimizes the amplitude of the ambient acoustic events at error microphone E (e.g., at error microphone reference position ERP). Because acoustic path P(z) extends from reference microphone R to error microphone E, ANC circuits are effectively estimating acoustic path P(z) while removing effects of an electro-acoustic path S(z) that represents the response of the audio output circuits of CODEC IC 20 and the acoustic/electric transfer function of speaker SPKR including the coupling between speaker SPKR and error microphone E in the particular acoustic environment, which may be affected by the proximity and structure of ear 5 and other physical objects and human head structures that may be in proximity to wireless telephone 10, when wireless telephone 10 is not firmly pressed to ear 5. Because the listener of wireless telephone actually hears the output of speaker SPKR at a drum reference point DRP, differences between the error microphone reference signal produced by error microphone E and what is actually heard by the listener are shaped at least by the response of the ear canal, as well as a spatial distance between error microphone reference position ERP and drum reference position DRP.


While the illustrated wireless telephone 10 includes a two-microphone ANC system with a third near-speech microphone NS, some aspects of the present invention may be practiced in a system that does not include separate error and reference microphones, or a wireless telephone that uses near-speech microphone NS to perform the function of the reference microphone R. Also, in personal audio devices designed only for audio playback, near-speech microphone NS will generally not be included, and the near-speech signal paths in the circuits described in further detail below may be omitted, without changing the scope of the disclosure.


Referring now to FIG. 2, selected circuits within wireless telephone 10 are shown in a block diagram. CODEC IC 20 may include an analog-to-digital converter (ADC) 21A for receiving the reference microphone signal and generating a digital representation ref of the reference microphone signal, an ADC 21B for receiving the error microphone signal and generating a digital representation err of the error microphone signal, and an ADC 21C for receiving the near speech microphone signal and generating a digital representation ns of the near speech microphone signal. CODEC IC 20 may generate an output for driving speaker SPKR from an amplifier A1, which may amplify the output of a digital-to-analog converter (DAC) 23 that receives the output of a combiner 26. Combiner 26 may combine audio signals is from internal audio sources 24, the anti-noise signal generated by ANC circuit 30, which by convention has the same polarity as the noise in reference microphone signal ref and is therefore subtracted by combiner 26, and a portion of near speech microphone signal ns so that the user of wireless telephone 10 may hear his or her own voice in proper relation to downlink speech ds, which may be received from radio frequency (RF) integrated circuit 22 and may also be combined by combiner 26. Near speech microphone signal ns may also be provided to RF integrated circuit 22 and may be transmitted as uplink speech to the service provider via antenna ANT.


Referring now to FIG. 3, details of ANC circuit 30 are shown in accordance with embodiments of the present disclosure. Adaptive filter 32 may receive reference microphone signal ref and under ideal circumstances, may adapt its transfer function W(z) to be P(z)/S(z) to generate the anti-noise signal, which may be provided to an output combiner that combines the anti-noise signal with the audio to be reproduced by the transducer, as exemplified by combiner 26 of FIG. 2. The coefficients of adaptive filter 32 may be controlled by a W coefficient control block 31 that uses a correlation of signals to determine the response of adaptive filter 32, which generally minimizes the error, in a least-mean squares sense, between those components of reference microphone signal ref present in error microphone signal err. The signals compared by W coefficient control block 31 may be the reference microphone signal ref as shaped by a copy of an estimate of the response of path S(z) provided by filter 34B and a modified playback corrected error based at least in part on error microphone signal err. The modified playback corrected error may be generated as described in greater detail below.


By transforming reference microphone signal ref with a copy of the estimate of the response of path S(z), response SECOPY(z), and minimizing the difference between the resultant signal and error microphone signal err, adaptive filter 32 may adapt to the desired response of P(z)/S(z). In addition to error microphone signal err, the signal compared to the output of filter 34B by W coefficient control block 31 may include an inverted amount of downlink audio signal ds and/or internal audio signal ia that has been processed by filter response SE(z), of which response SECOPY(z) is a copy. By injecting an inverted amount of downlink audio signal ds and/or internal audio signal ia, adaptive filter 32 may be prevented from adapting to the relatively large amount of downlink audio and/or internal audio signal present in error microphone signal err. However, by transforming that inverted copy of downlink audio signal ds and/or internal audio signal ia with the estimate of the response of path S(z), the downlink audio and/or internal audio that is removed from error microphone signal err should match the expected version of downlink audio signal ds and/or internal audio signal ia reproduced at error microphone signal err, because the electrical and acoustical path of S(z) is the path taken by downlink audio signal ds and/or internal audio signal ia to arrive at error microphone E. Filter 34B may not be an adaptive filter, per se, but may have an adjustable response that is tuned to match the response of adaptive filter 34A, so that the response of filter 34B tracks the adapting of adaptive filter 34A.


To implement the above, adaptive filter 34A may have coefficients controlled by SE coefficient control block 33, which may compare a source audio signal (e.g., downlink audio signal ds and/or internal audio signal ia) and a playback corrected error, wherein the playback corrected error is equal to error microphone signal err after removal of the source audio signal (as filtered by adaptive filter 34A to represent the expected playback audio delivered to error microphone E) by a combiner 36. SE coefficient control block 33 may correlate the actual source audio signal with the components of the source audio signal that are present in error microphone signal err. Adaptive filter 34A may thereby be adapted to generate a secondary estimate signal from the source audio signal, that when subtracted from error microphone signal err to generate the playback corrected error, includes the content of error microphone signal err that is not due to the source audio signal.


