The present invention relates to process control systems, in particular, systems and methods for adaptive non-linear control of process systems.
1 Introduction
The controller design presented is intended for the use in the field of process control. Normally in this field it is quite common for there to be found controllers based on the Proportionate Integral Derivative (PID) control method. PID control systems are generally used to control a nonlinear system around a predetermined operating point. In a properly designed PID control system, the design begins with the linearization of the nonlinear system around the operating point. The linearization is then followed by the preliminary selection of the respective gains Kp, Ki and Kd which are the proportionate, integral and derivative gains respectively based. During implementation, the control engineer is required to tune the values of these gains to acquire the desired closed loop response by viewing the trends of the process variable. Overtime the control engineer will be required to re-adjust the gains as the parameters of the system which were obtained from linearization have drifted away from the original values due to either the nonlinear nature of the process or a change in components of the process.
In most cases the drifting of parameters is the cause of changes in the response of the controller and therefore by extension a change in the quality of the product. For batch processes, maintaining consistency between batches is a requirement as there needs to be a small variation between batches of a given product. For a continuous process, this may result in more of the material produced having to be recycled back through the plant to obtain the required grade as in distillation systems. In addition to these concerns, the drifting of parameters can result in the system becoming unstable as the linearized close loop poles would have shifted to an unstable region. It is therefore the intention that the adaptive nonlinear control algorithm that is proposed address the issues that have been highlighted and provide the following features for nonlinear systems.
The features of the adaptive nonlinear control algorithm are:
To demonstrate the useful nature of the control system with reference to the features described above, linear and nonlinear systems will be presented. The inclusion of the linear systems are to further illustrate the benefits and aid in the understanding of the control algorithm.
2 Background
As it was introduced in the previous section, practically all of the systems used in the process industry are nonlinear. Generally speaking all real systems exhibit some form of nonlinear behavior. Typical characteristics of a nonlinear system are the coupling of the state variables with each other or the coupling of the state variables with the control input. The aim of the invention is to provide an adaptive nonlinear controller capable of regulating the output of a nonlinear system. The obvious problem with the control of a nonlinear system is due to their nonlinearities. These nonlinearities can be attributed to the list of characteristics that are presented below with explanations. The invention provides a method to developing an adaptive nonlinear controller that can be applied to nonlinear systems in the presence of these problems.
I. Time-Varying Characteristics.
II. Nonlinear Behavior
III. Model Inaccuracies
The linearized dynamics of the nonlinear system are therefore
∂{dot over (x)}=Ãδx+{tilde over (B)}δu.
IV. Sensory feedback
There are several limitations to the current control methods used to regulate nonlinear systems. The most common method is the application of linearization to the nonlinear system. The issue with linearization is that it restricts the control system developed to only being effective when all the system states are within a small region around the specified operating point. If the nonlinear system exits this region, the controller is no longer useful. One solution to this problem comes in the form of sliding mode control which links a series of local PID controllers at various regions of the systems operation. The problem with this solution is that there exist “chattering” when the system switches from one local controller to another local controller. This can cause oscillations within the system as the change in control action can send the system into a region where another controller has been specified and the action of the new controller returns the system to the other control region.
Model Predictive Control (MPC) is another method which can be used to control nonlinear systems. This control method is also based on the on initial development of a linearized model of the nonlinear system. Despite the known benefits of MPC, it is susceptible to an ill conditioned model. An Ill conditioned model occurs when there is a small variation of the linearized process parameters which cause the system poles of the linearized model to vary greatly.
PID controllers can be implemented and they assume that parameters of the linearized system are constant. Therefore for nonlinear systems, the response of the controller can vary and affect the performance of the closed loop system. Using a chemical process such as the distillation column as an example, the reduced effect of the control system can be explained. One of the purpose of control in a binary distillation column is to regulate the quality of the composition of the product streams exiting the column. Over time the parameters vary due to changes in the characteristics of the pumps and the internal flows within the column. PID controllers are developed using some knowledge of the system to place the system at specific operating points. Therefore changes in the parameters over time cause the poles to be shifted to regions which may be undesirable. If we consider the shifting of the closed loop system poles, the system response may acquire larger oscillations and take a longer time to settle to the reference values.
Another solution to the control of nonlinear systems is feedback linearization. This control strategy removes the nonlinearities of the system through feedback given that the nonlinearities are all located within the same state equation as the control input. If there are any nonlinearities within other state equations, transformation of the system to a controllable form is therefore required. To successfully apply this technique all the parameters of the system must be known. An additional drawback of this type of control is that it cannot be applied to systems where the coefficient of the control input approaches zero and therefore causes a singularity at the control input.
It should be understood that there do exist control strategies which are capable of controlling nonlinear processes as shown in the referenced documents. However, they lack certain characteristic features of the algorithm which is being proposed. What is needed are non-linear control systems and methods that address the foregoing problems.
The invention provides systems and methods for generating an adaptive nonlinear controller and for applying the adaptive nonlinear controller to regulating nonlinear process systems in the presence of the foregoing problems in a manner that minimizes the foregoing problems. The next section will illustrate the features of the adaptive non-linear control algorithm which make it unique and demonstrate its development and implementation.
According to an aspect of the present invention, there is provided a method for configuring a controller of a non-linear process system for producing a product. The method includes the step of providing a state-space model of the system. The state space model comprises one or more state-space equations representing a relationship between at least one system variable x, and at least one system output y that relates to a quality measure of the product. In addition the state space model is a function of at least one control variable u that is an input to the system. The method also includes the step of transforming the state-space model into one or more controllable canonical equations, wherein at least one of the one or more controllable canonical equations includes the control variable u. The transforming is performed with one or more processors configured by executing instructions in the form of code therein.
