The present invention generally relates to adaptive bitrate streaming systems, and more particularly to adaptive switching between multiple content delivery networks when performing adaptive bitrate streaming.
A growing segment of Internet use is media streaming, which allows consumers to consume media content directly from the Internet, bypassing many traditional methods of delivery. Streaming media describes the playback of media on a playback device, where the media is stored on a server and is sent to the playback device over a network during playback. Typically, the playback device stores a sufficient quantity of media in a buffer at any given time during playback to prevent disruption of playback due to the playback device completing playback of all the buffered media prior to receipt of the next portion of media. Adaptive bitrate streaming or adaptive streaming involves detecting the present streaming conditions (e.g. the user's network bandwidth and CPU capacity) in real time and adjusting the bitrate of the streamed media accordingly. Typically, the source media is encoded at multiple bit rates and the playback device or client switches between streaming the different encodings depending on available resources.
Streams of content utilized in adaptive bitrate streaming systems are typically encoded at target bitrates. Target bitrates include an anticipated maximum bitrate that a user may obtain while streaming content. Streams are typically encoded in a non-uniform manner, but contain an average bitrate. Streams are also usually encoded where the stream has an average bitrate that approaches the maximum or target bitrate. These maximum bitrates therefore, are generally used to make stream switching decisions.
Streams utilized in adaptive bitrate streaming are typically segmented, which may include splitting the streams into short duration segments of equal duration in each of the alternative streams. The segments can be packaged in container files formatted in accordance with the requirements of the standards such as MPEG DASH or HLS. These segments can then be published to a HTTP server for distribution.
Recently, higher resolutions of video content are possible for viewing. “4K” content and televisions have become more commonplace in the consumer market. A 4K television contains four times the amount of pixels as a standard 1080P television set. Specifically, a 4K television has a resolution of 3,840×2,160 compared to the 1,920×1,080 resolution of 1080P sets.
Content delivery networks (CDNs) refer to a network of proxy severs deployed in different physical data centers at various points around the globe. A CDN can be utilized to provide increased performance and uptime for content delivery. This increased performance may be achieved by having multiple servers with copies of the same content across the globe. When a user attempts to access the content, a CDN that is physically closer or at least have a shorter digital route to take can deliver the content faster than a regular server farther away. In static streaming situations, this is ideal as the content that is streamed does not change. However, in live streaming situations, ideally latency is accounted for as the content is first encoded and then distributed to the CDN networks. Additionally, having multiple copies of the same content decreases the likelihood that content will be unavailable when one server goes offline or experiences heavy traffic that might otherwise impair the ability to deliver the content.
Content delivery networks are run by numerous companies including Akamai Technologies, Inc. of Cambridge Mass., and Amazon.com, Inc. of Seattle, Wash. CDN services can be hired by any company seeking to speed up and increase the uptime of their web offerings. Additionally, companies may utilize multiple CDNs to further increase their benefits.
Systems and methods for adaptive switching between multiple content delivery networks during adaptive bitrate streaming. In one embodiment, an adaptive content delivery network switching device includes a processor, a network interface, and a memory connected to the processor, where the memory contains a content delivery network switching application and, the content delivery network switching application directs the processor to receive content from a first content delivery network, determine a minimum performance threshold based on playback variables from the received content, receive new content from a second content delivery network if the minimum performance threshold is not satisfied.
In a further embodiment, the minimum performance threshold comprises satisfying a minimum buffer threshold.
In another embodiment, the buffer threshold is at least six seconds.
In a still further embodiment, the minimum performance threshold comprises satisfying a minimum playback bitrate threshold.
In still another embodiment, the minimum performance threshold is not satisfied if a HyperText Transfer Protocol (HTTP) 404 error is detected.
In a yet further embodiment, the minimum performance threshold is not satisfied if a HyperText Transfer Protocol (HTTP) error is detected.
In yet another embodiment, the new content received is at the same quality level.
In a further embodiment again, the content delivery network switching application further directs the processor to create a record of any content delivery network that encounters a HyperText Transfer Protocol (HTTP) error.
In another embodiment again, the content delivery network switching application further directs the processor to avoid receiving content from a second content delivery network from any content delivery network that is in the record of HyperText Transfer Protocol (HTTP) errors.
In a further additional embodiment, the memory also contains a media playback application that directs the processor to playback content.
In another additional embodiment, a method for adaptive content delivery network switching includes receiving content from a first content delivery network, determining a minimum performance threshold based on playback variables from the received content, receiving new content from a second content delivery network if the minimum performance threshold is not satisfied.
Turning now to the drawings, systems and methods for performing adaptive bitrate streaming involving adaptive switching between multiple content delivery networks in accordance with various embodiments of the invention are illustrated. In several embodiments, many pieces of content are made available for streaming on multiple content delivery networks. Traditionally, once a certain CDN provider was selected to stream content from, only that CDN provider was utilized for the duration of the streaming of that content by a specific playback device. Adaptive CDN switching systems in accordance with many embodiments of the invention utilize playback devices configured to switch between multiple CDN providers during a streaming session. In several embodiments, the goal of the adaptive CDN switching system is to increase the overall quality level of the content received by playback devices, and/or to avoid an interruption in service. In certain embodiments, an adaptive CDN switching system may be operated in a manner that best utilizes the available bandwidth for all playback devices, allowing for an increased number of playback devices on the system or for a higher quality of streaming experience for those playback devices already on the system.
Many current streaming systems employ adaptive bitrate streaming. Adaptive bitrate streaming decisions are typically based upon the relationship between the current available bandwidth (i.e. network capacity at the playback device) and the maximum bitrate utilized in the encoding of the content. Playback devices utilized within adaptive CDN switching systems in accordance with many of the embodiments of the invention utilize information about the content of the media in addition to the current available bandwidth and the maximum bitrate utilized in the encoding of the content to make stream switching decisions.
While much of the discussion that follows relates to systems and methods that utilize adaptive switching between multiple content delivery networks during the streaming of video content, similar techniques can be utilized to perform adaptive CDN switching for a variety of data including programs, audio, web pages and/or interactive content. Accordingly, adaptive CDN switching systems should not be considered as limited to performing adaptive CDN switching only of video content. Systems and methods for performing adaptive CDN switching of content in accordance with various embodiments of the invention are discussed further below.
Adaptive CDN Switching Systems
An adaptive CDN switching system in accordance with an embodiment of the invention is illustrated in
The adaptive CDN switching system 100 includes a transcoder 105 that receives content 101 for processing into alternative streams. In certain embodiments, this process can be done on the fly for live streaming situations which require short segments of content to be transcoded and delivered to the CDN networks for immediate distribution. The adaptive CDN switching system 100 also includes a first CDN server 110 configured to deliver content. In many instances, media content (such as, but not limited to, video) is encoded at different maximum bitrates and segmented into smaller portions. In some embodiments, the segments are stored in a single file which may be accessed through byte-range requests. In other embodiments, each content segment is stored in a separate file. In a number of embodiments, the content segments are conceptual and are simply blocks of content within a content stream. In the illustrated embodiment, the first CDN server is an HTTP server. In other embodiments, the first CDN server can be any processing device with sufficient resources to perform the processing and delivery of source media (including, but not limited to, video, audio, quality analysis, and/or subtitles). A variety of playback devices can request segments of the content from the first CDN server based on the manifest via a network 140 such as the Internet.
In many embodiments, the adaptive CDN switching system 100 includes a second CDN server 120 and third CDN server 130 configured similarly to the first CDN server 110. In a number of embodiments, the first, second, and third CDN servers are operated by different companies. In certain embodiments, the first CDN server 110 is distinct from the second 120 and third CDN servers 130 and/or may be located in a different data center. As can readily be appreciated, the specific location and distribution of the CDN servers is largely dependent upon the requirements of a given application.
A playback device may decode and present content for viewing. As can readily be appreciated, certain devices may implement a playback client application to stream content. In a number of embodiments, a playback device streams content via a network 140. In many embodiments, a playback device requests segments of content from a first CDN server 110 as defined in a manifest or other URL. In many embodiments, analytic data about the system may be stored for future use. For example, adaptive CDN switching analytics may be used to create any number of switching recommendations, buffering decisions, and/or source content preprocessing tasks. In many embodiments, an adaptive CDN switching system accumulates data concerning content segments selected for playback and can relocate and/or rebalance content segments to provide content that is more likely to achieve a desired quality at a given observed network bandwidth. As can readily be appreciated, the use of data collected by a CDN server or adaptive CDN switching player is logically only limited by the requirement of a given application. In the illustrated embodiment, the playback devices are represented by particular devices, but may also include (but are not limited to) consumer electronics, DVD players, Blu-Ray players, televisions, video-game consoles, tablets, and other devices that are capable of connecting to a server and playing back content.
While a variety of adaptive CDN switching systems are described above with reference to
Adaptive CDN Switching Playback Devices
Many embodiments of the invention utilize CDN servers to deliver content segments to stream content under different playback conditions. Such systems rely upon a playback device that simply requests content indicated in a quality based manifest or in URLs based upon the measured playback conditions. In a number of embodiments, however, the playback device evaluates local playback conditions and searches out alternative CDN providers from which to download segments. These players then utilize the locally stored data regarding playback conditions and bandwidth conditions to determine the CDN from which to request subsequent content segments. These CDN switching decisions may be determined not only by requesting segments that achieve a certain bitrate, but can also be formatted to increase the overall performance of the network allowing for more users to access the content and/or to increase the selected quality of the content being streamed.
A playback device that can be utilized to perform adaptive CDN switching of content in accordance with an embodiment of the invention is illustrated in
While a variety of playback device systems are described above with reference to
Adaptive CDN Switching Processes
At a high level, processes for performing adaptive CDN switching involve connecting to a first CDN provider for streaming content, playing back the content and evaluating local playback conditions, determining a desired playback level, examining conditions necessary to explore switching to another CDN provider, and conducting that search should the conditions be met. Should an alternative CDN provider be found that can deliver the necessary content with better performance, continued streaming can then be affected through the alternative CDN instead of the first CDN. In many embodiments, conditions necessary to begin an alternative CDN search may include, but are not limited to, bandwidth of the first CDN, time spent streaming at the desired playback level, load balancing concerns, frequency of use, and/or rebuffering conditions. A process for performing adaptive CDN switching in accordance with an embodiment of an invention is shown in
The process 300 may include determining (302) a default CDN from which to begin (304) streaming content. In many embodiments, the default CDN could be provided as a first URL in the manifest sent by the server or could be explicitly signaled to the optimal CDN by the server hosting the manifest. Determining (306) of playback variables may occur during streaming. These playback variables may include, but are not limited to, playback position, buffer duration, and/or bitrate estimation. Using playback variables, the player may determine (308) a desired playback level of the streamed content. In certain embodiments, the playback level may be determined by the current buffer duration and available bitrate estimate. During playback, the adaptive CDN switching player may evaluate (310) switching conditions which may require a search of alternative CDN providers to occur. When conditions are sufficient, the player may switch (312) CDN providers for increased performance.
Although specific processes are described above for performing adaptive CDN switching with reference to
Processes for Achieving a Desired Playback Bitrate Level
A video level performance application can be utilized to evaluate and adjust the video bitrate level of streamed content during playback. As conditions change in the playback environment, decisions as to what quality or bitrate streamed content is being requested may need to be adjusted.