The modified playback corrected error may be communicated to W coefficient control block 31 and compared with the filtered reference microphone signal ref, wherein the modified playback corrected error is equal to the playback corrected error after removal (e.g., by combiner 38) of a scaled anti-noise signal generated by a biasing portion comprising gain element 46 and filter 34C. Filter 34C may not be an adaptive filter, per se, but may have an adjustable response that is tuned to match the response of adaptive filter 34A, so that the response of filter 34C tracks the adapting of adaptive filter 34A. Gain element 46 may apply a multiplicative scaling factor and filter 34C may apply the response SECOPY(z) (which is a copy of SE(z)) to the anti-noise signal generated by filter 32 in order to generate the scaled anti-noise signal. Accordingly, a gain G of ANC system 30 (where the gain G is the ratio of the anti-noise signal generated by a typical ANC system without gain element 46 and filter 34C to the anti-noise generated by filter 32 of ANC circuit 30 depicted in FIG. 3) may be varied by modifying the scaling factor of gain element 46, without other parts of ANC circuit 30 compensating and nullifying the change in gain G as it is varied. The relationship between the gain G of filter 32 and the scaling factor k of gain element 46 may be given by the equation:

G=1/(1−k)


In order to compensate for changes in a distance between error microphone reference point ERP and drum reference point DRP, ANC circuit 30 may vary the scaling factor, and therefore the gain G, based on an estimation or other indication of the distance between error microphone reference point ERP and drum reference point DRP. Such distance may be estimated in any suitable manner, for example by detecting a pressure of wireless telephone 10 against a listener's ear 5 as described in U.S. patent application Ser. No. 13/844,602 filed Mar. 15, 2013, entitled “Monitoring of Speaker Impedance to Detect Pressure Applied Between Mobile Device in Ear,” and/or as described in U.S. patent application Ser. No. 13/310,380 filed Dec. 2, 2011, entitled “Ear-Coupling Detection and Adjustment of Adaptive Response in Noise-Cancelling in Personal Audio Devices,” in which distance may be estimated and/or pressure may be determined by analyzing the response SE(z) of filter 34A due to the fact that in certain personal audio devices, the response SE(z) may vary in amplitude within certain frequencies (e.g., less than 1-2 kilohertz) based on the pressure between speaker SPKR and the listener's ear 5, and thus, by examining amplitude of SE(z) at such frequencies, a pressure and/or distance may be estimated.


This disclosure encompasses all changes, substitutions, variations, alterations, and modifications to the exemplary embodiments herein that a person having ordinary skill in the art would comprehend. Similarly, where appropriate, the appended claims encompass all changes, substitutions, variations, alterations, and modifications to the exemplary embodiments herein that a person having ordinary skill in the art would comprehend. Moreover, reference in the appended claims to an apparatus or system or a component of an apparatus or system being adapted to, arranged to, capable of, configured to, enabled to, operable to, or operative to perform a particular function encompasses that apparatus, system, or component, whether or not it or that particular function is activated, turned on, or unlocked, as long as that apparatus, system, or component is so adapted, arranged, capable, configured, enabled, operable, or operative.


All examples and conditional language recited herein are intended for pedagogical objects to aid the reader in understanding the invention and the concepts contributed by the inventor to furthering the art, and are construed as being without limitation to such specifically recited examples and conditions. Although embodiments of the present inventions have been described in detail, it should be understood that various changes, substitutions, and alterations could be made hereto without departing from the spirit and scope of the disclosure.

Claims
  • 1. A personal audio device comprising: a personal audio device housing;a transducer coupled to the personal audio device housing for reproducing an audio signal including both a source audio signal for playback to a listener and an anti-noise signal for countering the effects of ambient audio sounds in an acoustic output of the transducer;a reference microphone coupled to the personal audio device housing for providing a reference microphone signal indicative of the ambient audio sounds;an error microphone coupled to the personal audio device housing in proximity to the transducer for providing an error microphone signal indicative of the acoustic output of the transducer and the ambient audio sounds at the transducer; anda processing circuit comprising: an adaptive filter having a response that generates an anti-noise signal from the reference microphone signal;a secondary path estimate filter configured to model an electro-acoustic path of the source audio signal and have a response that generates a secondary path estimate from the source audio signal;a biasing portion that generates a scaled anti-noise signal by applying a scaling factor and the response of the secondary path estimate filter to the anti-noise signal; anda coefficient control block that shapes the response of the adaptive filter in conformity with the reference microphone signal and a modified playback corrected error signal by adapting the response of the adaptive filter to minimize the ambient audio sounds in the error microphone signal, wherein a playback corrected error signal is based on a difference between the error microphone signal and the secondary path estimate and the modified playback corrected error signal is based on a difference between the playback corrected error signal and the scaled anti-noise signal.
  • 2. The personal audio device of claim 1, wherein the scaling factor has a value between 0 and 1.
  • 3. The personal audio device of claim 1, wherein the scaling factor defines a gain, wherein the gain is the ratio of the anti-noise signal that would be generated by filter without the biasing portion to the anti-noise generated by filter with the biasing portion.
  • 4. The personal audio device of claim 1, wherein the value of the scaling factor is a function of a distance between the personal audio device and a portion of the listener.
  • 5. The personal audio device of claim 4, wherein the distance is an estimated distance between the transducer and the listener's eardrum.
  • 6. The personal audio device of claim 4, wherein: the secondary path estimate filter is an adaptive filter, and the processing circuit further implements a secondary coefficient control block that shapes the response of the secondary path estimate filter in conformity with the source audio signal and the playback corrected error signal by adapting the response of the secondary path estimate filter to minimize the playback corrected error signal; andthe distance is determined based on the response of the secondary path estimate filter.
  • 7. The personal audio device of claim 1, wherein the value of the scaling factor is a function of a pressure applied to the personal audio device by the listener.
