Embodiments described herein relate generally to systems, devices and methods for serializing and subsequent aggregation of serialized goods such as, for example, pharmaceutical products to allow tracking and tracing of goods with high fidelity.
Product counterfeiting and diversion is typically a major concern for manufacturers. In particular, product counterfeiting in the pharmaceutical industry can result in substantially less revenue for pharmaceutical companies and can jeopardize the health and confidence of patients taking medication. According to the World Health Organization (WHO), up to 15 percent of all medical products in the world are estimated to be counterfeits and the problem is rising. In order to combat counterfeit products, new standards for tracking and tracing medical products need to be developed and implemented globally.
A known method for preventing counterfeiting and diversion, misuse and abuse of pharmaceutical and medical device products is serialization. Serialization is the process of creating and applying unique traceable serial numbers, for example, bar codes to goods such as medical products, at each packaging stage. For example, the unique traceable serial numbers can be applied to bottles or boxes, and aggregates of products such as, for example, bundles, cases, and/or pallets. This information can be managed, stored digitally/electronically and exchanged with key stake holders in the product packaging line and distribution supply chain to ensure that only authentic products are delivered to consumers.
Recent and pending government regulatory requirements are requesting implementation of global drug traceability systems to fight counterfeiting and diversion. This will protect public health against illicit product introduction within the supply chain. Many pharmaceutical and biomedical manufacturers are, however, discovering that their legacy packaging systems are not configured to support the new serialization and track and trace requirements. Most existing packaging lines have manual packaging operations and product manufacturers are reluctant to upgrade their packaging capabilities to be compatible with serialization and tracking systems due to concerns about significant cost impact of such modifications and development of customized packaging lines for one specific product and package size.
Therefore, there is a need for new systems, devices and methods for serializing and aggregating serialized goods products which can relatively easily integrate into existing manual packaging lines of medical product manufacturers. There is also a need for new portable systems that can be moved from one packaging suite or area to another.
In some embodiments, goods may be loaded into an aggregation/serialization system. The goods may be transported by a conveyor through an imaging system, where the items are identified and authenticated. The goods deemed to be unauthentic may be rejected, while those determined to be authentic may be diverted to at least one aggregation line, where the serialized goods are aggregated. The serialization/aggregation system may be adjustable, and may be easily converted to accept goods of various shapes and sizes.
Serialization is the process of creating and applying unique traceable serial numbers, for example, bar codes to goods, such as medical products, at each stage of a packaging and/or aggregation process. For example, the unique traceable serial numbers can be applied to containers (e.g., bottles, vials, boxes, cartons, etc.), bundles, cases, and pallets, etc. This information can be managed and exchanged with key stake holders in the product packaging line and supply chain to ensure that only authentic products are delivered to consumers. Examples of a serialization system for tracking and authenticating goods are described in U.S. patent application Ser. No. 13/507,320, filed Jun. 21, 2012, entitled “Systems and Methods for Tracking and Authenticating Goods,” the disclosure of which is incorporated herein in its entirety (referred to herein as “the '320 application”). Most existing medical product manufacturers have relativity low speed manual packaging lines (e.g., 60-120 units per minute), for example, for packaging drug bottles and/or cartons, into bundles, cases and/or pallets.
In some embodiments, serialization/aggregation systems, devices and methods described herein can be easily integrated with existing medical product packaging lines to support multi-level track and trace capability for serialized products. Serialization/aggregation systems, devices and methods described herein provide several advantages including and not limited to, for example: (1) combination of manual and automated aggregation which can easily be integrated into current manual product packaging lines; (2) 360 degree imaging (e.g., bar code scanning) capability for reading bar codes on bottles, vials, or boxes, irrespective of orientation; (3) dual aggregation lines that increase throughput and also provide a backup in case one aggregation line is rendered inoperable; (4) a low maintenance diverter for diverting a predetermined quantity of product to each of the aggregation lines; (5) a rapidly adjustable diverter to match the width, depth and height of the product being aggregated; (6) non-contact bar code or human readable text readers provided at each packaging station; (7) compatibility with one level (i.e. bundle or case), two level (i.e. bundle and case), and three level (bundle, case, and pallet) aggregation requirements; and (8) easy integration with commercially available serialization based track and trace systems, for example, the serialization system described in the '320 application. The serialization and aggregation systems, devices and methods described herein can therefore allow a user to focus on packing the cartons without the hassle of complex handling to manually scan bar code on individual containers.
