The present application generally relates to systems providing air to an enclosed environment and more particularly to Heating, Ventilation and Air-Conditioning systems and control thereof.
Indoor air within and around enclosed environments, such as buildings, vehicles and structures, is affected by a plurality of contaminants. Among these contaminants, often with the highest concentration, is carbon dioxide (CO2). There are other contaminants which may appear in relatively lower concentrations yet are no less important to monitor and/or reduce. A class of such contaminants is a group of species of organic vapors, broadly referred to as Volatile Organic Compounds (VOC). Contaminant gases (e.g., CO2) and VOCs, and corresponding vapors thereof, may collectively be referred to as a “gas(es)”. The sources of these contaminants include, inter alia, the human occupants themselves—from respiration and perspiration, to clothing and cosmetics—as well as building materials, equipment, food and consumer products, cleaning materials, office supplies or any other materials which emit VOCs. Other classes of contaminants are inorganic compounds and microorganisms such as bacteria, viruses, mold, fungi and airborne particles. Additional gaseous contaminants may be sulfur oxides, nitrous oxides, radon, or carbon monoxide.
Heating, Ventilation and Air-Conditioning (“HVAC”) is used in virtually every modern building. One of the goals of HVAC systems is to provide a comfortable and healthy environment for the enclosed environment occupants, in terms of temperature, humidity, composition and quality of air.
In order to maintain good air quality, not all the air is returned. Some of the air is exhausted out of the enclosed environment and is replaced by an intake of fresh air from the outside. This is sometimes referred to as “fresh air”, “makeup air” or ventilation. Such replacement of the air dilutes the contaminants within the indoor air and helps maintain good air quality in the enclosed environment.
However, there are a number of drawbacks to fresh air ventilation, including the energy required to condition the outdoor air (i.e., heat, cool, de-humidify), as well as the potential introduction of pollutants and contaminants from the outside into the enclosed environment. One possible solution to these drawbacks is to selectively remove the contaminants from indoor air, and certain schemes have been proposed for this purpose in conjunction with HVAC systems. For example, a system for removing the contaminants from indoor air in a HVAC system is disclosed in applicant's U.S. Pat. No. 8,157,892, which is incorporated herein by reference in its entirety.
Selective contaminant removal from the HVAC system is performed by directing the return air to a contaminant remover system and thereafter introducing the now treated return air back into the enclosed environment.
As described hereinabove, good air quality can be maintained with lower energy expenditure by scrubbing some of the indoor air as it circulates in the enclosed environment. However, the tradeoff between scrubbing indoor air and introducing outdoor air can be fairly complex. Even when scrubbing capability is added to the enclosed environment's air circulation, it may not always be desirable or advantageous to operate it. Rather, at times, it may be desirable or energetically advantageous to introduce certain amounts of outdoor air into the enclosed environment. Accordingly, some embodiments of the present disclosure consider one or more parameters for managing such a tradeoff, which may include, inter alia:
Thus, in accordance with some embodiments of the present disclosure, a system and method of operating an HVAC system for an enclosed environment is provided. In such embodiments, the HVAC system may be configured to at least one of heat and cool air, and includes an air circulation system configured to circulate air (e.g., indoor air—air within the enclosed environment) at least within the enclosed environment. Such embodiments may also include a scrubbing system including an adsorbent material to reduce presence of at least one gas contaminant in the indoor air, as well as a controller system for controlling the operation of the air circulation system and the scrubbing system. The controller system may be configured to include two or more of at least the following operative modes: a scrubbing mode to scrub at least one gas contaminant from the indoor air, a scrubber regeneration mode to regenerate the adsorbent material, an economizer mode including introducing at least a portion of outdoor air into the enclosed environment (the outdoor air being from outside the enclosed environment), a scrubbing bypass mode where circulated air (e.g., indoor air) bypasses the scrubbing system and/or the scrubbing system is turned off, and a standby mode, where neither indoor air nor outdoor air is circulated. In such embodiments, a method for controlling may include determination of at least one of the following parameters: an occupancy level of the enclosed environment, a level of the at least one contaminant in the indoor air, a level of the at least one contaminant in the adsorbent material, a level of the at least one contaminant in air exiting the adsorbent material, an indoor air temperature and/or an indoor air humidity level, an outdoor air temperature and/or an outdoor air humidity level, and a time and/or date the HVAC system is operating. In some embodiments, the method may further include controlling activation of at least one of the air circulation system and the scrubbing system according to the operative modes based upon the at least one parameter.
According to some embodiments, the operative mode may be operated by controlling at least one of the following components of the HVAC system—one or more: fans, dampers, shutters, valves and heaters, configured to, for example, affect flow of air or other fluids in the HVAC system. For example, upon the occupancy level being at or below a predetermined number of people, and/or the time and date being outside of normal operating hours, the HVAC system may operate according to the standby mode or according to the scrubbing bypass mode.
According to some embodiments, the scrubber regeneration mode may be activated upon the occurrence of at least one of the following: a predetermined time of day, following a predetermined duration of the scrubbing system operation in the scrubbing mode, the level of at least one gas contaminant in the adsorbent material being at or above a predetermined threshold, and the level of at least one contaminant in air exiting the adsorbent material being at or above a predetermined threshold.