  • 8. The personal audio device of claim 7, wherein the pressure is a pressure applied between the personal audio device and the listener's ear.
  • 9. The personal audio device of claim 7, wherein: the secondary path estimate filter is adaptive, and the processing circuit further implements a secondary coefficient control block that shapes the response of the secondary path estimate filter in conformity with the source audio signal and the playback corrected error signal by adapting the response of the secondary path estimate filter to minimize the playback corrected error signal; andthe pressure is determined based on the response of the secondary path estimate filter.
  • 10. A method for canceling ambient audio sounds in the proximity of a transducer of a personal audio device, the method comprising: receiving a reference microphone signal indicative of the ambient audio sounds;receiving an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer; andgenerating a source audio signal for playback to a listener;adaptively generating an anti-noise signal for countering effects of the ambient audio sounds at an acoustic output of the transducer by adapting a response of an adaptive filter that filters the reference microphone signal in conformity with the reference microphone signal and a modified playback corrected error signal to minimize the ambient audio sounds in the error microphone signal;generating a secondary path estimate from the source audio signal by filtering the source audio signal with a secondary path estimate filter modeling an electro-acoustic path of the source audio signal;generating a scaled anti-noise signal by applying a scaling factor and a response of the secondary path estimate filter to the anti-noise signal; andcombining the anti-noise signal with a source audio signal to generate an audio signal provided to the transducer;wherein a playback corrected error signal is based on a difference between the error microphone signal and the secondary path estimate and the modified playback corrected error signal is based on a difference between the playback corrected error signal and the scaled anti-noise signal.
  • 11. The method of claim 10, wherein the scaling factor has a value between 0 and 1.
  • 12. The method of claim 10, wherein the scaling factor defines a gain, wherein the gain is the ratio of the anti-noise signal that would be generated by filter without the biasing portion to the anti-noise generated by filter with the biasing portion.
  • 13. The method of claim 10, wherein the value of the scaling factor is a function of a distance between the personal audio device and a portion of the listener.
  • 14. The method of claim 13, wherein the distance is an estimated distance between the transducer and the listener's eardrum.
  • 15. The method of claim 13, further comprising: shaping the response of the secondary path estimate filter in conformity with the source audio signal and the playback corrected error signal by adapting the response of the secondary path estimate filter to minimize the playback corrected error signal; anddetermining the distance based on the response of the secondary path estimate filter.
  • 16. The method of claim 10, wherein the value of the scaling factor is a function of a pressure applied to the personal audio device by the listener.
  • 17. The method of claim 16, wherein the pressure is a pressure applied between the personal audio device and the listener's ear.
  • 18. The method of claim 16, further comprising: shaping the response of the secondary path estimate filter in conformity with the source audio signal and the playback corrected error signal by adapting the response of the secondary path estimate filter to minimize the playback corrected error signal; anddetermining the pressure based on the response of the secondary path estimate filter.
  • 19. An integrated circuit for implementing at least a portion of a personal audio device, comprising: an output for providing a signal to a transducer including both a source audio signal for playback to a listener and an anti-noise signal for countering the effect of ambient audio sounds in an acoustic output of the transducer;a reference microphone input for receiving a reference microphone signal indicative of the ambient audio sounds;an error microphone input for receiving an error microphone signal indicative of the output of the transducer and the ambient audio sounds at the transducer, anda processing circuit comprising: an adaptive filter having a response that generates an anti-noise signal from the reference microphone signal;a secondary path estimate filter configured to model an electro-acoustic path of the source audio signal and have a response that generates a secondary path estimate from the source audio signal;a biasing portion that generates a scaled anti-noise signal by applying a scaling factor and the response of the secondary path estimate filter to the anti-noise signal; anda coefficient control block that shapes the response of the adaptive filter in conformity with the reference microphone signal and a modified playback corrected error signal by adapting the response of the adaptive filter to minimize the ambient audio sounds in the error microphone signal, wherein a playback corrected error signal is based on a difference between the error microphone signal and the secondary path estimate and the modified playback corrected error signal is based on a difference between the playback corrected error signal and the scaled anti-noise signal.
  • 20. The integrated circuit of claim 19, wherein the scaling factor has a value between 0 and 1.
  • 21. The integrated circuit of claim 19, wherein the scaling factor defines a gain, wherein the gain is the ratio of the anti-noise signal that would be generated by filter without the biasing portion to the anti-noise generated by filter with the biasing portion.
  • 22. The integrated circuit of claim 19, wherein the scaling factor is a function of a distance between the personal audio device and a portion of the listener.
  • 23. The integrated circuit of claim 22, wherein the distance is an estimated distance between the transducer and the listener's eardrum.
  • 24. The integrated circuit of claim 22, wherein: the secondary path estimate filter is an adaptive filter, and the processing circuit further implements a secondary coefficient control block that shapes the response of the secondary path estimate filter in conformity with the source audio signal and the playback corrected error signal by adapting the response of the secondary path estimate filter to minimize the playback corrected error signal; andthe distance is determined based on the response of the secondary path estimate filter.
  • 25. The integrated circuit of claim 19, wherein the scaling factor is a function of a pressure applied to the personal audio device by the listener.
  • 26. The integrated circuit of claim 25, wherein the pressure is a pressure applied between the personal audio device and the listener's ear.
  • 27. The integrated circuit of claim 25, wherein: the secondary path estimate filter is adaptive, and the processing circuit further implements a secondary coefficient control block that shapes the response of the secondary path estimate filter in conformity with the source audio signal and the playback corrected error signal by adapting the response of the secondary path estimate filter to minimize the playback corrected error signal; andthe pressure is determined based on the response of the secondary path estimate filter.