A process for evaluating the performance of streamed content in accordance with an embodiment of an invention is shown in
Although specific processes related to video level performance in adaptive CDN switching systems are described above with reference to
Handling Buffering Problems in Adaptive CDN Switching Systems
One of the issues that may arise when streaming content is playback interruption. Playback interruption can occur from a number of factors including a depletion of the playback buffer. To avoid this, in many embodiments the video level can be switched to a lower level to allow for downloading of more content over the available bandwidth. In further embodiments, the amount of content in the buffer is routinely checked against the available bandwidth and bitrate estimates to better gauge if a playback interruption is likely to occur. In instances where a playback error may appear to be imminent, many embodiments of the invention may search alternative CDN providers in an attempt to find the necessary content segments. In a number of embodiments, the video bitrate level sought at alternative CDN providers is equal to the current video bitrate level in order to ensure a smooth transition between segments without the user noticing the switch.
A process for handling buffer problems for use in an adaptive CDN switching system in accordance with an embodiment of an invention is shown in
Although specific processes related to handling buffer problems in adaptive CDN switching systems are described above with reference to
Enhancing Content Bitrate Levels in Adaptive CDN Switching Systems.
In typical streaming applications, only a single CDN, is taken into account when determining and selecting which segments of content to stream. However, this method does not take into account the possible availability of higher quality or faster accessed content available on other CDN provider systems. An adaptive CDN switching system can be utilized to increase the quality of streamed content by accessing segments of content in alternative CDN systems that provide a higher bandwidth to the user.
A process for increasing content bitrate levels for use in adaptive CDN switching systems in accordance with an embodiment of an invention is shown in
Although specific processes related to enhancing bitrate download performance in adaptive CDN switching systems are described above with reference to
Process for Handling HTTP 404 Errors in Adaptive CDN Switching Systems
A HyperText Transfer Protocol (HTTP) 404 error occurs when a piece of data requested is not available. When downloading multiple segments of streaming content, many requests to download are sent out via HTTP. HTTP 404 errors are significant as they can directly lead to the interruption of playback. When encountering a HTTP 404 error, the request for the content may be sent again to verify the error. Additionally, requests may be sent for different bitrates of the same segment of content, or to different servers on the same content delivery network. However, in cases where the requested content is simply not available on the CDN, HTTP 404 errors cannot be avoided. In many embodiments, adaptive CDN switching systems may allow for handling of HTTP 404 errors by searching out for the same content on alternative CDN providers, allowing for the continuation of uninterrupted playback.
A process for handling HTTP 404 errors for use in an adaptive CDN switching system in accordance with an embodiment of the invention is show in
Although specific processes related to handling HTTP 404 errors in adaptive CDN switching systems are described above with reference to
Process for Handling Other HTTP Errors in Adaptive CDN Switching Systems
Other HTTP errors may occur when a piece of data is requested via HTTP. Examples of these types of errors include, but are not limited to, server disconnects, and server unavailable errors. HTTP errors of this nature tend to lead to playback interruptions on traditional systems. However, on adaptive CDN switching systems, the unavailable content may be sought on another CDN system, allowing for uninterrupted playback.
A process for handling HTTP errors for use in an adaptive CDN switching system in accordance with an embodiment of the invention is show in
In many embodiments, the adaptive CDN switching system playback device may keep a record of known CDNs and their historical statuses including, but not limited to, the amount of time a requested download may take and if the known CDNs were reachable. In this way, because of the time consuming nature of determining timeout and/or download errors, the adaptive switching systems may avoid selecting alternative CDNs that are known to be unreachable or unreliable. In a number of embodiments, these stored records are purged on a periodic basis. In certain embodiments, the stored records of known CDNs stored in the playback device may be transmitted to a server for further processing. In further embodiments of the invention, the URL request may include information about the geographic location and capabilities of the adaptive CDN switching system playback device. In still further embodiments, the playback device may receive a list of known CDNs from a central server. In yet still further embodiments, the server may evaluate the status of CDN systems based on the stored records transmitted from the adaptive CDN switching system playback device(s). These evaluations may include, but are not limited to, geographic areas and the playback device's capabilities. In yet still more embodiments, the server may filter CDNs provided in the manifests based on the evaluations made from the stored records transmitted from the adaptive CDN switching system playback devices. It should be appreciated by one skilled in the art that any of a variety of processes for generating top level index files based on geographic location can be utilized in adaptive CDN switching systems as appropriate to the requirements of the specific applications in accordance with embodiments of the invention including, but not limited to, the automatic generation of top level index files as disclosed in U.S. Pat. No. 8,787,570. The disclosure of U.S. Pat. No. 8,787,570 including the relevant disclosure related to the dynamic generation of top level index files is hereby incorporated by reference in its entirety.
Although specific processes related to handling HTTP errors in adaptive CDN switching systems are described above with reference to
Although the present invention has been described in certain specific aspects, many additional modifications and variations would be apparent to those skilled in the art. It is therefore to be understood that the present invention may be practiced otherwise than specifically described, including various changes in the implementation, without departing from the scope and spirit of the present invention. Thus, embodiments of the present invention should be considered in all respects as illustrative and not restrictive.
Number | Name | Date | Kind |
---|---|---|---|
4009331 | Goldmark et al. | Feb 1977 | A |
4694357 | Rahman et al. | Sep 1987 | A |
4802170 | Trottier | Jan 1989 | A |
4964069 | Ely | Oct 1990 | A |
5119474 | Beitel et al. | Jun 1992 | A |
5274758 | Beitel et al. | Dec 1993 | A |
5361332 | Yoshida et al. | Nov 1994 | A |
5396497 | Veltman | Mar 1995 | A |
5404436 | Hamilton | Apr 1995 | A |
5420801 | Dockter et al. | May 1995 | A |
5420974 | Morris et al. | May 1995 | A |
5471576 | Yee | Nov 1995 | A |
5479303 | Suzuki et al. | Dec 1995 | A |
5487167 | Dinallo et al. | Jan 1996 | A |
5502766 | Boebert et al. | Mar 1996 | A |
5509070 | Schull | Apr 1996 | A |
5533021 | Branstad et al. | Jul 1996 | A |
5537408 | Branstad et al. | Jul 1996 | A |
5539908 | Chen et al. | Jul 1996 | A |
5541662 | Adams et al. | Jul 1996 | A |
5583652 | Ware | Dec 1996 | A |
5589993 | Naimpally et al. | Dec 1996 | A |
5627936 | Prasad | May 1997 | A |
5633472 | DeWitt et al. | May 1997 | A |
5642171 | Baumgartner et al. | Jun 1997 | A |
5655117 | Goldberg et al. | Aug 1997 | A |
5664044 | Ware | Sep 1997 | A |
5675382 | Bauchspies | Oct 1997 | A |
5675511 | Prasad et al. | Oct 1997 | A |
5684542 | Tsukagoshi | Nov 1997 | A |
5715403 | Stefik | Feb 1998 | A |
5717816 | Boyce et al. | Feb 1998 | A |
5719786 | Nelson et al. | Feb 1998 | A |
5745643 | Mishina | Apr 1998 | A |
5751280 | Abbott | May 1998 | A |
5754648 | Ryan et al. | May 1998 | A |
5763800 | Rossum et al. | Jun 1998 | A |
5765164 | Prasad et al. | Jun 1998 | A |
5794018 | Vrvilo et al. | Aug 1998 | A |
5805700 | Nardone et al. | Sep 1998 | A |