The method also includes the step of generating, with the one or more processors, an objective function J. Generating the objective function includes the step of selecting, with the one or more processors, the objective function J from among a plurality of objective functions stored in a non-transitory computer readable storage medium. J is selected based on at least an order of the state space model. In addition, J is a function of the system output y, the derivatives of y and a control input v, a gain λ and system constants a and b. In particular, control input v defines one or more operational set-points of the system. Generating the objection function also includes the step of inputting, with one or more processors, the one or more controllable canonical equations into the selected objective function.
The method also includes the step of minimizing, with one or more processors, the objective function with respect to the control variable u. The method also includes the step of selecting, with one or more processors, parameters of the control system including the gain λ and a and b according to constraints of the non-linear process system. Lastly, the method includes the step of programmatically configuring the controller to implement a control algorithm defined by the minimized objective function in view of the selected parameters.
According to another aspect of the present invention, there is provided a method for regulating a non-linear process system for producing a product. The method includes the step of providing, to a computer-based controller, a state-space model of the non-linear process system (“the system”). The state-space model represents a relationship between at least one system variable and at least one system output, which relates to a quality measure of the product produced by the system, as a function of at least one system control variable. In particular, the at least one system control variable is an input to the process system and is controlled by the controller. The method also includes the step of providing, to the controller, a reference model, wherein the reference model defines a target response of the at least one system output in relation to at least one controller input to produce a product having a prescribed quality measure. In particular, the controller input defines one or more operational set-points of the system. The method also includes the step of providing, to the controller, one or more objective functions and a set of operational constraints relating to the non-linear process system. Moreover, the method includes the step of generating, with the controller, an adaptive non-linear control model according to the state-space model, the reference model and one or more objective functions and the set of operational constraints. The method also includes the step of receiving, with the controller from one or more sensors coupled to the system during operation of the process system, process information including values of the at least one system variable and the at least one system output. Furthermore, the method includes the step of dynamically controlling, with the processor executing the adaptive non-linear control model based on the received process information, a value of the at least one system control variable to manipulate the least one system output in accordance with the target response thereby producing a product having the prescribed quality measure.
These and other aspects, features, and advantages can be appreciated from the accompanying description of certain embodiments of the invention and the accompanying drawing figures and claims.
4 Objectives of the Invention
Illustrative embodiments of the invention will now be described more fully hereinafter with reference to the accompanying drawings, in which some, but not all embodiments of the invention are shown. Indeed, the invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather these embodiments are provided so that this disclosure will satisfy applicable legal requirements.
The objectives of the invention are listed below.
i. Model Reference Adaptive Control
ii. Adaptive Reference Tracking Control
iii. System Parameter Selection
iv. Reduced Model Identification
v. Multivariable Control
vi. Stability Analysis
The ultimate goal of the adaptive non-linear control of various non-linear process systems is to generate a product that conforms to a particular quality metric (also referred to as a production objective). Such metrics and objectives may specify a desired outcome, result, behavior, or state, of the system process, such as, for example, a desired throughput, quality, efficiency, product profile, behavior, or cost, among others. In certain embodiments, the objective may specify at least one targeted measurable attribute defining product quality for the particular process (or the overall production process). It can be appreciated that the quality metric may be a specific value. For example, in surge drums, which are used for intermediate storage of gas which is to be transferred between chemical process units, the quality metric can be a value for the drum pressure. By way of further example, in a Bioreactor, which is a chemical vessel where processes which involve the use of biological organisms to produce a specified product, the quality metrics can relate to the substrate concentration and the biomass concentration. By way of further example, in a binary distillation column, which is a distillation system used to separate liquid mixtures which cannot be normally separated by normal distillation, a quality metric can be a defined for various products within the plant including the composition of the product at the bottom of the column and the composition of the distillate as well as liquid levels of the bottom and the distillate. It can be appreciated that a variety of different quality metrics can be defined for various attributes. These quality objectives can be defined for a specific point in a process (e.g., an end result) or defined over various stages of an ongoing process (e.g., over a time horizon) so as to provide a process trajectory that contributes to the ultimate quality of the product(s) produced with the controlled system. Accordingly, it can be appreciated that a quality metric or objective may comprise a plurality of objectives. For example quality objectives may involve sub-objectives for various stages of the production process that ultimately can relate to a global objective.
According to a salient aspect, the adaptive nonlinear controller for controlling/regulating nonlinear process systems, as further described herein, serves to minimize existing challenges in regulating nonlinear process systems and presents an effective and efficient method for precisely and accurately controlling the process system consistent with pre-defined quality-related metrics and process objectives so as to ultimately produce a product having the desired quality attributes.
As further described herein, the target behavior of the controlled process system, is represented by a target function (also referred to as the reference function) that specifies the desired response of the system. The target function represents the ideal behavior of the controlled system as a function of the prescribed controller input (e.g., one or more set-points) so as to produce a product that is consistent with the desired quality.
The exemplary systems and methods further described herein utilize the target function and the state-space model, which represents the dynamics of the non-linear system and shows the relationship between the systems inputs and the one or more outputs, as well as known constraints of the process system, its components and the controller itself, to define a control model that can be executed by the controller and that causes the regulated system to operate as specified by the target function and thereby produce a product that is consistent with various prescribed quality metrics (e.g., metrics relating to product characteristics during or after the process is complete).
Central controllers 12 can also be coupled to an Ethernet based network 22. Engineering workstations 24 for use in connection with designing, creating, and maintaining system are coupled to network 22. Operator consoles 26 for operators to monitor and manually control the process also are coupled to network 22. A database sub-system 28, coupled to network 22 handles storage and retrieval of process data. Database sub-system 28 also provides version control for process control strategies.