According to some embodiments, the scrubber regeneration mode may be operated for a period of time according to at least one of the following a predetermined period of time from the start of activation of the regeneration operative mode, the level of at least one gas contaminant in the adsorbent material, the level of at least one contaminant in air exiting the adsorbent material, and the level of at least one contaminant in the indoor air, a predetermined period of time after the level of at least one gas contaminant in the adsorbent material being at or below a predetermined threshold, a predetermined period of time after the level of at least one contaminant in air exiting the adsorbent material being at or below a predetermined threshold, and a predetermined period of time after the level of at least one contaminant in the indoor air being above a predetermined threshold.
The predetermined period of time may be determined according to any one of: the time and/or date the HVAC system is operating, and the outdoor air temperature and/or the outdoor air humidity level. The scrubber regeneration mode may include flowing a purging airflow over the adsorbent material so as to eliminate at least a portion of at least one gas contaminant held by the adsorbent material. The purging airflow may include outdoor air having a temperature and/or flow rate equal to or greater than a corresponding threshold value.
According to some embodiments, the scrubber regeneration mode may include operation at a plurality of different phases, wherein a single phase may be selected to operate at any one of: a temperature of the purge air, a duration of the purging airflow over the adsorbent material, and flow rate of the purging airflow over the adsorbent material. The economizer mode may include introducing into the enclosed environment at least a portion of outdoor air to reduce the amount of recirculated indoor air required to be conditioned or treated. The economizer mode may be selected based upon a comparison between the outdoor air temperature and/or humidity level relative to the temperature and/or humidity level of indoor air or return air, wherein the return air is the indoor air exiting the enclosed environment.
According to some embodiments, the scrubbing bypass mode may be activated upon the level of at least one gas contaminant present in the indoor air being at or below a predetermined level. The scrubbing mode may be activated upon the level of at least one gas contaminant present in the indoor air is at or greater than a predetermined level. The parameters may further include at least one of the following: a HVAC operation schedule, temperature, humidity, pressure, flow rate, and energy expenditure of a HVAC refrigerant, chiller, compressor and heat pump.
According to some embodiments, the level of at least one gas contaminant in the adsorbent material may be determined by comparing the level of at least one gas contaminant in air existing the scrubbing system to the level of at least one gas contaminant in air entering the scrubbing system.
According to some embodiments, the regeneration mode may be operative to eliminate at least about 35% of at least one gas contaminant that has been adsorbed in the adsorbent material. Upon the level of at least one gas contaminant of air exiting the scrubbing system being greater than the level of at least one gas contaminant of air entering the scrubbing system, the scrubbing bypass mode may be activated. Upon the scrubbing system malfunctioning, a predetermined amount of outdoor air may be introduced into the enclosed environment. Upon the scrubbing system malfunctioning, the system may provide an alert.
According to some embodiments, at least one gas contaminant is selected from the group consisting of carbon dioxide, volatile organic compounds, sulfur oxides, radon, nitrous oxides and carbon monoxide. The outdoor air may be introduced into the enclosed environment via an inlet, the inlet may be a pre-existing inlet in the enclosed environment or the inlet may be installed within the HVAC system for introducing the outdoor air.
According to some embodiments, the method may further include sensors for receiving data from the HVAC system, the enclosed environment or the outdoor environment, actuators or switches for controlling the scrubbing system, air circulation system or other components of the HVAC system, and an electronic data communications system that transmits data pertaining to the sensor readings or actuators to a data storage system. The data may be at least partially delivered or stored at a remote location via a data network. The data may be at least partially transmitted over a wireless data network. Stored data may be accessed, retrieved or analyzed at different locations via the internet.
In accordance with some embodiments, a system for operating an HVAC system for an enclosed environment is provided, where the HVAC system may be configured to at least one of heat and/or cool air, and the system may include an air circulation system configured to circulate air at least within the enclosed environment, the air within the enclosed environment comprising at least indoor air. In some embodiments, a scrubbing system may additionally be provided which includes an adsorbent material to reduce presence of at least one gas contaminant in the indoor air. In some embodiments, an outdoor air inlet may additionally be provided. The outdoor air may be for introducing at least a portion of outdoor air from outside the enclosed environment into the enclosed environment. The system may also include a controller system, which may control the operation of the outdoor air inlet, air circulation system and/or the scrubbing system. Such a controller system may be configured to include two or more of at least the following operative modes: a scrubbing mode to scrub the at least one gas contaminant from the indoor air, a scrubber regeneration mode to regenerate the adsorbent material, an economizer mode including introducing at least a portion of outdoor air into the enclosed environment, the outdoor air being from outside the enclosed environment, a scrubbing bypass mode wherein circulated air bypasses the scrubbing system and/or the scrubbing system is turned off, and a standby mode. In some embodiments, in the standby mode, neither indoor air nor outdoor air is circulated. The system may further include at least one sensor and/or at least one input for receiving information for determining at least one of the following parameters: an occupancy level of the enclosed environment, a level of at least one contaminant in the indoor air, a level of at least one contaminant in the adsorbent material, a level of at least one contaminant in air exiting the adsorbent material, an indoor air temperature and/or an indoor air humidity level, an outdoor air temperature and/or an outdoor air humidity level, and a time and/or date the HVAC system is operating. In some embodiments, the controller system controls at least one of the air circulation system and the scrubbing system according the operative modes based upon the at least one parameter determined by the at least one sensor and/or at least one input.