5822524 | Chen et al. | Oct 1998 | A |
5828370 | Moeller et al. | Oct 1998 | A |
5841432 | Carmel et al. | Nov 1998 | A |
5844575 | Reid | Dec 1998 | A |
5848217 | Tsukagoshi et al. | Dec 1998 | A |
5867625 | McLaren | Feb 1999 | A |
5887110 | Sakamoto et al. | Mar 1999 | A |
5892900 | Ginter et al. | Apr 1999 | A |
5903261 | Walsh et al. | May 1999 | A |
5907597 | Mark | May 1999 | A |
5946446 | Yanagihara | Aug 1999 | A |
5956729 | Goetz et al. | Sep 1999 | A |
5959690 | Toebes, VIII et al. | Sep 1999 | A |
5999812 | Himsworth | Dec 1999 | A |
6031622 | Ristow et al. | Feb 2000 | A |
6038257 | Brusewitz et al. | Mar 2000 | A |
6044469 | Horstmann | Mar 2000 | A |
6046778 | Nonomura et al. | Apr 2000 | A |
6047100 | McLaren | Apr 2000 | A |
6058240 | McLaren | May 2000 | A |
6064794 | McLaren et al. | May 2000 | A |
6065050 | DeMoney | May 2000 | A |
6018611 | Nogami et al. | Jun 2000 | A |
6079566 | Eleftheriadis et al. | Jun 2000 | A |
6097877 | Katayama et al. | Aug 2000 | A |
6141754 | Choy | Oct 2000 | A |
6155840 | Sallette | Dec 2000 | A |
6169242 | Fay et al. | Jan 2001 | B1 |
6175921 | Rosen | Jan 2001 | B1 |
6192319 | Simonson | Feb 2001 | B1 |
6195388 | Choi et al. | Feb 2001 | B1 |
6204883 | Tsukagoshi | Mar 2001 | B1 |
6222981 | Rijckaert | Apr 2001 | B1 |
6282653 | Berstis et al. | Aug 2001 | B1 |
6289450 | Pensak et al. | Sep 2001 | B1 |
6292621 | Tanaka et al. | Sep 2001 | B1 |
6308005 | Ando et al. | Oct 2001 | B1 |
6330286 | Lyons et al. | Dec 2001 | B1 |
6374144 | Viviani et al. | Apr 2002 | B1 |
6389218 | Gordon et al. | May 2002 | B2 |
6389473 | Carmel et al. | May 2002 | B1 |
6395969 | Fuhrer | May 2002 | B1 |
6397230 | Carmel et al. | May 2002 | B1 |
6418270 | Steenhof et al. | Jul 2002 | B1 |
6449719 | Baker | Sep 2002 | B1 |
6466671 | Maillard et al. | Oct 2002 | B1 |
6466733 | Kim | Oct 2002 | B1 |
6510513 | Danieli | Jan 2003 | B1 |
6510554 | Gordon et al. | Jan 2003 | B1 |
6621979 | Eerenberg et al. | Sep 2003 | B1 |
6625320 | Nilsson et al. | Sep 2003 | B1 |
6658056 | Duruöz et al. | Dec 2003 | B1 |
6665835 | Gutfreund et al. | Dec 2003 | B1 |
6671408 | Kaku | Dec 2003 | B1 |
6697568 | Kaku | Feb 2004 | B1 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6771703 | Oguz et al. | Aug 2004 | B1 |
6807306 | Girgensohn et al. | Oct 2004 | B1 |
6810031 | Hegde et al. | Oct 2004 | B1 |
6810389 | Meyer | Oct 2004 | B1 |
6819394 | Nomura et al. | Nov 2004 | B1 |
6850252 | Hoffberg | Feb 2005 | B1 |
6856997 | Lee et al. | Feb 2005 | B2 |
6859496 | Boroczky et al. | Feb 2005 | B1 |
6917652 | Lyu | Jul 2005 | B2 |
6944621 | Collart | Sep 2005 | B1 |
6944629 | Shioi et al. | Sep 2005 | B1 |
6956901 | Boroczky et al. | Oct 2005 | B2 |
6965724 | Boccon-Gibod et al. | Nov 2005 | B1 |
6965993 | Baker | Nov 2005 | B2 |
6985588 | Glick et al. | Jan 2006 | B1 |
6988144 | Luken et al. | Jan 2006 | B1 |
7007170 | Morten | Feb 2006 | B2 |
7023924 | Keller et al. | Apr 2006 | B1 |
7043473 | Rassool et al. | May 2006 | B1 |
7127155 | Ando et al. | Oct 2006 | B2 |
7150045 | Koelle et al. | Dec 2006 | B2 |
7151832 | Fetkovich et al. | Dec 2006 | B1 |
7151833 | Candelore et al. | Dec 2006 | B2 |
7165175 | Kollmyer et al. | Jan 2007 | B1 |
7185363 | Narin et al. | Feb 2007 | B1 |
7197234 | Chatterton | Mar 2007 | B1 |
7209892 | Galuten et al. | Apr 2007 | B1 |
7231132 | Davenport | Jun 2007 | B1 |
7237061 | Boic | Jun 2007 | B1 |
7242772 | Tehranchi | Jul 2007 | B1 |
7328345 | Morten et al. | Feb 2008 | B2 |
7330875 | Parasnis et al. | Feb 2008 | B1 |
7340528 | Noblecourt et al. | Mar 2008 | B2 |
7349886 | Morten et al. | Mar 2008 | B2 |
7356143 | Morten | Apr 2008 | B2 |
7356245 | Belknap et al. | Apr 2008 | B2 |
7366788 | Jones et al. | Apr 2008 | B2 |
7376831 | Kollmyer et al. | May 2008 | B2 |
7406174 | Palmer | Jul 2008 | B2 |
7421411 | Kontio et al. | Sep 2008 | B2 |
7457359 | Mabey et al. | Nov 2008 | B2 |
7472280 | Giobbi | Dec 2008 | B2 |
7478325 | Foehr | Jan 2009 | B2 |
7484103 | Woo et al. | Jan 2009 | B2 |
7493018 | Kim | Feb 2009 | B2 |
7499938 | Collart | Mar 2009 | B2 |
7526450 | Hughes et al. | Apr 2009 | B2 |
7594271 | Zhuk et al. | Sep 2009 | B2 |
7610365 | Kraft et al. | Oct 2009 | B1 |
7640435 | Morten | Dec 2009 | B2 |
7689510 | Lamkin et al. | Mar 2010 | B2 |
7720352 | Belknap et al. | May 2010 | B2 |
7747853 | Candelore et al. | Jun 2010 | B2 |
7761892 | Ellis et al. | Jul 2010 | B2 |
7779097 | Lamkin et al. | Aug 2010 | B2 |
7817608 | Rassool et al. | Oct 2010 | B2 |
7869691 | Kelly et al. | Jan 2011 | B2 |
7962942 | Craner | Jun 2011 | B1 |
7974714 | Hoffberg | Jul 2011 | B2 |
7991156 | Miller | Aug 2011 | B1 |
8023562 | Zheludkov et al. | Sep 2011 | B2 |
8046453 | Olaiya | Oct 2011 | B2 |
8054880 | Yu et al. | Nov 2011 | B2 |
8065708 | Smyth et al. | Nov 2011 | B1 |
8069260 | Speicher et al. | Nov 2011 | B2 |
8201264 | Grab et al. | Jun 2012 | B2 |
8225061 | Greenebaum | Jul 2012 | B2 |
8233768 | Soroushian et al. | Jul 2012 | B2 |
8245124 | Gupta | Aug 2012 | B1 |
8249168 | Graves | Aug 2012 | B2 |
8261356 | Choi et al. | Sep 2012 | B2 |
8265168 | Masterson et al. | Sep 2012 | B1 |
8270473 | Chen et al. | Sep 2012 | B2 |
8270819 | Vannier | Sep 2012 | B2 |
8289338 | Priyadarshi et al. | Oct 2012 | B2 |
8291460 | Peacock | Oct 2012 | B1 |
8296434 | Miller et al. | Oct 2012 | B1 |
8311111 | Xu et al. | Nov 2012 | B2 |
8311115 | Gu et al. | Nov 2012 | B2 |
8321556 | Chatterjee et al. | Nov 2012 | B1 |
8386621 | Park | Feb 2013 | B2 |
8401900 | Cansler et al. | Mar 2013 | B2 |
8412841 | Swaminathan et al. | Apr 2013 | B1 |
8452110 | Shoham et al. | May 2013 | B2 |
8456380 | Pagan | Jun 2013 | B2 |
8472792 | Butt et al. | Jun 2013 | B2 |
8473630 | Galligan | Jun 2013 | B1 |
8510303 | Soroushian et al. | Aug 2013 | B2 |
8510404 | Carmel et al. | Aug 2013 | B2 |
8515265 | Kwon et al. | Aug 2013 | B2 |
8516529 | Lajoie et al. | Aug 2013 | B2 |
8595378 | Cohn et al. | Nov 2013 | B1 |
8606069 | Okubo et al. | Dec 2013 | B2 |
8640166 | Craner et al. | Jan 2014 | B1 |
8681866 | Jia | Mar 2014 | B1 |
8726264 | Allen et al. | May 2014 | B1 |
RE45052 | Li Adam | Jul 2014 | E |
8774609 | Drake et al. | Jul 2014 | B2 |
8781122 | Chan et al. | Jul 2014 | B2 |
8787570 | Braness et al. | Jul 2014 | B2 |
8805109 | Shoham et al. | Aug 2014 | B2 |
8806188 | Braness et al. | Aug 2014 | B2 |
8843586 | Pantos et al. | Sep 2014 | B2 |
8908984 | Shoham et al. | Dec 2014 | B2 |
8909922 | Kiefer et al. | Dec 2014 | B2 |
8914534 | Braness et al. | Dec 2014 | B2 |
8914836 | Shivadas et al. | Dec 2014 | B2 |
8918636 | Kiefer | Dec 2014 | B2 |
8918908 | Ziskind et al. | Dec 2014 | B2 |
8997161 | Priyadarshi et al. | Mar 2015 | B2 |
8997254 | Amidei et al. | Mar 2015 | B2 |
9014471 | Shoham et al. | Apr 2015 | B2 |
9025659 | Soroushian et al. | May 2015 | B2 |
9042670 | Carmel et al. | May 2015 | B2 |
9094737 | Shivadas et al. | Jul 2015 | B2 |
9191457 | Van der Schaar | Nov 2015 | B2 |
9197685 | Soroushian | Nov 2015 | B2 |
9210481 | Braness et al. | Dec 2015 | B2 |
9247311 | Kiefer | Jan 2016 | B2 |
9247312 | Braness et al. | Jan 2016 | B2 |
9247317 | Shivadas et al. | Jan 2016 | B2 |
9264475 | Shivadas et al. | Feb 2016 | B2 |
9313510 | Shivadas et al. | Apr 2016 | B2 |
9343112 | Amidei et al. | May 2016 | B2 |
9344517 | Shivadas et al. | May 2016 | B2 |
9391866 | Martin | Jul 2016 | B1 |
9509742 | Gordon | Nov 2016 | B2 |
9883204 | Braness et al. | Jan 2018 | B2 |
20010030710 | Werner | Oct 2001 | A1 |
20010036355 | Kelly et al. | Nov 2001 | A1 |
20010046299 | Wasilewski et al. | Nov 2001 | A1 |
20020026560 | Jordan et al. | Feb 2002 | A1 |
20020034252 | Owen et al. | Mar 2002 | A1 |
20020051494 | Yamaguchi et al. | May 2002 | A1 |
20020057898 | Normile | May 2002 | A1 |
20020059170 | Vange et al. | May 2002 | A1 |
20020062313 | Lee et al. | May 2002 | A1 |
20020076112 | Devara | Jun 2002 | A1 |
20020087569 | Fischer et al. | Jul 2002 | A1 |
20020091665 | Beek et al. | Jul 2002 | A1 |
20020093571 | Hyodo | Jul 2002 | A1 |
20020110193 | Yoo et al. | Aug 2002 | A1 |
20020116481 | Lee | Aug 2002 | A1 |
20020118953 | Kim | Aug 2002 | A1 |
20020120934 | Abrahams et al. | Aug 2002 | A1 |
20020136298 | Anantharamu et al. | Sep 2002 | A1 |
20020143413 | Fay et al. | Oct 2002 | A1 |
20020143547 | Fay et al. | Oct 2002 | A1 |
20020147980 | Satoda | Oct 2002 | A1 |
20020161462 | Fay | Oct 2002 | A1 |
20020180929 | Tseng et al. | Dec 2002 | A1 |
20020184159 | Tadayon et al. | Dec 2002 | A1 |
20020191112 | Akiyoshi et al. | Dec 2002 | A1 |
20020191959 | Lin et al. | Dec 2002 | A1 |
20020191960 | Fujinami et al. | Dec 2002 | A1 |
20030001964 | Masukura et al. | Jan 2003 | A1 |
20030002578 | Tsukagoshi et al. | Jan 2003 | A1 |