In operation, central controllers 12 receive data from various sensors 18 located at selected data points of the system to be controlled. The received data is stored by database management sub-system 28. In addition, such received data can be used by central controllers 12 and local controllers 20 to make adjustments to components of the controlled system.
The computing device 100 can be a general-purpose computing device such a personal computer, a laptop and so forth. A human-interface pointing device such as a mouse 108 and/or a human-interface text input device such as a keyboard 107 are preferably coupled to a bi-directional system bus 112. The human-interface devices 107 and 108 can preferably enable a user to provide input to the computing device 100 and communicate the input to a processor 102. Other suitable input devices can be used in addition to, or in place of, the mouse 108 and the keyboard 107. An I/O (Input/Output) unit 101 coupled to the bi-directional system bus 112 represents I/O systems such as a printer (not shown), an A/V (audio/video) I/O (not shown), etc.
The computing device 100 includes a video adapter 105 with its own or shared video memory (not shown), a Random Access Memory (RAM) 103 where both an application comprising computer readable code and an application state are stored at runtime, a Read Only Memory (ROM) 104 that is generally responsible for keeping system start-up computer readable code, a mass storage device 109, all coupled with the bi-directional system bus 112 along with the I/O 101, the processor 102, the keyboard 107, and the mouse 108. The mass storage device 109 can include both fixed or removable media, such as magnetic, optical, flash memory and any other available mass storage technology implementation. The computing device 100 can have an embedded and/or external video display adaptor 105 capable of presenting graphical and textual information to the user. A display 106 can connect to the video adapter 105 through a video amplifier (not shown). The video amplifier is well known in the art. One or more circuits convert digital pixels to a raster signal suitable for use by the display 106 that on its part displays a graphical image.
The computing device 100 can also include a network interface device 110 coupled to the bus 112. The network interface device 110 provides a two-way data communication coupling via a network link 113 through the device connection point 111. For example the network interface 110 can be a modem, a local area network (LAN/Ethernet) card, or a radio device. In any such implementation the network interface device 110 sends or receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information. More than one network interface devices 110 can be used. For example a Local Area Network (LAN) card can connect a computer workstation to the Internet (through an Internet Service Provider), while a wireless card can connect the workstation to a mobile device like a wireless enabled gaming device for instance.
The computing device 100 can send and receive data, including program code or web documents through the network link 113, the connection point 111, the network interface device 110 and the bus 112 to the processor 102 and then to the memory modules. The data received may be executed by the processor 102 and/or stored to the mass storage device 109.
The computing device system 100 described above are for the purposes of example only. The current and the alternative embodiments of the systems and methods for generating an adaptive non-linear control algorithm and implementing the control algorithm to control non-linear process systems can be implemented in other computing devices/processors that are capable of executing the functions described herein (e.g., central controller 12 workstations 24 and consoles 26 depicted in
The term processor, as used herein, refers to central processing units, microprocessors, microcontrollers, reduced instruction set circuits (RISC), application specific integrated circuits (ASIC), logic circuits, and any other circuit, processor, or controller capable of executing the functions described herein. As used herein, the terms “software” and “firmware” are interchangeable, and include any computer program stored in memory for execution by a processor, including RAM memory, ROM memory, EPROM memory, EEPROM memory, and non-volatile RAM (NVRAM) memory. The above memory types are exemplary only, and are thus not limiting as to the types of memory usable for storage of a computer program.
As will be appreciated based on the description of the exemplary systems and methods for adaptive non-linear control of process systems, the described embodiments may be implemented using computer programming and/or engineering techniques including computer software, firmware, hardware or any combination or subset thereof, wherein the technical effect is generating an adaptive non-linear control algorithm and implementing the control algorithm to control a non-linear process system. Any such resulting program, having computer-readable code, may be embodied or provided within one or more computer-readable media, thereby making a computer program product, i.e., an article of manufacture, according to the described embodiments. The computer readable media may be, for example, but is not limited to, a fixed (hard) drive, diskette, optical disk, magnetic tape, semiconductor memory such as read-only memory (ROM), and/or any non-transitory medium. The article of manufacture containing the computer code may be made and/or used by executing the code directly from one medium, by copying the code from one medium to another medium, or by transmitting the code over a network.
While the invention is described in terms of various specific embodiments, it will be recognized that the invention can be practiced with modification within the spirit and scope of this disclosure.
5 Overview of Exemplary Method for Generating Control Algorithm
5.1 Control Development of the Adaptive Nonlinear Controller
The development of the new control algorithm for nonlinear systems is completed, at least in part, with the development of an objective function J. For simplicity consider a first order SISO nonlinear system model which is given below.
{dot over (x)}=f(x)+g(x,u),
y=h(x),
Where x∈R and y∈R. f(x), g(x,u) and h(x) all represent functions of the respective variables. As stated before, one approach to the development of a controller for this system would be to linearize the system around the desired operating points, however the resulting model is only valid for these operating points. Disturbances due to noise in the measurement system or at the controller output can force the system outside of this operating range. Similarly the effectiveness of PID solutions are based on the parameters of the linearized system.
For this system the state variable x is assumed to be bounded such that ∥x∥<c1 and ∥{dot over (x)}∥<c2. c1 and c2 are both positive numbers. Therefore for a bounded input u, the output y will be bounded. Recall that one property of this invention is to provide a desired response. For this system the response is preferred to be a first order linear which is given by the state equation {dot over (y)}=−ay+bv, where
At this point the objective function J is generated. A plurality of pre-defined objective functions can be stored by the process controller, and a particular objective function can be selected based on the order of the particular state-space model. In addition, as further described herein, the objection function can be selected or generated based on desired response characteristics of the controlled system as defined by a reference model. In this particular example, J is defined below and v becomes the new control input. Wherein the control input is an input to the controller and defines one or more operational set-points of the system. For example and without limitation, controller input can be a target set-point of the system defined by an operator. In addition, as further described herein the control input can be a function specifying the target set-points (e.g., a trajectory of set-points) of the system over time during operation. It can also be appreciated that the control input can be a value or function provided to the control system from a human operator or automatically selected or defined by a computing device, for example, as a function of variables or parameters relating to the operation of the system.