The term “about” generally means plus or minus 10% of the value stated, e.g. about 5 would include 4.5 to 5.5, about 10 would include 9 to 11, about 100 would include 90 to 110.
The term “aggregation” means physically collecting a quantity of units (also referred to herein as “product”) at a given location, such that the aggregated product is ready for packaging. The term “aggregation” also refers to the digital linking or collating of all serial numbers of each packaging unit to the serial number of the next higher level of packaging (e.g. carton to case, and case to pallet).
Each of the components included in the serialization/aggregation system 200 can be mounted on a base 202. The base 202 can be substantially flat and can be made from a substantially rigid and sturdy material, for example, metals (e.g., stainless steel). The base 202 can be configured to minimize any vibrations produced by the components of the serialization/aggregation system 200. For example, the base 202 can have a mass sufficient to absorb vibrations and/or can be mounted on vibration dampers.
The conveyor 210 can be a belt conveyor, a chain conveyor, a roller conveyor, or any other suitable conveyor configured to receive and transport a product. The conveyor 210 can be made from a sufficiently wear resistant material (e.g., rubber, stainless steel, polyurethane, Kevlar, or any other suitable material). The width of the conveyor 210 can sufficient to accommodate the serialized product P of any cross section as described herein. In some implementations, the conveyor 210 can be large enough to accommodate all of the product sizes, as mentioned described above, where smaller products can fit within the parameters of the larger dimensions. In an alternative embodiment, the conveyor 210 may be adjustable. In some implementations, different sized conveyor belts can be placed on the conveyor 210. For example, a user may remove a conveyor belt and replace the conveyor belt with one of a different size based on the size of serialized product P. In another embodiment, the conveyor may have adjustable side walls and/or bumpers that can be adjusted based on the size of the product. For example, the side walls and/or bumpers may be slideable, moveable, and/or otherwise adjustable, such that the area of the conveyor 210 on which the products are placed can be expanded to accommodate larger product packaging, or may be contracted to accommodate smaller product packaging, In some such implementations, the size of the conveyor may stay the same, while the area of the conveyor between the side walls and/or bumpers may be reduced, as needed, and may be expanded to the full width of the conveyor 210. The speed of the conveyor 210 can be adjusted in accordance with a desired throughput of the serialization/aggregation system 200.
The imaging system 220 can include a plurality of imaging devices (not shown), for example, cameras, bar code scanners, RFID scanners, and/or the like. The plurality of imaging devices included in the imaging system 200 can be oriented such that the imaging system can scan a serialized bar code or read a serialized human readable code on the serialized product moving on the conveyor irrespective of the orientation and/or physical dimension of the serialized product P. The imaging system 220 is operative to scan the bar code on the serialized product P with sufficient speed, such that the bar code can be scanned as the serialized product P is moving along the conveyor 210. Furthermore, the fidelity of the bar code scan or serialized human readable code is not affected by the speed at which the serialized product is moving on the conveyor 210.
The serialized bar code or serialized human readable code information can be communicated by the imaging system 220 to a serialization authentication system, for example, the serialization system described in the '302 application, and digitally transferred to a packaging line server, for subsequent to a facility site server and cloud-based data base. In some embodiments, this information may be digitally transferred directly through a processor and/or computer connected to the serialization/aggregation system 200, while in other embodiments the information may be transferred via Bluetooth, WiFi, and/or the like. If the serialized information on the serialized product P does not match the information in the serialized authentication system and/or if the imaging system 220 fails “read” the serialized bar code or serialized human readable code, the serialized product P is rejected, and pushed off the conveyor 210 by a rejection actuator 224. The rejection actuator 224 can be any suitable actuator. For example, in some embodiments, the rejection actuator 224 can include a plunger 226 configured to push a rejected serialized product P in a direction shown by the arrow A off the conveyor 210 and onto a rejection line 228. The rejection line 228 can be a conveyor or a hopper configured to transport the rejected serialized product P to a rejected product collection station (not shown). In some embodiments, the rejection line 228 can be at an angle (e.g., a right angle) with respect to the feed conveyer 210 such that the rejected product is diverted off the feed conveyer 210 by the rejection actuator 224. In other embodiments, the rejection line 228 can be “inline” such that the rejected product simply passes through the serialization/aggregation system 200 (e.g., on the feed conveyer 210) bypassing the diversion/aggregation sub-system.