20030005442 | Brodersen et al. | Jan 2003 | A1 |
20030021296 | Wee et al. | Jan 2003 | A1 |
20030031178 | Haeri | Feb 2003 | A1 |
20030035488 | Barrau | Feb 2003 | A1 |
20030035545 | Jiang | Feb 2003 | A1 |
20030035546 | Jiang et al. | Feb 2003 | A1 |
20030041257 | Wee et al. | Feb 2003 | A1 |
20030061305 | Copley et al. | Mar 2003 | A1 |
20030061369 | Aksu et al. | Mar 2003 | A1 |
20030065777 | Mattila et al. | Apr 2003 | A1 |
20030078930 | Surcouf et al. | Apr 2003 | A1 |
20030093799 | Kauffman et al. | May 2003 | A1 |
20030123855 | Okada et al. | Jul 2003 | A1 |
20030128296 | Lee | Jul 2003 | A1 |
20030133506 | Haneda | Jul 2003 | A1 |
20030152370 | Otomo et al. | Aug 2003 | A1 |
20030163824 | Gordon et al. | Aug 2003 | A1 |
20030165328 | Grecia | Sep 2003 | A1 |
20030174844 | Candelore | Sep 2003 | A1 |
20030185302 | Abrams | Oct 2003 | A1 |
20030185542 | McVeigh et al. | Oct 2003 | A1 |
20030206558 | Parkkinen et al. | Nov 2003 | A1 |
20030216922 | Gonzales et al. | Nov 2003 | A1 |
20030229900 | Reisman | Dec 2003 | A1 |
20030231863 | Eerenberg et al. | Dec 2003 | A1 |
20030231867 | Gates et al. | Dec 2003 | A1 |
20030233464 | Walpole et al. | Dec 2003 | A1 |
20030236836 | Borthwick | Dec 2003 | A1 |
20030236907 | Stewart et al. | Dec 2003 | A1 |
20040006701 | Kresina | Jan 2004 | A1 |
20040021684 | Millner | Feb 2004 | A1 |
20040024688 | Bi et al. | Feb 2004 | A1 |
20040025180 | Begeja et al. | Feb 2004 | A1 |
20040031058 | Reisman | Feb 2004 | A1 |
20040039916 | Aldis et al. | Feb 2004 | A1 |
20040047614 | Green | Mar 2004 | A1 |
20040052501 | Tam | Mar 2004 | A1 |
20040071453 | Valderas | Apr 2004 | A1 |
20040081333 | Grab et al. | Apr 2004 | A1 |
20040081434 | Jung et al. | Apr 2004 | A1 |
20040088412 | John et al. | May 2004 | A1 |
20040093618 | Baldwin et al. | May 2004 | A1 |
20040105549 | Suzuki et al. | Jun 2004 | A1 |
20040114687 | Ferris et al. | Jun 2004 | A1 |
20040117347 | Seo et al. | Jun 2004 | A1 |
20040136698 | Mock | Jul 2004 | A1 |
20040139335 | Diamand et al. | Jul 2004 | A1 |
20040143760 | Alkove et al. | Jul 2004 | A1 |
20040146276 | Ogawa | Jul 2004 | A1 |
20040158878 | Ratnakar et al. | Aug 2004 | A1 |
20040184534 | Wang | Sep 2004 | A1 |
20040202320 | Amini et al. | Oct 2004 | A1 |
20040217971 | Kim | Nov 2004 | A1 |
20040255115 | DeMello et al. | Dec 2004 | A1 |
20040255236 | Collart | Dec 2004 | A1 |
20050015797 | Noblecourt et al. | Jan 2005 | A1 |
20050038826 | Bae et al. | Feb 2005 | A1 |
20050055399 | Savchuk | Mar 2005 | A1 |
20050055435 | Gbadegesin et al. | Mar 2005 | A1 |
20050071280 | Irwin et al. | Mar 2005 | A1 |
20050071469 | McCollom et al. | Mar 2005 | A1 |
20050108320 | Lord et al. | May 2005 | A1 |
20050114896 | Hug | May 2005 | A1 |
20050149450 | Stefik et al. | Jul 2005 | A1 |
20050180641 | Clark | Aug 2005 | A1 |
20050183120 | Jain et al. | Aug 2005 | A1 |
20050193070 | Brown et al. | Sep 2005 | A1 |
20050193322 | Lamkin et al. | Sep 2005 | A1 |
20050196147 | Seo et al. | Sep 2005 | A1 |
20050204289 | Mohammed et al. | Sep 2005 | A1 |
20050207442 | Zoest et al. | Sep 2005 | A1 |
20050207578 | Matsuyama et al. | Sep 2005 | A1 |
20050254508 | Aksu et al. | Nov 2005 | A1 |
20050273695 | Schnurr | Dec 2005 | A1 |
20050275656 | Corbin et al. | Dec 2005 | A1 |
20060026294 | Virdi et al. | Feb 2006 | A1 |
20060036549 | Wu | Feb 2006 | A1 |
20060037057 | Xu | Feb 2006 | A1 |
20060052095 | Vazvan | Mar 2006 | A1 |
20060053080 | Edmonson et al. | Mar 2006 | A1 |
20060064605 | Giobbi | Mar 2006 | A1 |
20060078301 | Ikeda et al. | Apr 2006 | A1 |
20060093320 | Hallberg et al. | May 2006 | A1 |
20060120378 | Usuki et al. | Jun 2006 | A1 |
20060129909 | Butt et al. | Jun 2006 | A1 |
20060156330 | Chiu | Jul 2006 | A1 |
20060168639 | Gan et al. | Jul 2006 | A1 |
20060173887 | Breitfeld et al. | Aug 2006 | A1 |
20060179239 | Fluhr | Aug 2006 | A1 |
20060181965 | Collart | Aug 2006 | A1 |
20060235880 | Qian | Oct 2006 | A1 |
20060245727 | Nakano et al. | Nov 2006 | A1 |
20060259588 | Lerman et al. | Nov 2006 | A1 |
20060263056 | Lin et al. | Nov 2006 | A1 |
20060267986 | Bae | Nov 2006 | A1 |
20060274835 | Hamilton et al. | Dec 2006 | A1 |
20060294164 | Armangau et al. | Dec 2006 | A1 |
20070005333 | Setiohardjo et al. | Jan 2007 | A1 |
20070031110 | Rijckaert | Feb 2007 | A1 |
20070044010 | Sull et al. | Feb 2007 | A1 |
20070047901 | Ando et al. | Mar 2007 | A1 |
20070053513 | Hoffberg | Mar 2007 | A1 |
20070058928 | Naito et al. | Mar 2007 | A1 |
20070083617 | Chakrabarti et al. | Apr 2007 | A1 |
20070086528 | Mauchly et al. | Apr 2007 | A1 |
20070100757 | Rhoads | May 2007 | A1 |
20070133603 | Weaver | Jun 2007 | A1 |
20070136817 | Nguyen | Jun 2007 | A1 |
20070140647 | Kusunoki et al. | Jun 2007 | A1 |
20070154165 | Hemmeryckz-Deleersnijder et al. | Jul 2007 | A1 |
20070168541 | Gupta et al. | Jul 2007 | A1 |
20070168542 | Gupta et al. | Jul 2007 | A1 |
20070174209 | Fallon et al. | Jul 2007 | A1 |
20070178933 | Nelson | Aug 2007 | A1 |
20070180125 | Knowles et al. | Aug 2007 | A1 |
20070185982 | Nakanowatari et al. | Aug 2007 | A1 |
20070192810 | Pritchett et al. | Aug 2007 | A1 |
20070217339 | Zhao | Sep 2007 | A1 |
20070217759 | Dodd | Sep 2007 | A1 |
20070234391 | Hunter et al. | Oct 2007 | A1 |
20070239839 | Buday et al. | Oct 2007 | A1 |
20070255940 | Ueno | Nov 2007 | A1 |
20070271317 | Carmel et al. | Nov 2007 | A1 |
20070271385 | Davis et al. | Nov 2007 | A1 |
20070274679 | Yahata et al. | Nov 2007 | A1 |
20070277219 | Toebes et al. | Nov 2007 | A1 |
20070277234 | Bessonov et al. | Nov 2007 | A1 |
20070280298 | Hearn et al. | Dec 2007 | A1 |
20070292107 | Yahata et al. | Dec 2007 | A1 |
20070297422 | Matsuo et al. | Dec 2007 | A1 |
20080005175 | Bourke et al. | Jan 2008 | A1 |
20080008455 | De Lange et al. | Jan 2008 | A1 |
20080043832 | Barkley et al. | Feb 2008 | A1 |
20080066099 | Brodersen et al. | Mar 2008 | A1 |
20080066181 | Haveson et al. | Mar 2008 | A1 |
20080086456 | Rasanen et al. | Apr 2008 | A1 |
20080086747 | Rasanen et al. | Apr 2008 | A1 |
20080101466 | Swenson et al. | May 2008 | A1 |
20080104633 | Noblecourt et al. | May 2008 | A1 |
20080114891 | Pereira | May 2008 | A1 |
20080120330 | Reed et al. | May 2008 | A1 |
20080120342 | Reed et al. | May 2008 | A1 |
20080120389 | Bassali et al. | May 2008 | A1 |
20080126248 | Lee et al. | May 2008 | A1 |
20080137541 | Agarwal et al. | Jun 2008 | A1 |
20080137736 | Richardson et al. | Jun 2008 | A1 |
20080151817 | Fitchett | Jun 2008 | A1 |
20080155061 | Afergan et al. | Jun 2008 | A1 |
20080172441 | Speicher et al. | Jul 2008 | A1 |
20080187283 | Takahashi | Aug 2008 | A1 |
20080192818 | DiPietro et al. | Aug 2008 | A1 |
20080195664 | Maharajh et al. | Aug 2008 | A1 |
20080195744 | Bowra et al. | Aug 2008 | A1 |
20080205860 | Holtman | Aug 2008 | A1 |
20080240144 | Kruse et al. | Oct 2008 | A1 |
20080256105 | Nogawa et al. | Oct 2008 | A1 |
20080260028 | Lamy-Bergot et al. | Oct 2008 | A1 |
20080262824 | Oslake | Oct 2008 | A1 |
20080263354 | Beuque et al. | Oct 2008 | A1 |
20080279535 | Hague et al. | Nov 2008 | A1 |
20080294453 | Baird-Smith et al. | Nov 2008 | A1 |
20080298358 | John et al. | Dec 2008 | A1 |
20080310454 | Bellwood et al. | Dec 2008 | A1 |
20080310496 | Fang | Dec 2008 | A1 |
20090031220 | Tranchant et al. | Jan 2009 | A1 |
20090037959 | Suh et al. | Feb 2009 | A1 |
20090048852 | Burns et al. | Feb 2009 | A1 |
20090055546 | Jung et al. | Feb 2009 | A1 |
20090060452 | Chaudhri | Mar 2009 | A1 |
20090066839 | Jung et al. | Mar 2009 | A1 |
20090097644 | Haruki | Apr 2009 | A1 |
20090132599 | Soroushian et al. | May 2009 | A1 |
20090132721 | Soroushian et al. | May 2009 | A1 |
20090132824 | Terada et al. | May 2009 | A1 |
20090136216 | Soroushian et al. | May 2009 | A1 |
20090150557 | Wormley et al. | Jun 2009 | A1 |
20090168795 | Segel et al. | Jul 2009 | A1 |
20090169181 | Priyadarshi et al. | Jul 2009 | A1 |
20090172167 | Drai et al. | Jul 2009 | A1 |
20090172201 | Carmel et al. | Jul 2009 | A1 |
20090178090 | Oztaskent | Jul 2009 | A1 |
20090196139 | Bates et al. | Aug 2009 | A1 |
20090201988 | Gazier et al. | Aug 2009 | A1 |
20090217317 | White et al. | Aug 2009 | A1 |
20090226148 | Nesvadba et al. | Sep 2009 | A1 |
20090228395 | Wegner et al. | Sep 2009 | A1 |
20090290706 | Amini et al. | Nov 2009 | A1 |
20090290708 | Schneider et al. | Nov 2009 | A1 |
20090293116 | DeMello | Nov 2009 | A1 |
20090303241 | Priyadarshi et al. | Dec 2009 | A1 |
20090307258 | Priyadarshi et al. | Dec 2009 | A1 |
20090307267 | Chen et al. | Dec 2009 | A1 |
20090310933 | Lee | Dec 2009 | A1 |
20090313544 | Wood et al. | Dec 2009 | A1 |
20090313564 | Rottler et al. | Dec 2009 | A1 |