According to some embodiments, the system may further include a return air inlet, and one or more dampers, fans and/or blowers that control the amount and ratio of outdoor air, scrubbed air and return air that is recirculated. The return air may comprise the indoor air exiting the enclosed environment. The controller system may also control one or more of the dampers, fans and/or blowers and may also utilize sensor readings and/or other information to manage air circulation and supply. The at least one gas contaminant may be selected from the group consisting of carbon dioxide, volatile organic compounds, sulfur oxides, radon, nitrous oxides and carbon monoxide.
According to some embodiments, the system may further include one or more actuators and/or switches for controlling at least one of the scrubbing system, air circulation system or other components of the HVAC system, and may also include an electronic data communications system that can transmit data pertaining to the sensor readings and/or actuators to a data storage system. The data may be at least partially delivered and/or stored at a remote location via a data network. The data may be at least partially transmitted over a wireless data network. Stored data may be accessed, retrieved or analyzed at different locations via the internet.
In accordance with some embodiments, a digital controller system for controlling an HVAC system for an enclosed environment is provided. In such embodiments, the HVAC system may be configured to at least one of heating and cooling of air, and the HVAC system may include an air circulation system configured to circulate air at least within the enclosed environment, with the air within the enclosed environment comprising at least indoor air. The system may also include a scrubbing system including an adsorbent material to reduce presence of at least one gas contaminant in the indoor air. The digital controller system may be configured to include two or more of at least the following operative modes: a scrubbing mode to scrub at least one gas contaminant from the indoor air, a scrubber regeneration mode to regenerate the adsorbent material, an economizer mode including introducing at least a portion of outdoor air into the enclosed environment (where the outdoor air is from outside the enclosed environment), a scrubbing bypass mode where circulated air bypasses the scrubbing system and/or the scrubbing system is turned off, and a standby mode, where neither indoor air nor outdoor air is circulated. The digital controller system may be configured to receive information corresponding to at least one of the following parameters: an occupancy level of the enclosed environment, a level of at least one contaminant in the indoor air, a level of at least one contaminant in the adsorbent material, a level of at least one contaminant in air exiting the adsorbent material, an indoor air temperature and/or an indoor air humidity level, an outdoor air temperature and/or an outdoor air humidity level, and a time and/or date the HVAC system is operating. The controller system may control activation of at least one of the air circulation system and the scrubbing system according to at least the operative modes based upon one or more of the parameters.
In accordance with some embodiments, a system for recording and transmitting data on the operation of an HVAC system for an enclosed environment is provided, where the HVAC system may be configured to at least one of heating and cooling of air. The HVAC system may comprise: an air circulation system configured to circulate air at least within the enclosed environment (the air within the enclosed environment including at least indoor air), and a scrubbing system including an adsorbent material to reduce presence of at least one gas contaminant in the indoor air. The system may further include sensors for receiving data from the HVAC system, the enclosed environment and/or the outdoor environment, actuators and/or switches for controlling the scrubbing system and/or the air circulation system, and an electronic data communications system that transmits data pertaining to the sensor readings and/or actuators to a data storage system.
According to some embodiments, the data may be at least partially delivered and/or stored at a remote location via a data network. The data may be at least partially transmitted over a wireless data network. Stored data may be accessed, retrieved and/or analyzed at different locations via the internet.
The principles and operations of the systems, apparatuses and methods according to some embodiments of the present disclosure may be better understood with reference to the drawings, and the following description. These drawings are given for illustrative purposes only and are not meant to be limiting.
The enclosed environment 102 may be an office building, a commercial building, a bank, a residential building, a house, a school, a factory, a hospital, a store, a mall, an indoor entertainment venue, a storage facility, a laboratory, a vehicle, an aircraft, a ship, a bus, a theatre, a partially and/or fully enclosed arena, an education facility, a library and/or other partially and/or fully enclosed structure and/or facility which can be at times occupied by equipment, materials, live occupants (e.g., humans, animals, synthetic organisms, etc.), etc., and/or any combination thereof and which has access to outdoor air.
Return air 114, that is, indoor air exiting the enclosed environment 102, typically comprises a relatively higher concentration of contaminants than desired for maintaining good air quality within the indoor air of the enclosed environment 102. An example of such contaminants may be, inter alia, carbon dioxide, sulfur oxides, nitrous oxides, radon, or carbon monoxide, VOCs and microorganisms including, inter alia, bacteria, viruses and fungi. The return air 114 may exit the enclosed environment 102 via fluid conduits 118.