J=½({dot over (y)}+ay−bv)2
Evaluating the above equation gives
It is therefore the aim that this function be minimized by the state variable u. The development of the objective function J is important to the success of the control system. The minimizer of this function is developed by selecting the gradient of J with respect to the input u, where λ is a gain chosen to increase the rate at which the function J is minimized.
The system dynamics are therefore rewritten as the following below as
At this point, an analysis can be performed on the system to show its stability and that the response time is achieved. Objectively outputting a measure of the stability of the system is beneficial. This is achieved through the transformation of the system into the controllable canonical form. Here we let the output of the system y=z1 and {dot over (y)}=z2.
Recall that y=z1 and {dot over (y)}=z2 and x=h−1(y) and
and therefore the transformed system is therefore rewritten as
ż1=z2
ż2=f1(z1,z2)z2+f2(z1,z2){dot over (u)}
Where
given that the values in the original coordinate system have been successfully transformed to the z coordinate system.
Therefore by substituting for it in the equation for ż2 and replacing
into {dot over (u)} gives {dot over (u)}=−λf2(z1,z2)(z2+az1−bv). ż2 therefore becomes
ż2=f1(z1,z2)z2−λ(f2(z1,z2))2(z2+az1−bv)
ż2=(f1(z1,z2)−λ(f2(z1,z2))2)z2−aλ(f2(z1,z2))2z1+bλ(f2(z1,z2))2v
The system can therefore be rewritten in the following form
5.2 Adaptive Nonlinear Controller Design Steps
The steps given below condense the design using the first order nonlinear system, for example. These steps are also shown as routine 300 in
Step 1—Model Identification
Step 2—System Transformation
Step 3—Objective Function Creation
j=½(ė+kce)2
Step 4—Objective Function Minimization
Step 5—System Parameter Selection
Recall certain objectives of the invention which were presented in Section 4: Objectives of the Invention are listed below
To explain how this requirement is achieved, the analysis begins with the objective function J from section 5.1.
J=½({dot over (y)}+ay−bv)2
Note that when this function is equal to J=0 that {dot over (y)}=−ay+bv and since the control variable u is used to bring the value of J to its minimum the system being controlled will therefore have the dynamics of a system where
where τ is the time constant and K is the gain. Therefore it is required that the control variable u have a response time which is capable of minimizing the objective function J.
5.3.2 Adaptive Reference Tracking Control
Given that the control variable is able to minimize the objective function J by decreasing J to zero, the new input variable v can be used for reference tracking of an input signal. A new control input is required as the previous control variable u is now a state variable of the system. This is achieved by allowing
where r and {dot over (r)} is reference signal and derivative of the reference signal respectively. kc is the constant chosen to specify the response time of the error system. Note
J=½({dot over (y)}−{dot over (r)}+kc(y−r))2
J=½(ė+kce)2
Therefore at the minimum ė=−kce and as the as the pole of the error system is negative, the error between the output and reference signal will approach zero. This can be observed on the process trends as the output variable approaches the desired setpoint. Model reference control and adaptive reference tracking control are further described herein.
5.3.3 System Parameter Selection
Recall that there are bounds which have been placed on the output y and its derivatives. Therefore the parameters for λ, a and b are chosen such that following inequalities are satisfied for the operating region of the system. Further information on the system parameter selections is explained in 7.4.
5.3.4 Reduced Model Identification
For the control design being presented, the derivation of the new control dynamics it indicate that the product of the functions
are required as shown in the equation below.
In most cases the function h(x)=x and therefore, the function containing the state variable is required. The output y and its derivatives can be easily obtained from the output.
5.3.5 Multivariable Control
Multivariable control applies to systems where there are multiple process variables which are to be controlled. Each process variable will be assigned a control variable. There are two methods which can be utilized. In both methods, an objective function is required for each process variable.
The first method minimizes the respective process variable objective function with respect to the assigned control variable. The second minimizes an objective function which is a function of the individual objective functions. For multivariable control the objective function is a function of the individual objective functions. For further information see Appendix A 7.4.3.2 Multiple Objective Function Selection.
5.3.6 Stability Analysis
The stability analysis of the system can be performed by determining the characteristic equation of the system in the controllable canonical form or applying Lyapunov's stability criteria.
5.3.6.1 Method 1—Characteristic Equation
It can be assumed that the functions f1(z1,z2) and f2(z1,z2) obtained from Section 5.1 are bounded within the operating range of the system. θ1, θ2, θ3, θ4 represent the bounds of the two functions.
θ1<f(z1,z2)<θ2
θ3<f2(z1,z2)<θ4
The characteristic equation for the system is obtained by linearizing the state matrix Az to form the linearized matrix Ãz. Examining the eigenvalues of the system it can be seen that once λ is large the system eigenvalues will all be negative for the defined operating values Having the eigenvalues all remain negative signify that the system will be stable. An example plot of the eigenvalues for one of the systems has been presented in Appendix B 8.1.
5.3.6.2 Method 2—Lyapunov's Stability Analysis
To apply the Lyapunov's stability it is more efficient for the system to be in the controllable canonical form. Here the matrix Az will be used. The Lyapunov objective function is chosen below for stability.