20090316783 | Au et al. | Dec 2009 | A1 |
20090328124 | Khouzam et al. | Dec 2009 | A1 |
20090328228 | Schnell | Dec 2009 | A1 |
20100036954 | Sakata et al. | Feb 2010 | A1 |
20100040351 | Toma et al. | Feb 2010 | A1 |
20100057928 | Kapoor et al. | Mar 2010 | A1 |
20100058405 | Ramakrishnan et al. | Mar 2010 | A1 |
20100074324 | Qian et al. | Mar 2010 | A1 |
20100074333 | Au et al. | Mar 2010 | A1 |
20100083322 | Rouse | Apr 2010 | A1 |
20100094969 | Zuckerman et al. | Apr 2010 | A1 |
20100095121 | Shetty et al. | Apr 2010 | A1 |
20100106968 | Mori et al. | Apr 2010 | A1 |
20100107260 | Orrell et al. | Apr 2010 | A1 |
20100111192 | Graves | May 2010 | A1 |
20100138903 | Medvinsky | Jun 2010 | A1 |
20100142917 | Isaji | Jun 2010 | A1 |
20100158109 | Dahlby et al. | Jun 2010 | A1 |
20100161825 | Ronca et al. | Jun 2010 | A1 |
20100166060 | Ezure et al. | Jul 2010 | A1 |
20100186092 | Takechi et al. | Jul 2010 | A1 |
20100189183 | Gu et al. | Jul 2010 | A1 |
20100228795 | Hahn | Sep 2010 | A1 |
20100235472 | Sood et al. | Sep 2010 | A1 |
20100250532 | Soroushian et al. | Sep 2010 | A1 |
20100290761 | Drake et al. | Nov 2010 | A1 |
20100299522 | Khambete et al. | Nov 2010 | A1 |
20100306249 | Hill et al. | Dec 2010 | A1 |
20100313225 | Cholas et al. | Dec 2010 | A1 |
20100313226 | Cholas et al. | Dec 2010 | A1 |
20100319014 | Lockett et al. | Dec 2010 | A1 |
20100319017 | Cook | Dec 2010 | A1 |
20100332595 | Fullagar et al. | Dec 2010 | A1 |
20110002381 | Yang et al. | Jan 2011 | A1 |
20110016225 | Park et al. | Jan 2011 | A1 |
20110047209 | Lindholm et al. | Feb 2011 | A1 |
20110055585 | Lee | Mar 2011 | A1 |
20110060808 | Martin et al. | Mar 2011 | A1 |
20110066673 | Outlaw | Mar 2011 | A1 |
20110067057 | Karaoguz et al. | Mar 2011 | A1 |
20110078440 | Feng et al. | Mar 2011 | A1 |
20110080940 | Bocharov | Apr 2011 | A1 |
20110082924 | Gopalakrishnan | Apr 2011 | A1 |
20110096828 | Chen et al. | Apr 2011 | A1 |
20110107379 | Lajoie et al. | May 2011 | A1 |
20110116772 | Kwon et al. | May 2011 | A1 |
20110126191 | Hughes et al. | May 2011 | A1 |
20110129011 | Cilli et al. | Jun 2011 | A1 |
20110135090 | Chan et al. | Jun 2011 | A1 |
20110138018 | Raveendran et al. | Jun 2011 | A1 |
20110142415 | Rhyu | Jun 2011 | A1 |
20110145726 | Wei et al. | Jun 2011 | A1 |
20110149753 | Bapst et al. | Jun 2011 | A1 |
20110150100 | Abadir | Jun 2011 | A1 |
20110153785 | Minborg et al. | Jun 2011 | A1 |
20110153835 | Rimac et al. | Jun 2011 | A1 |
20110184738 | Kalisky et al. | Jul 2011 | A1 |
20110191439 | Dazzi et al. | Aug 2011 | A1 |
20110191587 | Tian et al. | Aug 2011 | A1 |
20110191803 | Baldwin et al. | Aug 2011 | A1 |
20110197237 | Turner | Aug 2011 | A1 |
20110197238 | Li et al. | Aug 2011 | A1 |
20110213827 | Kaspar et al. | Sep 2011 | A1 |
20110222786 | Carmel et al. | Sep 2011 | A1 |
20110225302 | Park et al. | Sep 2011 | A1 |
20110225315 | Wexler et al. | Sep 2011 | A1 |
20110225417 | Maharajh et al. | Sep 2011 | A1 |
20110239078 | Luby et al. | Sep 2011 | A1 |
20110246657 | Glow | Oct 2011 | A1 |
20110246659 | Bouazizi | Oct 2011 | A1 |
20110252118 | Pantos et al. | Oct 2011 | A1 |
20110264530 | Santangelo et al. | Oct 2011 | A1 |
20110268178 | Park et al. | Nov 2011 | A1 |
20110276695 | Maldaner et al. | Nov 2011 | A1 |
20110283012 | Melnyk | Nov 2011 | A1 |
20110291723 | Hashimoto | Dec 2011 | A1 |
20110302319 | Ha et al. | Dec 2011 | A1 |
20110305273 | He et al. | Dec 2011 | A1 |
20110314176 | Frojdh et al. | Dec 2011 | A1 |
20110314500 | Gordon | Dec 2011 | A1 |
20120005368 | Knittle et al. | Jan 2012 | A1 |
20120023251 | Pyle et al. | Jan 2012 | A1 |
20120036365 | Kyslov et al. | Feb 2012 | A1 |
20120036544 | Chen et al. | Feb 2012 | A1 |
20120066360 | Ghosh | Mar 2012 | A1 |
20120093214 | Urbach | Apr 2012 | A1 |
20120114302 | Randall | May 2012 | A1 |
20120124191 | Lyon | May 2012 | A1 |
20120137336 | Applegate et al. | May 2012 | A1 |
20120144117 | Weare et al. | Jun 2012 | A1 |
20120144445 | Bonta et al. | Jun 2012 | A1 |
20120166633 | Baumback et al. | Jun 2012 | A1 |
20120170642 | Braness et al. | Jul 2012 | A1 |
20120170643 | Soroushian et al. | Jul 2012 | A1 |
20120170906 | Soroushian et al. | Jul 2012 | A1 |
20120170915 | Braness et al. | Jul 2012 | A1 |
20120173751 | Braness et al. | Jul 2012 | A1 |
20120177101 | van der Schaar | Jul 2012 | A1 |
20120179834 | van der Schaar et al. | Jul 2012 | A1 |
20120201475 | Carmel et al. | Aug 2012 | A1 |
20120201476 | Carmel et al. | Aug 2012 | A1 |
20120233345 | Hannuksela | Sep 2012 | A1 |
20120240176 | Ma et al. | Sep 2012 | A1 |
20120254455 | Adimatyam et al. | Oct 2012 | A1 |
20120260277 | Kosciewicz | Oct 2012 | A1 |
20120263434 | Wainner et al. | Oct 2012 | A1 |
20120265562 | Daouk et al. | Oct 2012 | A1 |
20120278496 | Hsu | Nov 2012 | A1 |
20120289147 | Raleigh et al. | Nov 2012 | A1 |
20120294355 | Holcomb et al. | Nov 2012 | A1 |
20120297039 | Acuna et al. | Nov 2012 | A1 |
20120307883 | Graves | Dec 2012 | A1 |
20120311094 | Biderman et al. | Dec 2012 | A1 |
20120314778 | Salustri et al. | Dec 2012 | A1 |
20120317235 | Nguyen et al. | Dec 2012 | A1 |
20130007223 | Luby et al. | Jan 2013 | A1 |
20130013730 | Li et al. | Jan 2013 | A1 |
20130019107 | Grab et al. | Jan 2013 | A1 |
20130019273 | Ma et al. | Jan 2013 | A1 |
20130041808 | Pham et al. | Feb 2013 | A1 |
20130044821 | Braness et al. | Feb 2013 | A1 |
20130046849 | Wolf | Feb 2013 | A1 |
20130046902 | Villegas Nuñez et al. | Feb 2013 | A1 |
20130051554 | Braness et al. | Feb 2013 | A1 |
20130054958 | Braness et al. | Feb 2013 | A1 |
20130055084 | Soroushian et al. | Feb 2013 | A1 |
20130058480 | Ziskind et al. | Mar 2013 | A1 |
20130061040 | Kiefer et al. | Mar 2013 | A1 |
20130061045 | Kiefer et al. | Mar 2013 | A1 |
20130064466 | Carmel et al. | Mar 2013 | A1 |
20130080772 | McGowan et al. | Mar 2013 | A1 |
20130094565 | Yang et al. | Apr 2013 | A1 |
20130097309 | Ma et al. | Apr 2013 | A1 |
20130114944 | Soroushian et al. | May 2013 | A1 |
20130128962 | Rajagopalan et al. | May 2013 | A1 |
20130152767 | Katz et al. | Jun 2013 | A1 |
20130166580 | Maharajh | Jun 2013 | A1 |
20130166765 | Kaufman | Jun 2013 | A1 |
20130166906 | Swaminathan et al. | Jun 2013 | A1 |
20130170764 | Carmel et al. | Jul 2013 | A1 |
20130173513 | Chu et al. | Jul 2013 | A1 |
20130179199 | Ziskind et al. | Jul 2013 | A1 |
20130179992 | Ziskind et al. | Jul 2013 | A1 |
20130182952 | Carmel et al. | Jul 2013 | A1 |
20130196292 | Brennen et al. | Aug 2013 | A1 |
20130212228 | Butler et al. | Aug 2013 | A1 |
20130223812 | Rossi | Aug 2013 | A1 |
20130226578 | Bolton et al. | Aug 2013 | A1 |
20130226635 | Fisher | Aug 2013 | A1 |
20130227122 | Gao | Aug 2013 | A1 |
20130227573 | Morsi | Aug 2013 | A1 |
20130290697 | Wang et al. | Oct 2013 | A1 |
20130301424 | Kotecha et al. | Nov 2013 | A1 |
20130311670 | Tarbox et al. | Nov 2013 | A1 |
20130329781 | Su et al. | Dec 2013 | A1 |
20140003516 | Soroushian | Jan 2014 | A1 |
20140013103 | Giladi et al. | Jan 2014 | A1 |
20140037620 | Ferree et al. | Feb 2014 | A1 |
20140047069 | Ma et al. | Feb 2014 | A1 |
20140052823 | Gavade et al. | Feb 2014 | A1 |
20140059156 | Freeman, II et al. | Feb 2014 | A1 |
20140101445 | Giladi et al. | Apr 2014 | A1 |
20140101722 | Moore | Apr 2014 | A1 |
20140119432 | Wang et al. | May 2014 | A1 |
20140122698 | Batrouni et al. | May 2014 | A1 |
20140140396 | Wang et al. | May 2014 | A1 |
20140140417 | Shaffer et al. | May 2014 | A1 |
20140143301 | Watson et al. | May 2014 | A1 |
20140143431 | Watson et al. | May 2014 | A1 |
20140143440 | Ramamurthy et al. | May 2014 | A1 |
20140164584 | Joe et al. | Jun 2014 | A1 |
20140177734 | Carmel et al. | Jun 2014 | A1 |
20140189065 | van der Schaar et al. | Jul 2014 | A1 |
20140195686 | Yeager et al. | Jul 2014 | A1 |
20140201382 | Shivadas et al. | Jul 2014 | A1 |
20140211840 | Butt et al. | Jul 2014 | A1 |
20140211859 | Carmel et al. | Jul 2014 | A1 |
20140241420 | Orton-jay et al. | Aug 2014 | A1 |
20140241421 | Orton-jay et al. | Aug 2014 | A1 |
20140250473 | Braness et al. | Sep 2014 | A1 |
20140258714 | Grab | Sep 2014 | A1 |
20140269269 | Kovvali et al. | Sep 2014 | A1 |
20140269927 | Naletov et al. | Sep 2014 | A1 |
20140269936 | Shivadas et al. | Sep 2014 | A1 |
20140280763 | Grab et al. | Sep 2014 | A1 |
20140297804 | Shivadas et al. | Oct 2014 | A1 |
20140297881 | Shivadas et al. | Oct 2014 | A1 |
20140355668 | Shoham et al. | Dec 2014 | A1 |
20140355958 | Soroushian et al. | Dec 2014 | A1 |
20140359678 | Shivadas et al. | Dec 2014 | A1 |
20140359679 | Shivadas et al. | Dec 2014 | A1 |
20140359680 | Shivadas et al. | Dec 2014 | A1 |
20140376720 | Chan et al. | Dec 2014 | A1 |