In accordance with some embodiments, the return air 114 may be partially exhausted into the outside atmosphere, or any other environment, and may be partially reintroduced into the enclosed environment 102. The exhausted air 124 (
A portion of fresh, outdoor air 130, or namely “makeup air”, shown in
In order to reduce the required amount of outdoor air 130 without allowing an increase in contaminant levels, a scrubbing system 140 may be configured to intercept a portion of the return air 114 and remove at least some of the contaminants therefrom.
The scrubbing system 140 may comprise an adsorbent material to reduce the presence of at least some of the contaminants in the return air 114. The scrubbing system 140 may comprise a single or plurality scrubbing assemblies 142 containing the adsorbent material. The scrubbing assembly 142 may include a CO2 scrubber 144. Examples of CO2 scrubbers are disclosed in applicant's U.S. Pat. No. 8,157,892, which is incorporated herein by reference in its entirety. The CO2 scrubber 144 may comprise any suitable material for capturing CO2, such as a CO2 adsorbent material. An exemplary CO2 adsorbent material may be a solid support material supporting an amine-based compound, such as disclosed in applicant's PCT application PCT/US12/38343, which is incorporated herein by reference in its entirety. Other adsorbent materials include, but are not limited to, granular adsorbent particles, clay-based adsorbents, carbon, activated carbon, zeolites, natural zeolite, activated charcoal, molecular sieves, silica, silica gel, porous silica, alumina, porous alumina, titanium oxide, carbon fibers, porous polymers, polymer fibers and metal organic frameworks.
The CO2 scrubber 144 may include a plurality of CO2 scrubbing cartridges 150. The CO2 scrubbing cartridges 150 may comprise the adsorbent material formed as a solid or flexible sheet or as granules supported by porous surfaces. The scrubbing cartridges 150 may be arranged in any suitable arrangement. For example, the CO2 scrubbing cartridges 150 may be arranged in parallel therebetween. Alternatively, as seen in
An additional contaminant may be VOCs. As such, the scrubbing assembly 142 may include or comprise a VOC scrubber 154 for removing VOCs from the return air 114 flowing therethrough. The VOC scrubber 154 may comprise any suitable adsorbent material for adsorbing the VOCs. For example, VOC adsorbent materials may comprise a hydrophobic zeolite, natural zeolite, synthetic zeolite, carbon cloth, carbon, activated carbon, a molecular sieve, polymers, a thin permeable sheet structure, carbon fibers, or granular adsorbent particles attached to a sheet of some other permeable material, such as paper, cloth or fine mesh, for example.
The VOC scrubber 154 may be arranged in any suitable arrangement, such as a bed of granular material, a flat sheet, or a pleated sheet, as shown in
A filter 156 may be provided for removing additional contaminants, such as dirt, small airborne particles and may comprise any suitable filter or adsorbent material.
As shown in
The volume of the portion of return air 114 flowing into the scrubbing assembly 142 may be controlled by the scrubber fan 160 and/or entry damper 168, or by any other suitable means. The remaining return air 114, which bypassed the scrubbing system 140, may flow directly to the air handling unit 110, via ducts 169, or to any other suitable location within the HVAC system 100.
The scrubber fan 160 may be placed in any suitable location within the scrubbing system 140, such as upstream in a “push” mode, i.e. intermediate the entry port 166 and the CO2 scrubber 144. Alternatively, as seen in
The return air 114 may flow through the filter 156, CO2 scrubber 144 and/or the VOC scrubber 154. The now scrubbed air flows out of the scrubbing system 140 via an exit port 170 including an exit damper 172.
Following the capture and scrubbing of the contaminants in the scrubbing assembly 142, in some embodiments, the adsorbent material may be regenerated by urging the release of the contaminants from the adsorbent material.
The regeneration may be performed in any suitable manner. As shown in
For example, during regeneration, the purge gas 180 flows into the scrubbing assembly 142 via an entry conduit 184 including a purge gas entry damper 188, when positioned in an open state. A purge gas fan 190 may be provided for urging flow of the purge gas 180 within the scrubbing assembly 142. The purge gas fan 190 may be placed in any suitable location, such as in an exhaust conduit 192. Alternatively, the purge gas fan 190 may be omitted.
In accordance with some embodiments, the regeneration may be performed by flowing a purging airflow of the purge gas 180 over the adsorbent material.
In accordance with some embodiments, the purge gas 180 comprises outdoor air.
The outdoor air may be introduced into the scrubbing assembly 142 from any source of outdoor air. For example, the source of outdoor air may be ambient air flowing directly from the ambient, that is—out of the enclosed environment 102, into the scrubbing assembly 142. Alternatively, the outdoor air may flow from the ambient into the scrubbing assembly 142 via intake ducts 134.
As shown in
The exhaust conduit 192 may include a purge gas exit damper 194.
It is noted that the entry conduit 184 may be replaced by an aperture allowing the purge gas 180 to flow into the scrubbing assembly 142. The exhaust conduit 192 may be replaced by any exhaust allowing the purge gas 180 to flow out of the scrubbing assembly 142.