RELATED APPLICATION

The present disclosure claims priority to U.S. Provisional Patent Application Ser. No. 61/812,842, filed Apr. 17, 2013, which is incorporated by reference herein in its entirety.

US Referenced Citations (265)
Number Name Date Kind
5251263 Andrea et al. Oct 1993 A
5278913 Delfosse et al. Jan 1994 A
5321759 Yuan Jun 1994 A
5337365 Hamabe et al. Aug 1994 A
5359662 Yuan et al. Oct 1994 A
5410605 Sawada et al. Apr 1995 A
5425105 Lo et al. Jun 1995 A
5445517 Kondou et al. Aug 1995 A
5465413 Enge et al. Nov 1995 A
5481615 Eatwell et al. Jan 1996 A
5548681 Gleaves et al. Aug 1996 A
5559893 Krokstad Sep 1996 A
5586190 Trantow et al. Dec 1996 A
5640450 Watanabe Jun 1997 A
5668747 Ohashi Sep 1997 A
5696831 Inanaga Dec 1997 A
5699437 Finn Dec 1997 A
5706344 Finn Jan 1998 A
5740256 Castello Da Costa et al. Apr 1998 A
5768124 Stothers et al. Jun 1998 A
5815582 Claybaugh et al. Sep 1998 A
5832095 Daniels Nov 1998 A
5909498 Smith Jun 1999 A
5940519 Kuo Aug 1999 A
5946391 Dragwidge et al. Aug 1999 A
5991418 Kuo Nov 1999 A
6041126 Terai et al. Mar 2000 A
6118878 Jones Sep 2000 A
6219427 Kates et al. Apr 2001 B1
6278786 McIntosh Aug 2001 B1
6282176 Hemkumar Aug 2001 B1
6418228 Terai et al. Jul 2002 B1
6434246 Kates et al. Aug 2002 B1
6434247 Kates et al. Aug 2002 B1
6522746 Marchok et al. Feb 2003 B1
6683960 Fujii et al. Jan 2004 B1
6766292 Chandran et al. Jul 2004 B1
6768795 Feltstrom et al. Jul 2004 B2
6850617 Weigand Feb 2005 B1
6940982 Watkins Sep 2005 B1
7058463 Ruha et al. Jun 2006 B1
7103188 Jones Sep 2006 B1
7181030 Rasmussen et al. Feb 2007 B2
7330739 Somayajula Feb 2008 B2
7365669 Melanson Apr 2008 B1
7466838 Moseley Dec 2008 B1
7680456 Muhammad et al. Mar 2010 B2
7742790 Konchitsky et al. Jun 2010 B2
7817808 Konchitsky et al. Oct 2010 B2
7885417 Christoph Feb 2011 B2
8019050 Mactavish et al. Sep 2011 B2
8249262 Chua et al. Aug 2012 B2
8290537 Lee et al. Oct 2012 B2
8325934 Kuo Dec 2012 B2
8363856 Lesso et al. Jan 2013 B2
8379884 Horibe et al. Feb 2013 B2
8401200 Tiscareno et al. Mar 2013 B2
8442251 Jensen et al. May 2013 B2
8526627 Asao et al. Sep 2013 B2
8804974 Melanson Aug 2014 B1
8848936 Kwatra et al. Sep 2014 B2
8907829 Naderi Dec 2014 B1
8908877 Abdollahzadeh Milani et al. Dec 2014 B2
8948407 Alderson et al. Feb 2015 B2
8958571 Kwatra et al. Feb 2015 B2
9066176 Hendrix et al. Jun 2015 B2
9094744 Lu et al. Jul 2015 B1
9106989 Li et al. Aug 2015 B2
9107010 Abdollahzadeh Milani et al. Aug 2015 B2
9264808 Zhou et al. Feb 2016 B2
20010053228 Jones Dec 2001 A1
20020003887 Zhang et al. Jan 2002 A1
20030063759 Brennan et al. Apr 2003 A1
20030072439 Gupta Apr 2003 A1
20030185403 Sibbald Oct 2003 A1
20040001450 He et al. Jan 2004 A1
20040047464 Yu et al. Mar 2004 A1
20040120535 Woods Jun 2004 A1
20040165736 Hetherington et al. Aug 2004 A1
20040167777 Hetherington et al. Aug 2004 A1
20040176955 Farinelli, Jr. Sep 2004 A1
20040202333 Csermak et al. Oct 2004 A1
20040240677 Onishi et al. Dec 2004 A1
20040242160 Ichikawa et al. Dec 2004 A1
20040264706 Ray et al. Dec 2004 A1
20050004796 Trump et al. Jan 2005 A1
20050018862 Fisher Jan 2005 A1
20050117754 Sakawaki Jun 2005 A1
20050207585 Christoph Sep 2005 A1
20050240401 Ebenezer Oct 2005 A1
20060035593 Leeds Feb 2006 A1
20060055910 Lee Mar 2006 A1
20060069556 Nadjar et al. Mar 2006 A1
20060109941 Keele, Jr. May 2006 A1
20060153400 Fujita et al. Jul 2006 A1
20070030989 Kates Feb 2007 A1
20070033029 Sakawaki Feb 2007 A1
20070038441 Inoue et al. Feb 2007 A1
20070047742 Taenzer et al. Mar 2007 A1
20070053524 Haulick et al. Mar 2007 A1
20070076896 Hosaka et al. Apr 2007 A1
20070154031 Avendano et al. Jul 2007 A1
20070258597 Rasmussen et al. Nov 2007 A1
20070297620 Choy Dec 2007 A1
20080019548 Avendano Jan 2008 A1
20080101589 Horowitz et al. May 2008 A1
20080107281 Togami et al. May 2008 A1
20080144853 Sommerfeldt et al. Jun 2008 A1
20080166002 Amsel Jul 2008 A1