20150006662 | Braness | Jan 2015 | A1 |
20150026677 | Stevens et al. | Jan 2015 | A1 |
20150049957 | Shoham et al. | Feb 2015 | A1 |
20150058228 | Voeller | Feb 2015 | A1 |
20150063693 | Carmel et al. | Mar 2015 | A1 |
20150067715 | Koat et al. | Mar 2015 | A1 |
20150104153 | Braness et al. | Apr 2015 | A1 |
20150117836 | Amidei et al. | Apr 2015 | A1 |
20150117837 | Amidei et al. | Apr 2015 | A1 |
20150139419 | Kiefer et al. | May 2015 | A1 |
20150188758 | Amidei et al. | Jul 2015 | A1 |
20150188842 | Amidei et al. | Jul 2015 | A1 |
20150188921 | Amidei et al. | Jul 2015 | A1 |
20150189017 | Amidei et al. | Jul 2015 | A1 |
20150189373 | Amidei et al. | Jul 2015 | A1 |
20150195259 | Liu et al. | Jul 2015 | A1 |
20150334435 | Shivadas et al. | Nov 2015 | A1 |
20160072870 | Watson et al. | Mar 2016 | A1 |
20160127440 | Gordon | May 2016 | A1 |
20160149981 | Shivadas et al. | May 2016 | A1 |
20160219303 | Braness et al. | Jul 2016 | A1 |
20170026712 | Gonder et al. | Jan 2017 | A1 |
20170041604 | Soroushian et al. | Feb 2017 | A1 |
Number | Date | Country |
---|---|---|
1169229 | Dec 1997 | CN |
1221284 | Jun 1999 | CN |
1723696 | Jan 2006 | CN |
110268694 | Sep 2019 | CN |
757484 | Feb 1997 | EP |
813167 | Dec 1997 | EP |
0936812 | Aug 1999 | EP |
1056273 | Nov 2000 | EP |
1420580 | May 2004 | EP |
1553779 | Jul 2005 | EP |
1657835 | May 2006 | EP |
1718074 | Nov 2006 | EP |
2486517 | Aug 2012 | EP |
2486727 | Aug 2012 | EP |
2507995 | Oct 2012 | EP |
2564354 | Mar 2013 | EP |
2616991 | Jul 2013 | EP |
2617192 | Jul 2013 | EP |
2661696 | Nov 2013 | EP |
2486727 | Mar 2014 | EP |
2564354 | Mar 2014 | EP |
2616991 | Mar 2014 | EP |
2617192 | Mar 2014 | EP |
2716048 | Apr 2014 | EP |
2721826 | Apr 2014 | EP |
2486517 | Jun 2014 | EP |
2751990 | Jul 2014 | EP |
2807821 | Dec 2014 | EP |
2751990 | Apr 2015 | EP |
2972960 | Jan 2016 | EP |
2972960 | Sep 2019 | EP |
08046902 | Feb 1996 | JP |
08111842 | Apr 1996 | JP |
08163488 | Jun 1996 | JP |
08287613 | Nov 1996 | JP |
09037225 | Feb 1997 | JP |
11164307 | Jun 1999 | JP |
11275576 | Oct 1999 | JP |
11328929 | Nov 1999 | JP |
2000201343 | Jul 2000 | JP |
02001043668 | Feb 2001 | JP |
2001346165 | Dec 2001 | JP |
2002170363 | Jun 2002 | JP |
2002518898 | Jun 2002 | JP |
2002218384 | Aug 2002 | JP |
2003250113 | Sep 2003 | JP |
2004013823 | Jan 2004 | JP |
2004515941 | May 2004 | JP |
2004172830 | Jun 2004 | JP |
2004187161 | Jul 2004 | JP |
2004234128 | Aug 2004 | JP |
2005027153 | Jan 2005 | JP |
2005080204 | Mar 2005 | JP |
2006524007 | Oct 2006 | JP |
2007036666 | Feb 2007 | JP |
2007174375 | Jul 2007 | JP |
2007235690 | Sep 2007 | JP |
2007535881 | Dec 2007 | JP |
2008235999 | Oct 2008 | JP |
2014506430 | Mar 2014 | JP |
6038805 | Dec 2016 | JP |
2017063453 | Mar 2017 | JP |
100221423 | Sep 1999 | KR |
2002013664 | Feb 2002 | KR |
1020020064888 | Aug 2002 | KR |
100669616 | Jan 2007 | KR |
1020130133830 | Dec 2013 | KR |
1995015660 | Jun 1995 | WO |
1996013121 | May 1996 | WO |
1997031445 | Apr 1998 | WO |
1999010836 | Mar 1999 | WO |
1999065239 | Dec 1999 | WO |
2001031497 | May 2001 | WO |
2001050732 | Jul 2001 | WO |
2001065762 | Sep 2001 | WO |
2002001880 | Jan 2002 | WO |
2002008948 | Jan 2002 | WO |
2002035832 | May 2002 | WO |
2002037210 | May 2002 | WO |
2002054196 | Jul 2002 | WO |
2004054247 | Jun 2004 | WO |
2004097811 | Nov 2004 | WO |
2004102571 | Nov 2004 | WO |
2006018843 | Feb 2006 | WO |
2006018843 | Dec 2006 | WO |
2007044590 | Apr 2007 | WO |
2007113836 | Oct 2007 | WO |
2008010275 | Jan 2008 | WO |
2008042242 | Apr 2008 | WO |
2007113836 | Nov 2008 | WO |
2007113836 | Dec 2008 | WO |
2009065137 | May 2009 | WO |
2010060106 | May 2010 | WO |
2010080911 | Jul 2010 | WO |
2010089962 | Aug 2010 | WO |
2010122447 | Oct 2010 | WO |
2010147878 | Dec 2010 | WO |
2011042898 | Apr 2011 | WO |
2011042900 | Apr 2011 | WO |
2011068668 | Jun 2011 | WO |
2011103364 | Aug 2011 | WO |
2011132184 | Oct 2011 | WO |
2011135558 | Nov 2011 | WO |
2012035533 | Mar 2012 | WO |
2012035534 | Mar 2012 | WO |
2012035534 | Jul 2012 | WO |
2012094171 | Jul 2012 | WO |
20120094181 | Jul 2012 | WO |
20120094189 | Jul 2012 | WO |
2012035533 | Aug 2012 | WO |
2012162806 | Dec 2012 | WO |
2012171113 | Dec 2012 | WO |
2013030833 | Mar 2013 | WO |
2013032518 | Mar 2013 | WO |
2013103986 | Jul 2013 | WO |
2013111126 | Aug 2013 | WO |
2013032518 | Sep 2013 | WO |
2013144942 | Oct 2013 | WO |
2014063726 | May 2014 | WO |
2014145901 | Sep 2014 | WO |
2014193996 | Dec 2014 | WO |
2014193996 | Feb 2015 | WO |
2015031982 | Mar 2015 | WO |
2013111126 | Jun 2015 | WO |
2018152347 | Aug 2018 | WO |
Entry |
---|
“IBM Closes Cryptolopes Unit,” Dec. 17, 1997, CNET News, Printed on Apr. 25, 2014 from http://news.cnet.com/IBM-closes-Cryptolopes-unit/2100-1001_3206465.html, 3 pgs. |
“Information Technology-Coding of Audio Visual Objects—Part 2: Visual” International Standard, ISO/IEC 14496-2, Third Edition, Jun. 1, 2004, pp. 1-724. (presented in three parts). |
Broadq—The Ultimate Home Entertainment Software, printed May 11, 2009 from ittp://web.srchive.org/web/20030401122010/www.broadq.com/qcasttuner/, 1 page. |
Cloakware Corporation, “Protecting Digital Content Using Cloakware Code Transformation Technology”, Version 1.2, May 2002, 10 pgs. |
European Search Report Application No. EP 08870152, Search Completed May 19, 2011, dated May 26, 2011, 9 pgs. |
European Search Report for Application 11855103.5, search completed Jun. 26, 2014, 9 pgs. |
European Search Report for Application 11855237.1, search completed Jun. 12, 2014, 9 pgs. |
European Supplementary Search Report for Application EP09759600, completed Jan. 25, 2011, 11 pgs. |
Extended European Search Report for European Application EP10821672, completed Jan. 30, 2014, 3 pgs. |
Extended European Search Report for European Application EP11824682, completed Feb. 6, 2014, 4 pgs. |
Extended European Search Report for European Application No. 14763140.2, Search completed Sep. 26, 2016, dated Oct. 5, 2016, 9 pgs. |
Federal Computer Week, “Tool Speeds Info to Vehicles”, Jul. 25, 1999, 5 pgs. |
HTTP Live Streaming Overview, Networking & Internet, Apple, Inc., Apr. 1, 2011, 38 pgs. |
IBM Corporation and Microsoft Corporation, “Multimedia Programming Interface and Data Specifications 1.0”, Aug. 1991, printed from http://www.kk.iij4u.or.jp/˜kondo/wave/mpidata.txt on Mar. 6, 2006, 100 pgs. |
InformationWeek, “Internet on Wheels”, InformationWeek: Front End: Daily Dose, Jul. 20, 1999, Printed on Mar. 26, 2014, 3 pgs. |
International Preliminary Report for Application No. PCT/US2011/066927, Filed Dec. 22, 2011, Report dated Jul. 10, 2013, 13 pgs. |
International Preliminary Report on Patentability for International Application PCT/US14/30747, Report dated Sep. 15, 2015, dated Sep. 24, 2015, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2008/083816, dated May 18, 2010, 6 pgs. |
International Preliminary Report on Patentability for International Application No. PCT/US2011/068276, dated Mar. 4, 2014, 23 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2013/043181, dated Dec. 31, 2014, dated Jan. 8, 2015, 11 pgs. |
International Preliminary Report on Patentability for International Application PCT/US2014/039852, dated Dec. 1, 2015, dated Dec. 5, 2015, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US07/63950, completed Feb. 19, 2008; dated Mar. 19, 2008, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US08/87999, completed Feb. 7, 2009, dated Mar. 19, 2009, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US09/46588, completed Jul. 13, 2009, dated Jul. 23, 2009, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2004/041667, completed May 24, 2007, dated Jun. 20, 2007, 6 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2005/025845, completed Feb. 5, 2007 and dated May 10, 2007, 8 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2008/083816, completed Jan. 10, 2009, dated Jan. 22, 2009, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2010/020372, Completed Feb. 10, 2009, dated Mar. 1, 2010, 7 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2010/56733, Completed Jan. 3, 2011, dated Jan. 14, 2011, 9 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2013/043181, completed Nov. 27, 2013, dated Dec. 6, 2013, 12 pgs. |
International Search Report and Written Opinion for International Application No. PCT/US2018/018399, Search completed Apr. 4, 2018, dated Apr. 25, 2018, 28 pgs. |
International Search Report and Written Opinion for International Application PCT/US14/30747, completed Jul. 30, 2014, dated Aug. 22, 2014, 7 pgs. |