V=ZTIZ
Where Z represents the state vector in the controllable canonical form and I is the identity matrix. The derivative of the system is taken
{tilde over ({dot over (V)})}=ŻTIZ+ZTIż
{tilde over ({dot over (V)})}=(ÃzZ+{tilde over (B)}zv)TIZ+ZTI((ÃzZ+{tilde over (B)}zv))
{tilde over ({dot over (V)})}=(ZTÃzT+vT{tilde over (B)}zT)IZ+ZTI(ÃzZ+{tilde over (B)}zv)
{tilde over ({dot over (V)})}=ZT(ÃzTI+IÃz)Z+vT{tilde over (B)}zTIZ+ZTI{tilde over (B)}zv
For the moment the new control input v=0 and therefore
{tilde over ({dot over (V)})}=ZT(ÃzTI+I{tilde over (V)}z)Z
{dot over (V)}≤0
Selecting appropriate values for λ, a and b the inner sum ÃzTI+I{tilde over (V)}z=−Qz(t) where Qz(t) is a time varying semi positive definite matrix.
6 System Examples
To further illustrate the behavior of the exemplary systems and methods for adaptive nonlinear control in practice, several examples will be presented in which the systems and methods for generating adaptive non-linear control algorithms are incorporated and implemented to regulate/control real process systems. These systems have been analyzed to develop models which approximate the systems nonlinear behavior. A brief description of the systems are presented below.
System 1—DC Motor
System 2—Liquid/Gas Drum
System 3—Bioreactor
System 4—Binary Distillation Column
DC motors are quite common electromechanical systems that can be found in many industries. They are used in simple applications such as remote control toys to more complex applications where they propel electric locomotives and robotic arms.
{dot over (ω)}=−K1ω+K2i
i=−K4ω+K3i+K5u
y=ω
The parameters of the model are given as
The following table describes the parameters and values, wherein the values are obtained from testing and analysis of the system components.
6.1.2 Exemplary Instruments Requirements
In the exemplary implementation, the objective is to regulate the speed of the system. Therefore a tachometer is required to send the speed measurements to the control system.
There are several instruments which can be used in a control system for of the motor, including, for example, and without limitation:
Ammeter
Tachometer
DC Motor Drive
The second order model for the system is given below in the following equations. The system below does not include any nonlinearities and therefore can be considered linear
{dot over (ω)}=−K1ω+K2i
i=−K4ω+K3i+K5u
y=ω
6.1.3.1.2 Step 2—System Transformation
However the control equation u is in the equation for the state i, therefore the output y is differentiated until the equation is obtained. The process presented below describes Step 2.
The system is transformed into the controllable canonical form using the steps below.
z1=y=ω
z2={dot over (y)}={dot over (ω)}=−K1ω+K2i
Taking the derivative of the new state variables provides the following equations.
ż1=z2
ż2=−K1{dot over (ω)}+K2i
Substituting for the differential of i into the equation for ż2 gives
ż2=−K1{dot over (ω)}+K2(−K4ω+K3i+K5u)
ż2=−K1{dot over (ω)}−K2K4ω+K2K3i+K2K5u
Recall that
ω=z1 and {dot over (ω)}=z2. Therefore substituting into the equation for ż2 gives
Therefore the system in the controllable canonical form is presented below.
ż1=z2
ż2=−(K2K4−K1K3)z1−(K1−K3)z2+K2K5u
y=z1
6.1.3.1.3 Step 3—Objective Function Identification
Now that the system has successfully been transformed the objective function can be created. The objective function is defined such that the resulting system is stable. More specifically, the objective function is generated or selected from stored objective functions. In addition, the particular objective function among the stored functions is selected/generated based on the order of the state-space model. Moreover, as further described herein, the objective function is identified based on the desired dynamics of the controlled system, including, as further described herein, whether the controller will be implemented in a model reference adaptive control configuration or a reference adaptive control configuration.
J=½(ż2+a2z2+a1z1−bv)2
J=½(−(K2K4−K1K3)z1−(K1−K3)z2+K2K5u+a2z2+a1z1−bv)2
6.1.3.1.4 Step 4—Objective Function Minimization
The function is differentiated with respect to the input u.
The control derivative now becomes.
{dot over (u)}=−λK2K5(ż2+a2z2+a1z1−bv)
The dynamics of the system now become
ż1=z2
ż2=−(K2K4−K1K3)z1−(K1−K3)z2+K2K5u
{dot over (u)}=−λK2K5(ż2+a2z2+a1z1−bv)
y=z1
6.1.3.1.5 Step 5—System Parameter Selection
The parameters of the system are chosen such that
{dot over (u)}min<−λK2K5(ÿ+a1{dot over (y)}+a2y−bv)<{dot over (u)}max
ÿmin<−a1{dot over (y)}−a2y+bv<ÿmax
6.1.3.1.5.1 Lambda Selection
6.1.3.1.5.2 Coefficient Selection
Because the system to be controlled is of an order higher than 1 the following modification has to be made to the coefficient selection. The value of a1 and a2 are selected such that the eigenvalues are negative.
6.1.3.2 Exemplary Results
To illustrate the benefits of the exemplary control system, a test of the system response is illustrated against target response characteristics. In particular, in this example, it is desired that the controlled DC motor reflect a system with the following dynamics where b=0.01,a1=0.01 and a2=0.2. The parameters that have been selected represent a model with eigenvalues at 0.1 and 0.1. In classical control the system would have a natural frequency of 0.1 and a damping ratio of 1.
{dot over (x)}1=x2
{umlaut over (x)}2=−a1x1−a2x2+bv
The values of the new control input v are presented below.