20080177532 Greiss et al. Jul 2008 A1
20080181422 Christoph Jul 2008 A1
20080226098 Haulick et al. Sep 2008 A1
20080240413 Mohammad et al. Oct 2008 A1
20080240455 Inoue et al. Oct 2008 A1
20080240457 Innoue et al. Oct 2008 A1
20090012783 Klein Jan 2009 A1
20090034748 Sibbald Feb 2009 A1
20090041260 Jorgensen et al. Feb 2009 A1
20090046867 Clemow Feb 2009 A1
20090060222 Jeong et al. Mar 2009 A1
20090080670 Solbeck et al. Mar 2009 A1
20090086990 Christoph Apr 2009 A1
20090136057 Taenzer May 2009 A1
20090175461 Nakamura et al. Jul 2009 A1
20090175466 Elko et al. Jul 2009 A1
20090196429 Ramakrishnan et al. Aug 2009 A1
20090220107 Every et al. Sep 2009 A1
20090238369 Ramakrishnan et al. Sep 2009 A1
20090245529 Asada et al. Oct 2009 A1
20090254340 Sun et al. Oct 2009 A1
20090290718 Kahn et al. Nov 2009 A1
20090296965 Kojima Dec 2009 A1
20090304200 Kim et al. Dec 2009 A1
20090311979 Husted et al. Dec 2009 A1
20100014683 Maeda et al. Jan 2010 A1
20100014685 Wurm Jan 2010 A1
20100061564 Clemow et al. Mar 2010 A1
20100069114 Lee et al. Mar 2010 A1
20100082339 Konchitsky et al. Apr 2010 A1
20100098263 Pan et al. Apr 2010 A1
20100098265 Pan et al. Apr 2010 A1
20100124336 Shridhar et al. May 2010 A1
20100124337 Wertz et al. May 2010 A1
20100131269 Park et al. May 2010 A1
20100142715 Goldstein et al. Jun 2010 A1
20100150367 Mizuno Jun 2010 A1
20100158330 Guissin et al. Jun 2010 A1
20100166203 Peissig et al. Jul 2010 A1
20100183175 Chen et al. Jul 2010 A1
20100195838 Bright Aug 2010 A1
20100195844 Christoph et al. Aug 2010 A1
20100207317 Iwami et al. Aug 2010 A1
20100246855 Chen Sep 2010 A1
20100266137 Sibbald et al. Oct 2010 A1
20100272276 Carreras et al. Oct 2010 A1
20100272283 Carreras et al. Oct 2010 A1
20100272284 Marcel et al. Oct 2010 A1
20100274564 Bakalos et al. Oct 2010 A1
20100284546 DeBrunner et al. Nov 2010 A1
20100291891 Ridgers et al. Nov 2010 A1
20100296666 Lin Nov 2010 A1
20100296668 Lee et al. Nov 2010 A1
20100310086 Magrath et al. Dec 2010 A1
20100310087 Ishida Dec 2010 A1
20100316225 Saito et al. Dec 2010 A1
20100322430 Isberg Dec 2010 A1
20110002468 Tanghe Jan 2011 A1
20110007907 Park et al. Jan 2011 A1
20110026724 Doclo Feb 2011 A1
20110096933 Eastty Apr 2011 A1
20110106533 Yu May 2011 A1
20110116643 Tiscareno May 2011 A1
20110129098 Delano et al. Jun 2011 A1
20110130176 Magrath et al. Jun 2011 A1
20110142247 Fellers et al. Jun 2011 A1
20110144984 Konchitsky Jun 2011 A1
20110150257 Jensen Jun 2011 A1
20110158419 Theverapperuma et al. Jun 2011 A1
20110206214 Christoph et al. Aug 2011 A1
20110222698 Asao et al. Sep 2011 A1
20110222701 Donaldson Sep 2011 A1
20110249826 Van Leest Oct 2011 A1
20110288860 Schevciw et al. Nov 2011 A1
20110293103 Park et al. Dec 2011 A1
20110299695 Nicholson Dec 2011 A1
20110305347 Wurm Dec 2011 A1
20110317848 Ivanov et al. Dec 2011 A1
20120057720 Van Leest Mar 2012 A1
20120084080 Konchitsky et al. Apr 2012 A1
20120135787 Kusunoki et al. May 2012 A1
20120140917 Nicholson et al. Jun 2012 A1
20120140942 Loeda Jun 2012 A1
20120140943 Hendrix et al. Jun 2012 A1
20120148062 Scarlett et al. Jun 2012 A1
20120155666 Nair Jun 2012 A1
20120170766 Alves et al. Jul 2012 A1
20120185524 Clark Jul 2012 A1
20120207317 Abdollahzadeh Milani et al. Aug 2012 A1
20120215519 Park et al. Aug 2012 A1
20120250873 Bakalos et al. Oct 2012 A1
20120259626 Li et al. Oct 2012 A1
20120263317 Shin et al. Oct 2012 A1
20120281850 Hyatt Nov 2012 A1
20120300958 Klemmensen Nov 2012 A1
20120300960 Mackay et al. Nov 2012 A1
20120308021 Kwatra et al. Dec 2012 A1
20120308024 Alderson et al. Dec 2012 A1
20120308025 Hendrix et al. Dec 2012 A1
20120308026 Kamath et al. Dec 2012 A1
20120308027 Kwatra Dec 2012 A1
20120308028 Kwatra et al. Dec 2012 A1
20120310640 Kwatra et al. Dec 2012 A1
20130010982 Elko et al. Jan 2013 A1
20130083939 Fellers et al. Apr 2013 A1
20130156238 Birch et al. Jun 2013 A1
20130222516 Do et al. Aug 2013 A1