As seen in
The purge gas 180 may be heated prior to regeneration of the scrubbing assembly 142 by any suitable heater 196 (and/or heat exchanger). The heater 196 may comprise, for example, a coil or radiator heated by a warm fluid. In some embodiments, the warm fluid may be heated within a heating plant or boiler (not shown) provided specifically for heating the purge gas 180. In some embodiments, the warm fluid may be heated by an existing supply of warm fluid provided in a standard enclosed environment 102, such as a building's hot water supply. In some embodiments, the heater 196 may comprise, for example, an electric heating coil or solar heat, such as solar heat provided to the enclosed environment 102 or an appropriately sized furnace burning gas or other fuel (not shown) for heating the purge gas 180.
In some embodiments, the heater 196 may comprise a heat pump. Use of a heat pump may be advantageous, since to operate the heat pump less power is required than other heating means, such as electric heating, for example. In some embodiments, an evaporator side or a cold side of the heat pump may be used to remove heat from the return air 114 flowing into the enclosed environment 102.
As shown in
In accordance with some embodiments, the purge gas 180 may have a temperature and/or flow rate equal to or greater than a corresponding threshold value. This threshold value may be determined as the threshold value allowing sufficient regeneration of the adsorbent material.
In accordance with some embodiments, the purge gas 180 may be heated within a range of approximately 20-120° C. In accordance with some embodiments, the purge gas 180 may be heated to a temperature of less than 80° C. In accordance with some embodiments, the purge gas 180 may be heated to a temperature of less than 60° C. In accordance with some embodiments, the purge gas 180 may enter the scrubbing assembly 142 at the ambient temperature.
Regeneration of the adsorbent material removes the contaminants from the adsorbent material. Therefore, the scrubbing assembly 142 can be repeatedly used for removing contaminants from the enclosed environment 102 without requiring replacement of the adsorbent material. Accordingly, the scrubbing assembly 142 according to some embodiments, has a significantly long operating life.
As seen in
The scrubbing system 140 may be placed at any suitable location within the HVAC system 100.
The scrubbing system 140 may receive air from any suitable location within the HVAC system 100. In the embodiment shown in
In accordance with some embodiments, a controller system 220 is provided for controlling the operation of an inlet for outdoor air 130 (e.g. outdoor air inlet 250 further described) and the scrubbing system 140 for selecting a preferred mode for maintaining good air quality within the enclosed environment 102 with the lowest energy expenditure of the HVAC system 100.
In accordance with some embodiments, the controller system 220 may further control the operation of the air circulation system 108 in addition to the scrubbing system 140 and the outdoor air inlet. In some embodiments, the outdoor air inlet may be part of the air circulation system 108 and in some embodiments the outdoor air inlet may be installed and controlled separately from the air circulation system 108.
The controller system 220 may receive data (via, for example, one or more sensors) from the air circulation system 108 and the scrubbing system 140 and accordingly select a preferred mode. The data may comprise a plurality of parameters such as, inter alia, an occupancy level of the enclosed environment 102, a time of day or date, level of a contaminant in the indoor air within the enclosed environment 102, a level of a contaminant in the adsorbent material within the scrubbing assembly 142, an indoor air enthalpy, temperature and/or an indoor air humidity level and an outdoor air enthalpy, temperature and/or an outdoor air humidity level.
These parameters may be determined in any suitable method. For example, a temperature and/or humidity sensor 230 may be placed within the enclosed environment 102 for measuring the temperature and/or humidity within the indoor air of the enclosed environment 102 and may be placed out of the enclosed environment 102 for measuring the temperature and/or humidity within the outdoor air in the ambient. Additionally, a temperature and/or humidity sensor 230 may be provided to measure the temperature and/or humidity of heater 196. Other sensors for measuring the pressure, volume and/or energy may be provided for determining the abovementioned parameters.
The occupancy of the enclosed environment 102 may be determined by any suitable method, such as CO2 sensors, motion detectors, infrared detectors, cameras, entry and egress monitoring, or any other means.
Contaminant sensors, such as a CO2 sensor 236, a VOC sensor 238 and/or any other contaminant sensors may be placed within the indoor air of the enclosed environment 102 to measure the contaminant level therein. In some embodiments, the contaminant level may be equivalent to the amount or concentration of the contaminants in the indoor air.
The contaminant sensors may be placed at any suitable location, such as within the enclosed environment 102 and/or at the exit of the return air 114 from the enclosed environment 102, for example.
The enclosed environment may comprise a plurality of indoor spaces, such as indoor spaces 320 of
The contaminant sensor(s) may be placed within the scrubbing system 140 for measuring the level of contaminants in the adsorbent material within the scrubbing assembly 142. The contaminant sensor(s) may be placed at any suitable location within the scrubbing system 140, such as in proximity to the entry port 166 of at least one scrubbing assembly 142 and/or to the exit port 170 therefrom. The level of contaminants in the adsorbent material may be determined by comparing the level of contaminants measured in the air at the exit port 170 to the level of contaminants measured in the air at the entry port 166.
The scrubbing system 140, in some embodiments, may comprise a plurality of scrubbing assemblies 142 the contaminant sensors may be placed at an entry port and exit port of scrubbing system 140 or at the entry port and exit port of a least some of the scrubbing assemblies 142.