6.1.3.2.1 Model Output Signal
6.1.3.3 Comments
For the exemplary implementation, the adaptive nonlinear controller produced the desired output dynamics specified by the model reference system as shown in the graph for the model output. Note that in the graphs the other state variable which is the armature current was also bounded. Although the system consisted of many parameters, only the constants K2 and K5 were required to be known in order to generate the control model design along with the output y and its derivatives.
Generally speaking, the values of K2 and K5 will vary with time, however as they are positive values the impact is mitigated by the choice of the adaptive gain λ. The expected ranges of the deviations of K2 and K5 can be factored into the inequalities which specify the appropriate choice of the adaptive gain λ.
6.2 Gas Surge Drum
6.2.1 Description
A surge drum is used for the intermediate storage of gaseous material in process plants. Various control problems exist in such process systems that can be controlled in accordance with the disclosed embodiments. For example and without limitation, one example control problem requires that the drum pressure be controlled by either the input or output flow rates.
The dynamics of a gas drum can represented using the equation below.
A description of the parameters and variables and corresponding values are listed in the below tables:
6.2.2 Exemplary Sensory Requirements
There are several instruments which are generally required to control the pressure of the drum, for example, and without limitation:
Flow Meter
Temperature Sensor
Pressure Sensor
Flow Pump
Flow Control Valve
The second order model for the system is given below in the following equations.
6.2.3.1.2 Step 2—System Transformation
The system shown is a first order system and therefore the state equation which contains the control variable qi is found in the first derivative of the output.
6.2.3.1.3 Step 3—Objective Function Identification
The system is a first order system and therefore does not require transformation. The objective function is chosen such that the system is stable. In particular, the following objective function is selected based on the order of the state-space model.
6.2.3.1.4 Step 4—Objective Function Minimization
The function is differentiated with respect to the input qi.
The control derivative now becomes.
The dynamics of the system now become
6.2.3.1.5 Step 5—System Parameter Selection
Further information on the steps for system parameter selection can be found in 7.4.
{dot over (q)}l
{dot over (y)}min<−aP+bv<{dot over (y)}max
6.2.3.1.5.1 Lambda Selection
6.2.3.1.5.2 Coefficient Selection
6.2.3.2 Results
To illustrate the benefits of the exemplary control system, a test of the system response is illustrated against target response characteristics. In particular, in this example, it is desired that the controlled Surge Drum reflect a system with the following dynamics where b=0.05 and a=0.05. The system therefore has a time constant of
Therefore for a step input with a magnitude change of 1, the output will change by approximately 63% after 20 seconds has passed. Since b has a value of 0.05, the gain of the input-output is 1.
{dot over (x)}1=−ax1+bv
6.2.3.2.1 Model Output Signal
6.3 Bioreactor
6.3.1 Description
6.3.2 Exemplary Instrument Requirements
There are several instruments which would be required to control the compositions of the bioreactor. The list provides an example of the equipment which would generally be associated with the bioreactor. Not all instruments provided in the listed are used to provide measurements to the controller for use in applying the nonlinear control algorithm.
Flow Meter
Temperature Sensor
Dilution Pump
Biomass Concentration Sensor
Volume Sensor
6.3.3.1.2 Step 2—System Transformation
The objective is to regulate the biomass concentration x1 with the dilution rate u. From the state equations given above the control variable can be found in the first derivative of the output. Therefore state transformation is not required.
6.3.3.1.3 Step 3—Objective Function Creation
The objective function J is given below.
6.3.3.1.4 Step 4—Objective Function Minimization
The differential of the function
is derived.
The control derivative therefore becomes
The entire system dynamics therefore become
6.3.3.1.5 Step 5—System Parameter Selection
Further information on the system parameter selection can be found in 7.4.
{dot over (u)}min<λx1({dot over (x)}1+ax1−bv)<{dot over (u)}max
{dot over (x)}1
6.3.3.1.5.1 Lambda Selection
6.3.3.1.5.2 Coefficient Selection
6.3.3.2 Results
To illustrate the benefits of the exemplary control system, a test of the system response is illustrated against target response characteristics. In particular, in this example, it is desired that the output of the bioreactor reflect a system with the following dynamics where b=0.02 and a=0.02. The system therefore has a time constant of
seconds. Therefore for a step input with a magnitude change of 1, the output will change by approximately 63% after 50 seconds has passed. Since b has a value of 0.02, the gain of the input-output is 1.
{dot over (x)}1=−ax1+bv
For this model the test of the control system has been performed for two cases where the system is expected to replicate the behavior of the reference model given above and another scenario where the system performs tracking of a reference signal.
6.3.3.2.1 Model Reference Adaptive Control
The table below presents the input values for the model reference system.
6.3.3.2.1.1 Model Output Signal
6.3.3.2.2 Adaptive Reference Tracking
The table below presents the values of the reference signal which needs to be tracked. The modification to the control system can be made by allowing the new input variable v=1/b(ay+{dot over (r)}−kc(y−r)), where r is the reference signal and i is the derivative of the reference signal.
6.3.3.2.2.1 Model Output
6.3.3.2.2.2 Bioreactor Inputs
6.3.3.2.2.3 Bioreactor System Concentrations
6.3.3.2.3 Comments
The simulation of the bioreactor system was performed for model adaptive reference control and adaptive reference tracking control with a variation of the substrate input sin. The graphs for the model reference system show that the controller is able to reject the variations of the caused by sin. This observation is also shown for the case of the adaptive reference tracking system.
Comparing the outputs for both control systems in the model output section of the results, it has been shown that the adaptive reference tracking controller more closely follows the input signal. The model adaptive reference control purpose is to replicate the response of a reference system.