20130243198 Van Rumpt Sep 2013 A1
20130243225 Yokota Sep 2013 A1
20130259251 Bakalos Oct 2013 A1
20130272539 Kim et al. Oct 2013 A1
20130287218 Alderson et al. Oct 2013 A1
20130287219 Hendrix et al. Oct 2013 A1
20130301842 Hendrix et al. Nov 2013 A1
20130301846 Alderson et al. Nov 2013 A1
20130301847 Alderson et al. Nov 2013 A1
20130301848 Zhou et al. Nov 2013 A1
20130301849 Alderson et al. Nov 2013 A1
20130315403 Samuelsson Nov 2013 A1
20130343556 Bright Dec 2013 A1
20130343571 Rayala et al. Dec 2013 A1
20140036127 Pong et al. Feb 2014 A1
20140044275 Goldstein et al. Feb 2014 A1
20140050332 Nielsen et al. Feb 2014 A1
20140051483 Schoerkmaier Feb 2014 A1
20140072134 Po et al. Mar 2014 A1
20140072135 Bajic et al. Mar 2014 A1
20140086425 Jensen et al. Mar 2014 A1
20140126735 Gauger, Jr. May 2014 A1
20140169579 Azmi Jun 2014 A1
20140177851 Kitazawa et al. Jun 2014 A1
20140177890 Hojlund et al. Jun 2014 A1
20140211953 Alderson et al. Jul 2014 A1
20140226827 Abdollahzadeh Milani et al. Aug 2014 A1
20140270222 Hendrix et al. Sep 2014 A1
20140270223 Li et al. Sep 2014 A1
20140270224 Zhou et al. Sep 2014 A1
20140294182 Axelsson Oct 2014 A1
20140307887 Alderson et al. Oct 2014 A1
20140307888 Alderson et al. Oct 2014 A1
20140307890 Zhou et al. Oct 2014 A1
20140307899 Hendrix et al. Oct 2014 A1
20140314244 Yong et al. Oct 2014 A1
20140314246 Hellman Oct 2014 A1
20140314247 Zhang Oct 2014 A1
20140369517 Zhou et al. Dec 2014 A1
20150078572 Abdollahzadeh Milani Mar 2015 A1
20150092953 Abdollahzadeh Milani et al. Apr 2015 A1
20150104032 Kwatra et al. Apr 2015 A1
20150161980 Alderson et al. Jun 2015 A1
20150161981 Kwatra Jun 2015 A1
20150163592 Alderson Jun 2015 A1
20150256660 Kaller et al. Sep 2015 A1
20150256953 Kwatra et al. Sep 2015 A1
20150269926 Alderson et al. Sep 2015 A1
20150365761 Alderson et al. Dec 2015 A1
Foreign Referenced Citations (61)
Number Date Country
WO 2012119808 Sep 2012 AT
102011013343 Sep 2012 DE
0412902 Feb 1991 EP
0756407 Jan 1997 EP
1691577 Aug 2006 EP
1880699 Jan 2008 EP
1947642 Jul 2008 EP
2133866 Dec 2009 EP
2237573 Oct 2010 EP
2216774 Aug 2011 EP
2395500 Dec 2011 EP
2395501 Dec 2011 EP
2551845 Jan 2013 EP
2583074 Apr 2013 EP
2401744 Nov 2004 GB
2436657 Oct 2007 GB
2455821 Jun 2009 GB
2455824 Jun 2009 GB
2455828 Jun 2009 GB
2484722 Apr 2012 GB
H06186985 Jul 1994 JP
H06232755 Aug 1994 JP
07325588 Dec 1995 JP
2000089770 Mar 2000 JP
2004007107 Jan 2004 JP
2007060644 Mar 2007 JP
2010277025 Dec 2010 JP
2011061449 Mar 2011 JP
9911045 Mar 1999 WO
03015074 Feb 2003 WO
03015275 Feb 2003 WO
WO2004009007 Jan 2004 WO
2004017303 Feb 2004 WO
2006128768 Dec 2006 WO
2007007916 Jan 2007 WO
2007011337 Jan 2007 WO
2007110807 Oct 2007 WO
2007113487 Nov 2007 WO
2009041012 Apr 2009 WO
2009110087 Sep 2009 WO
2010117714 Oct 2010 WO
2011035061 Mar 2011 WO
2012107561 Aug 2012 WO
2012119808 Sep 2012 WO
2012134874 Oct 2012 WO
2012166273 Dec 2012 WO
2012166388 Dec 2012 WO
2014158475 Oct 2014 WO
2014168685 Oct 2014 WO
2014172005 Oct 2014 WO
2014172006 Oct 2014 WO
2014172010 Oct 2014 WO
2014172019 Oct 2014 WO
2014172021 Oct 2014 WO
2014200787 Dec 2014 WO
2015038255 Mar 2015 WO
2015088639 Jun 2015 WO
2015088651 Jun 2015 WO
2015088653 Jun 2015 WO
2015134225 Sep 2015 WO
2015191691 Dec 2015 WO
Non-Patent Literature Citations (61)
Entry
Widrow, B. et al., Adaptive Noise Cancelling: Principles and Applications, Proceedings of the IEEE, IEEE, New York, NY, U.S., vol. 63, No. 13, Dec. 1975, pp. 1692-1716.
Morgan, Dennis R. et al., A Delayless Subband Adaptive Filter Architecture, IEEE Transactions on Signal Processing, IEEE Service Center, New York, NY, U.S., vol. 43, No. 8, Aug. 1995, pp. 1819-1829.
International Patent Application No. PCT/US2014/040999, International Search Report and Written Opinion, Oct. 18, 2014, 12 pages.
International Patent Application No. PCT/US2013/049407, International Search Report and Written Opinion, Jun. 18, 2014, 13 pages.