Authenticated serialized products P move on the conveyor 210 to the diverter 230. In some embodiments, the diverter 230 diverts the serialized product P to either one of the first packing station 262a or the second packing station 262b. For example, the diverter 230 can be a diverter gate with a rotating belt to maintain product orientation for rectangle products or an overhead diverter.
Each of the plurality of paddles 234 disposed on the belt 232 has a width w. The paddles 234 are disposed on the belt 232 with an inter-paddles spacing d. The width w of the paddles 234 can be modified to accommodate serialized products P having a wide range of dimensions as described herein. The inter-paddle spacing d can also be configured to accommodate serialized products P of different dimensions and/or to adjust a throughput of the diverter 230. In some embodiments, the throughput of the diverter 230 can be controlled by simply varying the rotational speed of the motor coupled to any one of the drums 236 (e.g., drum 236a). As shown in
The diverter 230 is disposed above the conveyor 210 and oriented orthogonally with respect to a direction of the motion of the conveyor 210. The rotation of the drums 236 can be selected such that the belt 232 runs laterally in a direction shown by arrow B (
The first aggregation line 252a and the second aggregation line 252b (collectively referred to herein as “aggregation lines 252”) are configured to transport the predetermined quantity of serialized products P (i.e., the first quantity and the second quantity) to the first packing station 262a and the second packing station 262b, respectively. The aggregation lines 252 can include conveyors, rails or hoppers. Each of the first aggregation line 252a and the second aggregation line 252b include an adjustment mechanism 254 coupled thereto. The adjustment mechanism 254 can, for example, be a simple ball screw adjustment with a dial indicator feedback, and can be configured to vary a dimension of the aggregation lines 252. In some embodiments, the adjustment mechanism 254 can be used to adjust the conveyor center lines, rail opening or hopper width, for example, to adjust for serialized products P of various width and height. In some embodiments, the adjustment for the range of serialized product P sizes as described herein, at the diverter 230 stage and/or the aggregation line 252 stage can be performed within 30 minutes or less.
The predetermined quantity of the serialized product P is then transported on the aggregation lines 252 to each of the first packing station 262a and the second packing station 262b where the predetermined quantity of serialized product P is aggregated. Each of the packing stations can have an ergonomic design and can have a manual bar code scanner coupled thereto or disposed thereon. In some embodiments, a user can be positioned at each of the packing stations 262 to manually pack the pre-aggregated serialized product P into a bundle or a case. In some implementations, the serialization/aggregation system may load the serialized product P into bundles, cases, pallets, and/or the like. The bundle or case can include a pre-printed bar code, for example a serialized bar code produced by a serialization system (e.g., the serialization system described in the '302 application). The user can then scan the bar code on the bundle or case which is associated with the aggregated serialized product P within the bundle or case.
In some embodiments, the bundles or cases of aggregated serialized product P from each of the packing stations 262 can further be transferred to pallets on a palletizing station 264 for further aggregation, as shown by the arrows C and D. In other embodiments, the serialized bundle can be transferred to a serialized case and/or the cases of aggregated serialized product P from each of the packing stations 262 can further be transferred by a user to the pallets on a palletizing station 264 for aggregation, as shown by arrows C and D. Each pallet can also include a pre-printed serialized bar code. The bar code can be scanned, which when scanned, is associated with bundle or case being palletized, and each of the aggregated serialized products P contained therein. In some embodiments, the aggregated serialized product P can be first packaged into bundles, which can then be further aggregated for packing into cases. This second level packing can be performed manually or automated using the aggregation system 200. The cases can then be manually aggregated on pallets at the palletizing station 264. In this manner, the smallest unit, i.e. a single serialized product can be traced back to its point of origin if the bar codes of any of the higher levels of packaging are scanned. In some implementations, a user may scan the bar codes, while in other implementations, a second implementation of the serialization/aggregation system may be used to scan and sort the secondary levels of packaging. In some implementations, a third implementation and tertiary level of packaging may also be used.
Although various embodiments have been described as having particular features and/or combinations of components, other embodiments are possible having a combination of any features and/or components from any of embodiments as discussed above.
This application claims priority to and benefit of U.S. Provisional Application Ser. No. 61/833,569, filed Jun. 11, 2013, entitled “Systems and Methods for Aggregating Serialized Goods,” the disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61833569 | Jun 2013 | US |