6.4 Binary Distillation Column
6.4.1 Description
Industrial distillation columns are one of the most recognized components in the process industry.
6.4.2 Exemplary Instrument Requirements
The instruments that are generally associated with a binary distillation column, for example, are presented below.
Feed Flow Meter
Feed Flow Pump
Feed Flow Control Valve
Distillate Flow Meter
Distillate Flow Pump
Distillate Flow Control Valve
Reflux Flow meter
Reflux Flow Pump
Reflux Flow Control Valve
Vapor Boil Up Flow Meter
Heat Flow Pump
Vapor Boil Up Flow Control Valve
Heat Flow Control Valve
Bottom Flow Control Valve
Reboiler Flow Control Valve
Reboiler Flow Pump
Distillate Concentration Sensor
Bottom Concentration Sensor
Due to the large number of equations that are shown in the description, only the relevant equations are shown below.
6.4.3.1.2 Step 2—System Transformation
In this particular, example, the objective is to regulate the compositions of the bottom (x1) and the distillate (x41) along with the liquid levels of the bottom (M1) and the distillate (M41). The table shown in this section identifies the control variable which is assigned to the process variable. The first derivative of any of the outputs provides a control variable which can be used to regulate the process variable. Therefore state transformation is not required.
6.4.3.1.3 Step 3—Objective Function Creation
6.4.3.1.3.1 Distillation Composition Objective Function
The objective function Jx
6.4.3.1.3.2 Bottom Composition Objective Function
The objective function Jx
6.4.3.1.3.3 Distillation Level Objective Function
The objective function JM
JM
JM
6.4.3.1.3.4 Bottom Level Composition Objective Function
The objective function JM
JM
JM
6.4.3.1.4 Step 4—Objective Function Minimization
6.4.3.1.4.1 Distillation Composition Objective Function
The objective function Jx
6.4.3.1.4.2 Bottom Composition Objective Function
The objective function Jx
6.4.3.1.4.3 Distillation Level Objective Function
The objective function JM
6.4.3.1.4.4 Bottom Level Composition Objective Function
The objective function JM
6.4.3.1.5 Step 5—System Parameter Selection
Further information on the system parameter selection can be found in 7.4.
Only the one parameter selection procedure is performed. The procedure can be repeated to obtain the parameters for the other system outputs.
6.4.3.1.5.1 Composition x41 Parameter Selection
{dot over (D)}min<λx
{dot over (x)}41
6.4.3.1.5.1.1 Lambda Selection
6.4.3.1.5.1.2 Coefficient Selection
6.4.3.2 Results
To illustrate the benefits of the exemplary control system, a test of the system response is illustrated against target response characteristics. In particular, in this example, it is desired that the outputs of the distillation column reflect a systems with the following dynamics
{dot over (x)}1=−ax
{dot over (x)}41=−ax
{dot over (M)}1=−aM
{dot over (M)}41=−aM
The parameters are presented in the table below.
For this model the test implementation has been performed for two cases where the system is expected to demonstrate model reference behavior and another scenario where the system performs tracking of a reference signal.
6.4.3.2.1 Model Reference Adaptive Control
The table below presents the input values.
6.4.3.2.1.1 Bottoms Composition System Output
6.4.3.2.1.2 Distillate Composition System Output
6.4.3.2.1.3 Bottoms Level System Output
6.4.3.2.1.4 Distillate Level System Output
6.4.3.2.1.5 Control Inputs
6.4.3.2.1.6 Disturbance Inputs
6.4.3.2.1.7 Column Tray Compositions
6.4.3.2.1.8 Column Tray Levels
6.4.3.2.2 Adaptive Reference Tracking
The table below presents the reference values for the distillation column.
6.4.3.2.2.1 Bottoms Composition System Output
6.4.3.2.2.2 Distillate Composition System Output
6.4.3.2.2.3 Bottoms Level System Output
6.4.3.2.2.4 Distillate Level System Output
6.4.3.2.2.5 Control Inputs
6.4.3.2.2.6 Disturbance Inputs
6.4.3.2.2.7 Column Tray Compositions
6.4.3.2.2.8 Column Tray Levels
6.4.3.3 Comments
The binary distillation column presented falls under the class of MIMO systems. These systems are generally difficult to control as changes in one output causes a change in the other system outputs. Both model reference adaptive control and adaptive reference tracking have been performed on the model for the binary distillation column. The input values were chosen to show that the controlled system can independently perform the control action for which it was designed. To additionally show the benefit of the control algorithm developed, the disturbance inputs are allowed to vary within range of their average values.
In both cases of control, the system required the knowledge of the distillation liquid composition x41 and the bottom vapor composition y1 for composition control. The control of the liquid levels only requires the value of the level and its derivative. Both control systems were able to reject the effect caused by the disturbance inputs. The graphs also show that despite the changes in the input and reference values for a given control variable, the other variables did not deviate from their expected values. This is accomplished by the minimization of the objective functions where the variations become present in the derivatives of the outputs. As the aim of the control is to minimize the objective function, the control will therefore perform the required action to compensate for the changes caused by other dynamics of the system.