Ray, Laura et al., Hybrid Feedforward-Feedback Active Noise Reduction for Hearing Protection and Communication, The Journal of the Acoustical Society of America, American Institute of Physics for the Acoustical Society of America, New York, NY, vol. 120, No. 4, Jan. 2006, pp. 2026-2036.
International Patent Application No. PCT/US2014/017112, International Search Report and Written Opinion, May 8, 2015, 22 pages.
International Patent Application No. PCT/US2015/017124, International Search Report and Written Opinion, Jul. 13, 2015, 19 pages.
International Patent Application No. PCT/US2015/035073, International Search Report and Written Opinion, Oct. 8, 2015, 11 pages.
Campbell, Mikey, “Apple looking into self-adjusting earbud headphones with noise cancellation tech”, Apple Insider, Jul. 4, 2013, pp. 1-10 (10 pages in pdf), downloaded May 14, 2014 from http://appleinsider.com/articles/13/07/04/apple-looking-into-self-adjusting-earbud-headphones-with-noise-cancellation-tech.
International Patent Application No. PCT/US2014/017096, International Search Report and Written Opinion, May 27, 2014, 11 pages.
International Patent Application No. PCT/US2014/049600, International Search Report and Written Opinion, Jan. 14, 2015, 12 pages.
International Patent Application No. PCT/US2014/061753, International Search Report and Written Opinion, Feb. 9, 2015, 8 pages.
International Patent Application No. PCT/US2014/061548, International Search Report and Written Opinion, Feb. 12, 2015, 13 pages.
International Patent Application No. PCT/US2014/060277, International Search Report and Written Opinion, Mar. 9, 2015, 11 pages.
Kou, Sen and Tsai, Jianming, Residual noise shaping technique for active noise control systems, J. Acoust. Soc. Am. 95 (3), Mar. 1994, pp. 1665-1668.
Pfann, et al., “LMS Adaptive Filtering with Delta-Sigma Modulated Input Signals,” IEEE Signal Processing Letters, Apr. 1998, pp. 95-97, vol. 5, No. 4, IEEE Press, Piscataway, NJ.
Toochinda, et al., “A Single-Input Two-Output Feedback Formulation for ANC Problems,” Proceedings of the 2001 American Control Conference, Jun. 2001, pp. 923-928, vol. 2, Arlington, VA.
Kuo, et al., “Active Noise Control: A Tutorial Review,” Proceedings of the IEEE, Jun. 1999, pp. 943-973, vol. 87, No. 6, IEEE Press, Piscataway, NJ.
Johns, et al., “Continuous-Time LMS Adaptive Recursive Filters,” IEEE Transactions on Circuits and Systems, Jul. 1991, pp. 769-778, vol. 38, No. 7, IEEE Press, Piscataway, NJ.
Shoval, et al., “Comparison of DC Offset Effects in Four LMS Adaptive Algorithms,” IEEE Transactions on Circuits and Systems II: Analog and Digital Processing, Mar. 1995, pp. 176-185, vol. 42, Issue 3, IEEE Press, Piscataway, NJ.
Mali, Dilip, “Comparison of DC Offset Effects on LMB Algorithm and its Derivatives,” International Journal of Recent Trends in Engineering, May 2009, pp. 323-328, vol. 1, No. 1, Academy Publisher.
Kates, James M., “Principles of Digital Dynamic Range Compression,” Trends in Amplification, Spring 2005, pp. 45-76, vol. 9, No. 2, Sage Publications.
Gao, et al., “Adaptive Linearization of a Loudspeaker,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 14-17, 1991, pp. 3589-3592, Toronto, Ontario, CA.
Silva, et al., “Convex Combination of Adaptive Filters With Different Tracking Capabilities,” IEEE International Conference on Acoustics, Speech, and Signal Processing, Apr. 15-20, 2007, pp. III 925-928, vol. 3, Honolulu, HI, USA.
Akhtar, et al., “A Method for Online Secondary Path Modeling in Active Noise Control Systems,” IEEE International Symposium on Circuits and Systems, May 23-26, 2005, p. 264-267, vol. 1, Kobe, Japan.
Davari, et al., “A New Online Secondary Path Modeling Method for Feedforward Active Noise Control Systems,” IEEE International Conference on Industrial Technology, Apr. 21-24, 2008, pp. 1-6, Chengdu, China.
Lan, et al., “An Active Noise Control System Using Online Secondary Path Modeling With Reduced Auxiliary Noise,” IEEE Signal Processing Letters, Jan. 2002, p. 16-18, vol. 9, Issue 1, IEEE Press, Piscataway, NJ.
Liu, et al., “Analysis of Online Secondary Path Modeling With Auxiliary Noise Scaled by Residual Noise Signal,” IEEE Transactions on Audio, Speech and Language Processing, Nov. 2010, p. 1978-1993, vol. 18, Issue 8, IEEE Press, Piscataway, NJ.
Booji, P.S., Berkhoff, A.P., Virtual sensors for local, three dimensional, broadband multiple-channel active noise control and the effects on the quiet zones, Proceedings of ISMA2010 including USD2010, pp. 151-166.
Lopez-Caudana, Edgar Omar, Active Noise Cancellation: The Unwanted Signal and the Hybrid Solution, Adaptive Filtering Applications, Dr. Lino Garcia, ISBN: 978-953-307-306-4, InTech.
D. Senderowicz et al., “Low-Voltage Double-Sampled Delta-Sigma Converters,” IEEE J. Solid-State Circuits, vol. 32 No. 12, pp. 1907-1919, Dec. 1997, 13 pages.
Hurst, P.J. and Dyer, K.C., “An improved double sampling scheme for switched-capacitor delta-sigma modulators,” IEEE Int. Symp. Circuits Systems, May 1992, vol. 3, pp. 1179-1182, 4 pages.