International Search Report and Written Opinion for International Application PCT/US14/39852, completed Oct. 21, 2014, dated Dec. 5, 2014, 11 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/066927, completed Apr. 3, 2012, dated Apr. 20, 2012, 14 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/067167, completed Jun. 19, 2012, dated Jul. 2, 2012, 11 pgs. |
International Search Report and Written Opinion for International Application PCT/US2011/068276, completed Jun. 19, 2013, dated Jul. 8, 2013, 24 pgs. |
International Search Report and Written Opinion for PCT/US2013/020572, International Filing Date Jan. 7, 2013, Search Completed Mar. 19, 2013, dated Apr. 29, 2013, 10 pgs. |
ITS International, “Fleet System Opts for Mobile Server”, Aug. 26, 1999, Printed on Oct. 21, 2011 from http://www.itsinternational.com/News/article.cfm?recordID=547, 2 pgs. |
Lifehacker—Boxqueue Bookmarklet Saves Videos for Later Boxee Watching, printed Jun. 16, 2009 from http://feeds.gawker.com/˜r/lifehacker/full/˜3/OHvDmrIgZZc/boxqueue-bookmarklet-saves-videos-for-late-boxee-watching, 2 pgs. |
LinksysWireless-B Media Adapter Reviews, printed May 4, 2007 from http://reviews.cnet.com/Linksys_Wireless_B_Media_Adapter/4505-6739_7-30421900.html?tag=box, 5 pgs. |
Linksys, KISS DP-500, printed May 4, 2007 from http://www.kiss-technology.com/?p=dp500, 2 pgs. |
Adhikari et al., “Unreeling Netflix: Understanding and Improving Multi-CDN Movie Delivery”, INFOCOM, 2012 Proceedings IEEE, 2012, 9 pgs. |
Akhshabi et al., “An Experimental Evaluation of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP”, MMSys'11, Feb. 23-25, 2011, 12 pgs. |
Anonymous, “Method for the encoding of a compressed video sequence derived from the same video sequence compressed at a different bit rate without loss of data”, ip.com, ip.com No. IPCOM000008165D, May 22, 2002, 9 pgs. |
Author Unknown, “Blu-ray Disc—Blu-ray Disc—Wikipedia, the free encyclopedia”, printed Oct. 30, 2008 from http://en.wikipedia.org/wiki/Blu-ray_Disc, 11 pgs. |
Author Unknown, “Blu-ray Movie Bitrates Here—Blu-ray Forum”, printed Oct. 30, 2008 from http://forum.blu-ray.com/showthread.php?t=3338, 6 pgs. |
Author Unknown, “MPEG-4 Video Encoder: Based on International Standard ISO/IEC 14496-2”, Patni Computer Systems, Ltd., printed Jan. 24, 2007, USA, 15 pgs. |
Author Unknown, “O'Reilly—802.11 Wireless Networks: The Definitive Guide, Second Edition”, printed Oct. 30, 2008 from http://oreilly.com/catalog/9780596100520, 2 pgs. |
Author Unknown, “Tunneling QuickTime RTSP and RTP over HTTP”, Published by Apple Computer, Inc.: 1999 (month unknown), 6 pgs. |
Author Unknown, “Turbo-Charge Your Internet and PC Performance”, printed Oct. 30, 2008 from Speedtest.net—The Global Broadband Speed Test, 1 page. |
Author Unknown, “White paper, The New Mainstream Wireless LAN Standard”, Broadcom Corporation, Jul. 2003, 12 pgs. |
Blasiak, “Video Transrating and Transcoding: Overview of Video Transrating and Transcoding Technologies”, Ingenient Technologies, TI Developer Conference, Aug. 6-8, 2002, 22 pgs. |
Casares et al., “Simplifying Video Editing Using Metadata”, DIS2002, 2002, 10 pgs. |
Deutscher, “IIS Transform Manager Beta—Using the MP4 to Smooth Task”, Retrieved from: https://web.archive.org/web/20130328111303/http://blog.johndeutscher.com/category/smooth-streaming, Blog post of Apr. 29, 2011, 14 pgs. |
Gannes, “The Lowdown on Apple's HTTP Adaptive Bitrate Streaming”, GigaOM, Jun. 10, 2009, 12 pgs. |
Garg et al., “An Experimental Study of Throughput for UDP and VoIP Traffic in IEEE 802.11b Networks”, Wireless Communications and Networkings, Mar. 2003, pp. 1748-1753. |
Gast, “When is 54 Not Equal to 54? A Look at 802.11a, b and g Throughput”, Aug. 8, 2003, printed Oct. 30, 2008 from www.oreillynet.com/pub/a/wireless/2003/08/08/wireless_throughput.html, 4 pgs. |
Ghosh, “Enhancing Silverlight Video Experiences with Contextual Data”, Retrieved from: http://msdn.microsoft.com/en-us/magazine/ee336025.aspx, 2010,15 pgs. |
Griffith, Eric “The Wireless Digital Picture Frame Arrives”, W-Fi Planet, printed May 4, 2007 from http://www.wi-fiplanet.com/news/article.php/3093141, Oct. 16, 2003, 3 pgs. |
Inlet Technologies, “Adaptive Delivery to iDevices”, 2010, 2 pgs. |
Inlet Technologies, “Adaptive delivery to iPhone 3.0”, 2009, 2 pgs. |
Inlet Technologies, “HTTP versus RTMP”, 2009, 3 pgs. |
Inlet Technologies, “The World's First Live Smooth Streaming Event: The French Open”, 2009, 2 pgs. |
I-O Data, “Innovation of technology arrived”, Nov. 2004, Retrieved from http://www.iodata.com/catalogs/AVLP2DVDLA_Flyer200505.pdf, 2 pgs. |
Kaspar et al., “Using HTTP Pipelining to Improve Progressive Download over Multiple Heterogeneous Interfaces”, IEEE ICC proceedings, 2010, 5 pgs. |
Kim, Kyuheon “MPEG-2 ES/PES/TS/PSI”, Kyung-Hee University, Oct. 4, 2010, 66 pgs. |
Kozintsev et al., “Improving last-hop multicast streaming video over 802.11”, Workshop on Broadband Wireless Multimedia, Oct. 2004, 10 pgs. |
Kurzke et al., “Get Your Content Onto Google TV”, Google, Retrieved from: http://commondatastorage.googleapis.com/io2012/presentations/live%20to%20website/1300.pdf, 2012, 58 pgs. |
Lang, “Expression Encoder, Best Practices for live smooth streaming broadcasting”, Microsoft Corporation, 2010, retrieved from http://www.streamingmedia.com/conferences/west2010/presentations/SMWest-12010-Expression-Encoder.pdf, 20 pgs. |
Levkov, “Mobile Encoding Guidelines for Android Powered Devices”, Adobe Systems Inc., Addendum B, Dec. 22, 2010, 42 pgs. |
Long et al., “Silver: Simplifying Video Editing with Metadata”, Demonstrations, CHI 2003: New Horizons, Apr. 5-10, 2003, pp. 628-629. |
Martin et al, “Characterizing Netflix Bandwidth Consumption”, In CCNC, 2013, 6 pgs. |
Martin et al, “Characterizing Netflix Bandwidth Consumption”, Presented at IEEE CCNC 2013 on Jan. 13, 2013, 21 pgs. |
Morrison, “EA IFF 85 Standard for Interchange Format Files”, Jan. 14, 1985, printed from http://www.dcs.ed.ac.uk/home/mxr/gfx/2d/IFF.txt on Mar. 6, 2006, 24 pgs. |
MSDN, “Adaptive streaming, Expression Studio 2.0”, Apr. 23, 2009, 2 pgs. |
Nelson, “Smooth Streaming Deployment Guide”, Microsoft Expression Encoder, Aug. 2010, 66 pgs. |
Nelson, Mark “Arithmetic Coding+Statistical Modeling=Data Compression: Part 1—Arithmetic Coding”, Doctor Dobb's Journal, Feb. 1991, printed from http://www.dogma.net/markn/articles/arith/part1.htm; printed Jul. 2, 2003, 12 pgs. |
Nelson, Michael “IBM's Cryptolopes”, Complex Objects in Digital Libraries Course, Spring 2001, Retrieved from http://www.cs.odu.edu/˜mln/teaching/unc/inls210/?method=display&pkg_name=cryptolopes.pkg&element_name=cryptolopes.ppt, 12 pgs. |
Noboru, “Play Fast and Fine Video on Web! codec”, Co.9 No. 12, Dec. 1, 2003, 2 pgs. |
Noe, A. “Matroska File Format (under construction!)”, Retrieved from the Internet: URL:http://web.archive.org web/20070821155146/www.matroska.org/technical/specs/matroska.pdf [retrieved on Jan. 19, 2011], Jun. 24, 2007, 26 pgs. |
Linksys®: “Enjoy your digital music and pictures on your home entertainment center, without stringing wires!”, Model No. WMA 11B, printed May 9, 2007 from http://www.linksys.com/servlet/Satellite?c=L_Product_C2&childpagename=US/Layout&cid=1115416830950&p, 3 pgs. |
Microsoft Corporation, “Chapter 8, Multimedia File Formats” 1991, Microsoft Windows Multimedia Programmer's Reference, 20 pgs. |
Microsoft Media Platform: Player Framework, “Microsoft Media Platform: Player Framework v2.5 (formerly Silverlight Media Framework)”, May 3, 2011, 2 pgs. |
Microsoft Media Platform: Player Framework, “Silverlight Media Framework v1.1”, Jan. 2010, 2 pgs. |
Microsoft Windows® XP Media Center Edition 2005, Frequently asked Questions, printed May 4, 2007 from http://www.microsoft.com/windowsxp/mediacenter/evaluation/faq.mspx, 6 pgs. |
Microsoft Windows® XP Media Center Edition 2005: Features, printed May 9, 2007, from http://www.microsoft.com/windowsxp/mediacenter/evaluation/features.mspx, 4 pgs. |
Office Action for Chinese Patent Application No. CN200880127596.4, dated May 6, 2014, 8 pgs. |
Office Action for U.S. Appl. No. 13/223,210, dated Apr. 30, 2015, 14 pgs. |
Office Action for U.S. Appl. No. 14/564,003, dated Apr. 17, 2015, 28 pgs. |
Open DML AVI-M-JPEG File Format Subcommittee, “Open DML AVI File Format Extensions”, Version 1.02, Feb. 28, 1996, 29 pgs. |
PC world.com, Future Gear: PC on the HiFi, and the TV, from http://www.pcworld.com/article/id,108818-page,1/article.html, printed May 4, 2007, from IDG Networks, 2 pgs. |
Qtv—About BroadQ, printed May 11, 2009 from http://www.broadq.com/en/about.php, 1 page. |
Supplementary European Search Report for Application No. EP 04813918, Search Completed Dec. 19, 2012, 3 pgs. |