7 Appendix A
7.1 Model Reference Adaptive Control
The objective of Model Reference Adaptive control is to create a closed loop system for the plant or system to be controlled whose response to an input stimulation is similar to that of a reference model. This is achieved with the aid of an adjustment algorithm being used to modify the controller. In the case which we are exploring, most of the systems are nonlinear and therefore generally present a nonlinear response to any input stimulation. In this case, preferably the controller is modified to force the system to present a linear model. Consider the theoretical first order nonlinear system which is given below
Theoretical Model
{dot over (x)}m=−xm−umxm+um
ym=xm
Reference Model
{dot over (x)}d=−adxd+bdud
yd=xd
The control algorithm that has been proposed utilizes the control variable um to create an additional state of the system. By applying the procedure of developing the control algorithm that has been discussed earlier the derivative of the state variable is therefore {dot over (u)}m=−λ(1−ym)({dot over (y)}m+adym−bduc). The modified controller for the theoretical model therefore becomes
{dot over (x)}m=−xm−umxm+um
{dot over (u)}m=−λ(1−ym)({dot over (y)}m+adym−bduc)
ym=xm
For simplicity the values of ad and bd are both set equal to 1. In this case uc=ud
7.2 Adaptive Reference Tracking Control
The objective of Reference Adaptive Control is to create a closed loop system for the plant or system to be controlled whose system out to a reference signal is exactly that of the reference signal. The adjustment algorithm that is used manipulates the control signal such that the resulting system output tracks the reference signal exactly.
Consider the theoretical first order nonlinear system which is given below
Theoretical Model
{dot over (x)}m=−xm−umxm+um
ym=xm
Reference Model
{dot over (x)}d=−adxd+bdud
yd=xd
Consider the reference model which has been described in the previous section. For the reference model to track a reference signal yref, the input ud for the reference model would therefore become ud=1/bd (ayd−kc(yd−yref)+{dot over (y)}ref), where yref and {dot over (y)}ref, are the reference signal and the time derivative of the reference signal. Here kc is the gain that is used to indicate the rate at which the difference between the output and reference signal approaches zero.
However to achieve this, there is a simple modification of the model reference adaptive control algorithm to allow for the reference adaptive control design to be achieved. The procedure described in the previous paragraph can be substituted in for uc in the control design as follows
In the case of reference tracking adaptive control the input
7.3 Model Reference Adaptive Control Vs Reference Tracking Adaptive Control
In comparing the two methods, it is observed that the reference tracking adaptive control is an extension of the model reference adaptive control. The change between the two algorithm arises with uc. Note in the body of this document this variable is equivalent to the control input v. Also note that the new control input is required because the control variable due to the application of the algorithm has become a system state.
System Parameter Selection
The parameter selection is performed mainly with the knowledge of the system or plant outputs and its derivatives. Recall from Section 5.2 where the general first order nonlinear system control system has been discussed. The values of λ, a and b where to be designed using the inequalities given below.
7.3.1 Lambda Selection
7.3.2 Coefficient Selection (a,b)
{dot over (y)}min<(−ay+bv)<{dot over (y)}max
Recall that for a stable system, a must be positive. The constant b can be either negative or positive based on the sign of the control input v/cv.
7.3.3 Objective Function Selection
7.3.3.1 Single Objective Function Selection
The objective function is developed by following the steps which have been provided below. To provide an example that can assist in illustrating the design steps for the objective function. The model for the bioreactor is used.
7.3.3.2 Multiple Objective Function Selection & Multivariable Control
For this case, the creation of multiple objective functions is an extension of the previous objective function selection.
In classical control theory the poles of system signify the response of the system and more importantly, the stability of the system. Using state space to represent the dynamics of a system, the poles are often referred to as eigenvalues. For a system to be stable all the eigenvalues of a system must be negative. The eigenvalues are calculated using the system state matrix A. For nonlinear systems the state matrix à is calculated by linearizing the system as shown in
Where fi(x, u) is the ith state equation of the system. Since the parameter λ is used to represent the adaptive gain, the parameter a will therefore be used to represent the eigenvalue. The eigenvalue is calculated using the following matrix equation. The matrix I is the identity matrix which matches the order or the number of state equations.
σI−Ã
The determinant of the resulting matrix is calculated and this is set equal to zero. Therefore solving for the values of σ, the values of the systems eigenvalues are therefore determined.
det(σI−Ã)=0
To illustrate the calculation of eigenvalues, the surge drum will be used as an example. The eigenvalues of the system will be shown that for the operating region, the eigenvalue of the system output will be approximately equal to that of the system specified.
Controllable Canonical Form
z1=y=P
z2={dot over (y)}={dot over (P)}
Therefore
Performing the linearization of the state equations the linearized state matrix is therefore obtained.
Substituting
the linearized state matrix à therefore becomes
Performing the steps to determine the eigenvalues
The determinant of the above matrix calculation is therefore
det(σI−Ã)=σ2−f2(z1,z2)σ−f1(z1,z2)
By setting the determinant det(σI−Ã)=0, the values of σ can therefore be obtained.
As the system is a second order system where n=2
Below are the plots for the eigenvalues for the operating range of 5-40 atm of the surge drum.
Comments:
Note that the first plot which has been shown indicates that one of the estimated eigenvalue is approximately at 0.05 for the operating range of the system output P. The second plot shows the eigenvalue for the control input qi. This presents further evidence that the control designs is capable of imposing a response on the system.
The subject matter described above is provided by way of illustration only and should not be construed as limiting. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
Various modifications and changes can be made to the subject matter described herein without following the example embodiments and applications illustrated and described, and without departing from the true spirit and scope of the present invention, as set forth in each and any of the following claims.
This application claims the benefit of U.S. provisional application Ser. No. 62/203,459, filed Aug. 11, 2015, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
7809668 | Smith | Oct 2010 | B1 |
9240721 | Babazadeh | Jan 2016 | B2 |
9690312 | Steven | Jun 2017 | B2 |
20060100721 | Piche | May 2006 | A1 |
20110270452 | Lu | Nov 2011 | A1 |
20140015500 | Babazadeh | Jan 2014 | A1 |
20160161925 | Chang | Jun 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20170045867 A1 | Feb 2017 | US |
Number | Date | Country | |
---|---|---|---|
62203459 | Aug 2015 | US |