Milani, et al., “On Maximum Achievable Noise Reduction in ANC Systems”, Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010, Mar. 14-19, 2010 pp. 349-352.
Ryan, et al., “Optimum near-field performance of microphone arrays subject to a far-field beampattern constraint”, 2248 J. Acoust. Soc. Am. 108, Nov. 2000.
Cohen, et al., “Noise Estimation by Minima Controlled Recursive Averaging for Robust Speech Enhancement”, IEEE Signal Processing Letters, vol. 9, No. 1, Jan. 2002.
Martin, “Noise Power Spectral Density Estimation Based on Optimal Smoothing and Minimum Statistics”, IEEE Trans. on Speech and Audio Processing, Col. 9, No. 5, Jul. 2001.
Martin, “Spectral Subtraction Based on Minimum Statistics”, Proc. 7th EUSIPCO '94, Edinburgh, U.K., Sep. 13-16, 1994, pp. 1182-1195.
Cohen, “Noise Spectrum Estimation in Adverse Environments: Improved Minima Controlled Recursive Averaging”, IEEE Trans. on Speech & Audio Proc., vol. 11, Issue 5, Sep. 2003.
Black, John W., “An Application of Side-Tone in Subjective Tests of Microphones and Headsets”, Project Report No. NM 001 064.01.20, Research Report of the U.S. Naval School of Aviation Medicine, Feb. 1, 1954, 12 pages. (pp. 1-12 in pdf), Pensacola, FL, US.
Lane, et al., “Voice Level: Autophonic Scale, Perceived Loudness, and the Effects of Sidetone”, The Journal of the Acoustical Society of America, Feb. 1961, pp. 160-167, vol. 33, No. 2., Cambridge, MA, US.
Liu, et al., “Compensatory Responses to Loudness-shifted Voice Feedback During Production of Mandarin Speech”, Journal of the Acoustical Society of America, Oct. 2007, pp. 2405-2412, vol. 122, No. 4.
Paepcke, et al., “Yelling in the Hall: Using Sidetone to Address a Problem with Mobile Remote Presence Systems”, Symposium on User Interface Software and Technology, Oct. 16-19, 2011, 10 pages (pp. 1-10 in pdf), Santa Barbara, CA, US.
Peters, Robert W., “The Effect of High-Pass and Low-Pass Filtering of Side-Tone Upon Speaker Intelligibility”, Project Report No. NM 001 064.01.25, Research Report of the U.S. Naval School of Aviation Medicine, Aug. 16, 1954, 13 pages (pp. 1-13 in pdf), Pensacola, FL, US.
Therrien, et al., “Sensory Attenuation of Self-Produced Feedback: The Lombard Effect Revisited”, PLOS ONE, Nov. 2012, pp. 1-7, vol. 7, Issue 11, e49370, Ontario, Canada.
Jin, et al., “A simultaneous equation method-based online secondary path modeling algorithm for active noise control”, Journal of Sound and Vibration, Apr. 25, 2007, pp. 455-474, vol. 303, No. 3-5, London, GB.
Erkelens et al., “Tracking of Nonstationary Noise Based on Data-Driven Recursive Noise Power Estimation”, IEEE Transactions on Audio Speech, and Language Processing, vol. 16, No. 6, Aug. 2008.
Rao et al., “A Novel Two Stage Single Channle Speech Enhancement Technique”, India Conference (INDICON) 2011 Annual IEEE, IEEE, Dec. 15, 2011.
Rangachari et al., “A noise-estimation algorithm for highly non-stationary environments” Speech Communication, Elsevier Science Publishers, vol. 48, No. 2, Feb. 1, 2006.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017343, mailed Aug. 8, 2014, 22 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/018027, mailed Sep. 4, 2014, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/017374, mailed Sep. 8, 2014, 13 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019395, mailed Sep. 9, 2014, 14 pages.
International Search Report and Written Opinion of the International Searching Authority, International Patent Application No. PCT/US2014/019469, mailed Sep. 12, 2014, 13 pages.
Feng, Jinwei et al., “A broadband self-tuning active noise equaliser”, Signal Processing, Elsevier Science Publishers B.V. Amsterdam, NL, vol. 62, No. 2, Oct. 1, 1997, pp. 251-256.
Zhang, Ming et al., “A Robust Online Secondary Path Modeling Method with Auxiliary Noise Power Scheduling Strategy and Norm Constraint Manipulation”, IEEE Transactions on Speech and Audio Processing, IEEE Service Center, New York, NY, vol. 11, No. 1, Jan. 1, 2003.
Lopez-Gaudana, Edgar et al., “A hybrid active noise cancelling with secondary path modeling”, 51st Midwest Symposium on Circuits and Systems, 2008, MWSCAS 2008, Aug. 10, 2008, pp. 277-280.
Parkins, et al., Narrowband and broadband active control in an enclosure using the acoustic energy density, J. Acoust. Soc. Am. Jul. 2000, pp. 192-203, vol. 108, issue 1, U.S.
International Patent Application No. PCT/US2015/022113, International Search Report and Written Opinion, Jul. 23, 2015, 13 pages.
Combined Search and Examination Report, Application No. GB1512832.5, mailed Jan. 28, 2016, 7 pages.
Combined Search and Examination Report, Application No. GB1519000.2, Mailed Apr. 21, 2016, 5 pages.
International Patent Application No. PCT/US2015/066260, International Search Report and Written Opinion, mailed Apr. 21, 2016, 13 pages.
Related Publications (1)
Number Date Country
20140314244 A1 Oct 2014 US
Provisional Applications (1)
Number Date Country
61812842 Apr 2013 US