The controller system 220 may receive any other additional data for controlling the operation of the air circulation system 108 and the scrubbing system 140. For example, the HVAC system settings, such as the time, such as the time of day, date and operation schedule may be provided. Additionally, signals from pressure gauges, air flow meters of the return air 114 circulating in the circulation system and/or of the outdoor air 130 may be received by the controller system 220. Moreover, data may be received from components within the HVAC system 100, such as the temperature, humidity, pressure or flow rate, and energy expenditure of an HVAC refrigerant, chiller, compressor, air handling unit 110 and/or heat pump, for example.
According to the data received by the controller system 220, the controller system 220 may send control signals to the air circulation system 108 and the scrubbing system 140 for activation of components thereof. These components may be, for example, one or more of the fans, such as scrubber fan 160, purge gas fan 190, supply air fan 214, exhaust air fan 128 and outdoor air fan 138; one or more of the dampers, such as respective entry damper and exit damper 168 and 172 of the scrubbing assembly 142, respective purge gas entry damper and exit damper 188 and 194, supply air damper 212, exhaust air damper 127 and outdoor air damper 136; and heater 196.
The controller system 220 may include control and logic functionality including mechanical and circuitry components, actuators, switches and programmed algorithms and any other elements for controlling the air circulation system 108 and the scrubbing system 140. The controller system 220 may activate the air circulation system 108 and the scrubbing system 140 to operate in accordance with a selected operative mode. Additionally, the controller system 220 may control the duration of each selected operative mode and amounts of return air 114, indoor air and/or outdoor air 130, introduced within the HVAC system 100. The controller system 220 may be programmed to receive data continuously, or at predetermined time intervals and accordingly activate the air circulation system 108 and the scrubbing system 140.
In accordance with some embodiments, the controller system 220 may collect and/or store the data, such as the data received by one or more of the sensors described above, data pertaining to the selected operative mode, the HVAC system settings and schedule (e.g. the times the HVAC system 100 is operated), data pertaining to energy consumption of the HVAC system 100 and any other data related to the HVAC system 100. Additionally, an electronic data communications system may transmit information pertaining to the sensor readings and/or actuators to a data storage system.
This data may be stored in the data storage system using any suitable storage functionality (not shown) in the vicinity of the controller system 220 or remotely therefrom via a data network. The data may be transmitted by transmission functionality in any suitable manner, such as over a wireless or wireline network, for example. Examples of a wireless or wireline network may be standard public wireline networks, public wireless networks, such as cellular phone networks, WiFi, Bluetooth, satellite, the internet, or any specialized or proprietary communications networks.
The collection of such data may be valuable for analyzing patterns, trends and influences related to energy consumption or air quality and to use this analysis to achieve better energy utilization practices, evaluate new technologies or products, and support commercial, social or scientific goals, for example.
The controller system 220 may comprise a digital controller or any other suitable form for controlling the HVAC system 100.
In
In
Therefore, in some embodiments, energy expenditure is required for scrubbing a portion of the return air 114 without requiring the energy expenditure for conditioning makeup, outdoor air 130.
The contaminant level of the indoor air may be determined in any suitable manner, such as by the CO2 sensors 236, VOC sensors 238, and/or any other contaminant sensors. The contaminant predetermined level may be defined as a contaminant threshold constituting good air quality (e.g., according to scientific or government bodies), and which may be known in the art or calculated in any suitable manner.
The enthalpy and/or the humidity and/or the temperature level the outdoor air 130 and indoor air may be determined in any suitable manner, such as by the temperature and/or humidity sensor 230, sensors measuring pressure, volume and/or energy, for example.
The energy cost for conditioning the outdoor air 130 and the return air 114 may be determined in any suitable manner, such as by receiving data pertaining to the energy expenditure of the HVAC system 100 for conditioning the outdoor air 130 and the return air 114 and the cost thereof. Additionally, data pertaining to the calculated energy expenditure of the HVAC system 100 may be considered by the controller system 220, such as the temperature, humidity, and air flow rate.
The volume of the portion of return air 114 (or in some embodiments, the air flowing from any suitable location in the HVAC system 100) flowing into the scrubbing assembly 142 may be controlled by the scrubber fan 160 and/or entry damper 168, or by any other suitable means. In a non-limiting example, a volume of approximately 1%-50% of the return air 114 may enter the scrubbing assembly 142. In a non-limiting example, a volume of approximately 1%-25% of the return air 114 may enter the scrubbing system 140. In a non-limiting example, a volume of approximately 1%-10% of the return air 114 may enter the scrubbing system 140. The remaining return air 114, which bypassed the scrubbing system 140, may flow directly to the air handling unit 110, via ducts 169, or to any other suitable location within the HVAC system 100.
During the scrubbing mode, the entry damper 168 and exit damper 172 may be open. The purge gas entry damper 188 and purge gas exit damper 194 may be closed.