Supplementary European Search Report for Application No. EP 10729513, completed Dec. 9, 2013, 4 pgs. |
Supplementary European Search Report for EP Application 11774529, completed Jan. 31, 2014, 2 pgs. |
Windows Media Center Extender for Xbox, printed May 9, 2007 from http://www.xbox.com/en-US/support/systemuse/xbox/console/mediacenterextender.htm, 2 pgs. |
Windows® XP Media Center Edition 2005, “Experience more entertainment”, retrieved from http://download.microsoft.com/download/c/9/a/c9a7000a-66b3-455b-860b-1c16f2eecfec/MCE.pdf on May 9, 2007, 2 pgs. |
Invitation to Pay Add'l Fees Rcvd for International Application PCT/US14/39852, Mailed Sep. 25, Sep. 25, 2014, 2 pgs. |
“Adaptive Streaming Comparison”, Jan. 28, 2010, 5 pgs. |
“Best Practices for Multi-Device Transcoding”, Kaltura Open Source Video, Printed on Nov. 27, 2013 from knowledge.kaltura.com/best-practices-multi-device-transcoding, 13 pgs. |
“Container format (digital)”, printed Aug. 22, 2009 from http://en.wikipedia.org/wiki/Container_format_(digital), 4 pgs. |
“Diagram | Matroska”, Dec. 17, 2010, Retrieved from http://web.archive.org/web/201 01217114656/http:I/matroska.org/technical/diagram/index.html on Jan. 29, 2016, Dec. 17, 2010, 5 pgs. |
“DVD—MPeg differences”, printed Jul. 2, 2009 from http://dvd.sourceforge.net/dvdinfo/dvdmpeg.html, 1 page. |
“DVD subtitles”, sam.zoy.org/writings/dvd/subtitles, dated Jan. 9, 2001, printed Jul. 2, 2009, 4 pgs. |
“Final Committee Draft of MPEG-4 streaming text format”, International Organisation for Standardisation, Feb. 2004, 22 pgs. |
“IBM Spearheading Intellectual Property Protection Technology for Information on the Internet; Cryptolope Containers Have Arrived”, May 1, 1996, Business Wire, Printed on Aug. 1, 2014 from http://www.thefreelibrary.com/IBM+Spearheading+Intellectual+Property+Protection+Technology+for...-a018239381, 6 pgs. |
“Information Technology—Coding of audio-visual objects—Part 17: Streaming text”, International Organisation for Standardisation, Feb. 2004, 22 pgs. |
“Information Technology—Coding of audio-visual objects—Part 18: Font compression and streaming”, ISO/IEC 14496-18, First edition Jul. 1, 2004, 26 pgs. |
“KISS Players, KISS DP-500”, retrieved from http://www.kiss-technology.com/?p=dp500 on May 4, 2007, 1 page. |
“Matroska Streaming | Matroska”, Retrieved from the Internet: URL:http://web.archive.org/web/201 0121711431 O/http://matroska.org/technical!streaming/index.html [retrieved on Jan. 29, 2016], Dec. 17, 2010, 2 pgs. |
“Netflix turns on subtitles for PC, Mac streaming”, Yahoo! News, Apr. 21, 2010, Printed on Mar. 26, 2014, 3 pgs. |
“OpenDML AVI File Format Extensions”, OpenDML AVI M-JPEG File Format Subcommittee, retrieved from www.the-labs.com/Video/odmlff2-avidef.pdf, Sep. 1997, 42 pgs. |
“OpenDML AVI File Format Extensions Version 1.02”, OpenDMLAVI MJPEG File Format Subcommittee. Last revision: Feb. 28, 1996. Reformatting: Sep. 1997, 56 pgs. |
“QCast Tuner for PS2”, printed May 11, 2009 from http://web.archive.org/web/20030210120605/www.divx.com/software/detail.php?ie=39, 2 pgs. |
“Smooth Streaming Client”, The Official Microsoft IIS Site, Sep. 24, 2010, 4 pgs. |
“Specifications | Matroska”, Retrieved from the Internet: URL:http://web.archive.org/web/201 00706041303/http:/1www.matroska.org/technical/specs/index.html [retrieved on Jan. 29, 2016, Jul. 6, 2010, 12 pgs. |
“Supplementary European Search Report for Application No. EP 10834935”, International Filing Date Nov. 15, 2010, Search Completed May 27, 2014, 9 pgs. |
“Supported Media Formats”, Supported Media Formats, Android Developers, Printed on Nov. 27, 2013 from developer.android.com/guide/appendix/media-formats.html, 3 pgs. |
“Text of ISO/IEC 14496-18/COR1, Font compression and streaming”, ITU Study Group 16—Video Coding Experts Group—ISO/IEC MPEG & ITU-T VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 06), No. N8664, Oct. 27, 2006, 8 pgs. |
“Text of ISO/IEC 14496-18/FDIS, Coding of Moving Pictures and Audio”, ITU Study Group 16—Videocoding Experts Group—ISO/IEC MPEG & ITU-T VCEG(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 06), No. N6215, Dec. 2003, 26 pgs. |
“Thread: SSME (Smooth Streaming Medial Element) config.xml review (Smooth Streaming Client configuration file)”, Printed on Mar. 26, 2014, 3 pgs. |
“Transcoding Best Practices”, From movideo, Printed on Nov. 27, 2013 from code.movideo.com/Transcoding_Best_Practices, 5 pgs. |
“Using HTTP Live Streaming”, iOS Developer Library, http://developer.apple.com/library/ios/#documentation/networkinginternet/conceptual/streamingmediaguide/UsingHTTPLiveStreaming/UsingHTTPLiveStreaming.html#//apple_ref/doc/uid/TP40008332-CH102-SW1, Feb. 11, 2014, 10 pgs. |
“Video Manager and Video Title Set IFO file headers”, printed Aug. 22, 2009 from http://dvd.sourceforge.net/dvdinfo/ifo.htm, 6 pgs. |
“What is a DVD?”, printed Aug. 22, 2009 from http://www.videohelp.com/dvd, 8 pgs. |
“What is a VOB file”, http://www.mpucoder.com/DVD/vobov.html, printed on Jul. 2, 2009, 2 pgs. |
“What's on a DVD?”, printed Aug. 22, 2009 from http://www.doom9.org/dvd-structure.htm, 5 pgs. |
U.S. Appl. No. 13/224,298, “Final Office Action Received”, dated May 19, 2014, 26 pgs. |
U.S. Appl. No. 13/905,804, “Non-Final Office Action Received”, U.S. Appl. No. 13/905,804, “Non-Final Office Action Received”, dated Jul. 25, 2014, 15 pgs. |
Noe, Alexander “AVI File Format”, http://www.alexander-noe.com/video/documentation/avi.pdf, Dec. 14, 2006, 26 pgs. |
Noe, Alexander “Definitions”, Apr. 11, 2006, retrieved from http://www.alexander-noe.com/video/amg/definitions.html on Oct. 16, 2013, 2 pgs. |
Ooyala, “Widevine Content Protection”, Ooyala Support Center for Developers. Ooyala, Inc., 2013. Jun. 3, 2013. http://support.ooyala.com/developers/documentation/concepts/player_v3_widevine_integration.html, 7 pgs. |
Ozer, “The 2012 Encoding and Transcoding Buyers' Guide”, Streamingmedia.com, Retrieved from: http://www.streamingmedia.com/Articles/Editorial/Featured-Articles/The-2012-Encoding-and-Transcoding-Buyers-Guide-84210.aspx, 2012, 8 pgs. |
Pantos, “HTTP Live Streaming, draft-pantos-http-live-streaming-10”, IETF Tools, Oct. 15, 2012, Retrieved from: http://tools.ietf.org/html/draft-pantos-http-live-streaming-10, 37 pgs. |
Pantos, R “HTTP Live Streaming: draft-pantos-http-live-streaming-06”, Published by the Internet Engineering Task Force (IETF), Mar. 31, 2011, 24 pgs. |
Papagiannaki et al., “Experimental Characterization of Home Wireless Networks and Design Implications”, INFOCOM 2006, 25th IEEE International Conference of Computer Communications, Proceedings, Apr. 2006, 13 pgs. |
Phamdo, “Theory of Data Compression”, printed on Oct. 10, 2003, 12 pgs. |
RGB Networks, “Comparing Adaptive HTTP Streaming Technologies”, Nov. 2011, Retrieved from: http://btreport.net/wp-content/uploads/2012/02/RGB-Adaptive-HTTP-Streaming-Comparison-1211-01.pdf, 20 pgs. |
Schulzrinne, H “Real Time Streaming Protocol 2.0 (RTSP): draft-ietfmmusic-rfc2326bis-27”, MMUSIC Working Group of the Internet Engineering Task Force (IETF), Mar. 9, 2011, 296 pgs (presented in two parts). |
Siglin, “HTTP Streaming: What You Need to Know”, streamingmedia.com, 2010, 15 pgs. |
Siglin, “Unifying Global Video Strategies, MP4 File Fragmentation for Broadcast, Mobile and Web Delivery”, Nov. 16, 2011, 16 pgs. |
Tan, Yap-Peng et al., “Video transcoding for fast forward/reverse video playback”, IEEE ICIP, 2002, 4 pgs. |
Taxan, “AVel LinkPlayer2 for Consumer”, I-O Data USA—Products—Home Entertainment, printed May 4, 2007 from http://www.iodata.com/usa/products/products.php?cat=HNP&sc=AVEL&pld=AVLP2/DVDLA&ts=2&tsc, 1 page. |
Unknown, “AVI RIFF File Reference (Direct X 8.1 C++ Archive)”, printed from http://msdn.microsoft.com/archive/en-us/dx81_c/directx_cpp/htm/avirifffilereference.asp?fr . . . On Mar. 6, 2006, 7 pgs. |
Unknown, “Entropy and Source Coding (Compression)”, TCOM 570, Sep. 1999, 22 pgs. |
Unknown, “MPEG-4 Video Encoder: Based on International Standard ISO/IEC 14496-2”, Patni Computer Systems, Ltd., publication date unknown, 15 pgs. |
Wang et al., “Image Quality Assessment: From Error Visibility to Structural Similarity”, IEEE Transactions on Image Processing, Apr. 2004, vol. 13, No. 4, pp. 600-612. |
Wu, Feng et al., “Next Generation Mobile Multimedia Communications: Media Codec and Media Transport Perspectives”, In China Communications, Oct. 2006, pp. 30-44. |
Zambelli, “IIS Smooth Streaming Technical Overview”, Microsoft Corporation, Mar. 2009, 17 pgs. |
Extended European Search Report for European Application EP19189160.5, Report Completed Sep. 19, 2019, dated Sep. 26, 2019, 7 pgs. |
Number | Date | Country | |
---|---|---|---|
20180241796 A1 | Aug 2018 | US |