In some embodiments, the outdoor air damper 136 is closed and the supply air 112 comprises the return air 114 with at least a portion of scrubbed air 200. In some embodiments, the outdoor air damper 136 may be opened to allow flow of a minimal volume of outdoor air 130 into the HVAC system 100 and may be referred to as the minimum level volume. The minimum level volume may be a volume required to maintain a certain air pressure in the enclosed environment 102 for making up for losses and exhausted air in the enclosed environment 102.
In some embodiments, the outdoor air damper 136 is open and a portion of outdoor air 130 above the minimum level volume is introduced into the HVAC system 100. The controller system 220 may be configured to select an energy efficient combination ratio of scrubbed air 200, unscrubbed return air 114 and/or outdoor air 130 (in some embodiments, the most efficient) to be introduced as supply air 112 into the enclosed environment 102, while maintaining good air quality therein.
In
In some embodiments, the scrubber regeneration mode may be operated such that the adsorbent material of the scrubbing assembly 142 is saturated with the contaminant or is at or above a predetermined threshold. Saturation of the adsorbent material may be determined in any suitable manner, such as where the contaminant level measured in the air at the exit port 170 of the scrubbing assembly 142 is above the contaminant predetermined level. In some embodiments, saturation of the adsorbent material may be determined by monitoring a scrubbing efficiency. The scrubbing efficiency may be defined as one minus the ratio of the concentration of contaminants. The ratio of contaminants may be defined as the ratio of concentration of contaminants within the scrubbed air exiting the adsorbent material to the concentration of contaminants within the air entering the adsorbent material. In some embodiments, upon the scrubbing efficiency dropping below a desired level, scrubber regeneration may be required.
In some embodiments, the scrubber regeneration mode may be operated at predetermined time intervals or at predetermined times during the day or year. In some embodiments, the scrubber regeneration mode may be operated when the scrubbing mode is inactive, such as when the occupancy within the enclosed environment 102 is low.
In some embodiments the scrubber regeneration mode may be operated for a predetermined period of time, such as in a non-limiting example, for about 1 minute to about 30 minutes. In some embodiments the predetermined period of time may be determined according to the time and/or date the HVAC system is operating. For example, during nighttime wherein occupancy is low, the scrubber regeneration mode may be relatively shorter that during the day, since the contaminant level in the adsorbent material is lower. In some embodiments the predetermined period of time may be determined according to the outdoor air temperature and/or the outdoor air humidity level. For example, upon the purge gas being outdoor air, during the summer the scrubber regeneration mode may be operated for a shorter period of time than during the winter. This may be since less time is required to heat the outdoor air during the summer.
In some embodiments, the scrubber regeneration mode may be operated until the level of the contaminants in the adsorbent material is at or below a predetermined threshold, i.e. the adsorbent material is sufficiently regenerated. Similarly, in some embodiments, the scrubber regeneration mode may be operated until the level of the contaminants in air exiting the adsorbent material is at or below a predetermined threshold.
In some embodiments, the scrubber regeneration mode may be operated until the level of the contaminant in the adsorbent material being at or below a predetermined threshold and may continue to operate thereafter for an additional predetermined period of time. In some embodiments, the scrubber regeneration mode may be operated until the level of the contaminant in air exiting the adsorbent material is at or below a predetermined threshold and may continue to operate thereafter for an additional predetermined period of time. In some embodiments, the scrubber regeneration mode may be operated until the level of the contaminant in the indoor air being above a predetermined threshold and may continue to operate thereafter for an additional predetermined period of time.
In some embodiments, the scrubber regeneration mode may be operated for a period of time determined by the controller system 220 to regenerate a portion of the adsorbent material. In a non-limiting example, approximately 35% of the contaminants in the adsorbent material may be removed. In some embodiments, the scrubber regeneration mode may be operated for a period of time determined by the controller system 220 to regenerate a majority the adsorbent material, such as over 50% (for example).
In some embodiments, the scrubber regeneration mode may be operated for a period of time upon the outdoor temperature being between about 30 degrees C. and about 50 degrees C.
In some embodiments, the scrubber regeneration mode may be operated for a relatively long duration, such as when the occupancy within the enclosed environment is low, such as being at or below a predetermined number of people, so as to remove a relatively large portion of contaminants from the adsorbent material. Alternatively, the scrubber regeneration mode may be operated for a relatively short duration, such as when the occupancy within the enclosed environment is high. Therefore the adsorbent material may be minimally regenerated to allow activation of the scrubbing mode.
In some embodiments, the scrubber regeneration mode may include a plurality of different phases, including, for example, a single phase which may be selected to operate at a temperature of the purge gas, a duration of the purging airflow over the adsorbent material, and/or an air flow rate of the purging airflow over the adsorbent material. In a non-limiting example, the scrubber regeneration mode may operate according the following sequence of phases: initially at a warm-up phase, outdoor air may flow over the adsorbent material at a face velocity of 5 centimeters/second for 10 minutes, while warming the outdoor air from the ambient temperature to 50° C. At an intermediate phase, the outdoor air may flow at a face velocity of 10 centimeters/second for 10 minutes remaining at 50° C., while regenerating the adsorbent material. At the last cool-down phase, the outdoor air may be unheated, namely entering at the ambient temperature, at the face velocity of 15 centimeters/second for 10 minutes. The controller system may determine the phases according to any one of the abovementioned parameters. Additionally, the controller system may operate according to preset phase sequences.
In some embodiments, the scrubber regeneration mode may be operated for a period of time until the level of the at least one contaminant in the indoor air being above a predetermined value, namely, where the contaminant level in the indoor air is high and operation of the scrubbing mode is immediately required.
In some embodiments, the controller system 220 may elect not to activate the scrubber regeneration mode, even upon the adsorbent material being saturated, so as to avoid unnecessary regeneration. This may occur, for example, when the HVAC system 100 is approaching a circulation off or standby mode, or the circulation system 108 is inactive.
The controller system 220 may activate the heater 196 for heating the purge gas 180 prior to regeneration of the adsorbent material and may thus control the temperature of the purge gas 180 along with the purge gas air flow rate and duration or any other parameter required for selecting the most efficient operation of the scrubber regeneration mode.
In some embodiments, during the scrubber regeneration mode, the entry damper 168 and exit damper 172 may be closed. As such, the purge gas entry damper 188 and purge gas exit damper 194 may be opened. In some embodiments, the outdoor air damper 136 may be closed as shown in
In some embodiments, the scrubbing system 140 may comprise a plurality of scrubbing assemblies. Accordingly, the controller system 220 may activate the scrubbing mode of a first scrubbing assembly while the scrubber regeneration mode is activated for a second scrubbing assembly. The controller system 220 may switch the modes such that after a predetermined duration the regeneration mode is activated for the first scrubbing assembly and the scrubbing mode is activated for the second scrubbing assembly. To that end, at least one scrubbing assembly 142 may be activated to operate in a scrubbing mode.
Following the scrubber regeneration mode, in some embodiments, the controller system 220 may activate a cool down mode for allowing the adsorbent material to cool down prior to activating the scrubbing mode.
In
The enthalpy and/or the humidity and/or the temperature level the outdoor air 130 and indoor air may be determined in any suitable manner, such as by the temperature and/or humidity sensor 230, sensors measuring pressure, volume and/or energy, for example.
The outdoor air 130 may be introduced into the HVAC system 100 in any suitable manner. In some embodiments, as seen in
The outdoor air 130 may be urged to flow in the HVAC system 100 in any suitable manner. As seen in
The volume of the portion of outdoor air 130 flowing into the HVAC system 100 may be controlled by the outdoor air damper 136 and the outdoor air fan 138, or by any other suitable means.
During the economizer mode the scrubbing system 140 may be inactive. Accordingly, during the economizer mode the outdoor air damper 136 may be open. The entry damper 168 and exit damper 172 of the scrubbing assembly 142 and the purge gas entry damper 188 and purge gas exit damper 194 may be closed.
In some embodiments, the return air 114 may be exhausted from the HVAC system 100, as exhaust air 124, via exhaust ducts 126 or via any other suitable exhaustion means. In some embodiments, the return air 114 may flow directly to the enclosed environment 102 via ducts 169 and the air handling unit 110 or may bypass the air handling unit 110. Additionally, the return air 114 may flow to another section of the HVAC system 100, such as ducts, a plenum or a manifold (not shown) in the vicinity of the enclosed environment 102. In some embodiments, a portion of the return air 114 may be exhausted and a portion of the return air 114 may flow to the enclosed environment 102 or other location in the HVAC system 100.
In
In some embodiments, the scrubbing bypass mode may also be activated during the scrubber regeneration mode. The scrubbing bypass mode may also be activated, when the level of the contaminant of air exiting the scrubbing system 140 is greater than the level of the contaminant of air entering the scrubbing system 140, which may indicate that the adsorbent material is saturated or malfunctioning of the scrubbing system. Upon the scrubbing system malfunctioning, the controller system 220 may provide an alert comprising at least one of: an alarm, an indicator, a notification, an electronic or telephonic communication.
As seen in
In some embodiments, the outdoor air damper 136 is closed and the supply air 112 comprises the unscrubbed return air 114, as shown in
In accordance with some embodiments, the scrubbing system 140, along with the controller system 220, may be added to an existing circulation system 108. In such embodiments, a pre-existing outdoor air inlet 250 may be utilized for introducing outdoor air, or an outdoor air inlet 250 may be installed. Thus, a single system for operating the HVAC system 100 may be easily installable in a pre-existing circulation system 108.
In accordance with some embodiments, the scrubbing system 140 and the controller system 220 may be installed along with a circulation system 108.
Another operative mode according to some embodiments, may be a circulation off or standby mode, where the circulation system 108 or the HVAC system 100 is inactive and air (indoor and/or outdoor) is not circulated. The circulation off or standby mode may be operated upon the occupancy within the enclosed environment 102 is relatively low. This may occur, for example, at nighttime or on weekends.
During the circulation off or standby mode, the entry damper 168 and exit damper 172 of the scrubber 142 may be closed. The purge gas entry damper 188 and purge gas exit damper 194 may be closed. In some embodiments, the outdoor air damper 136 is closed. In some embodiments, the outdoor air damper 136 may be partially opened to allow a minimal level volume of outdoor air 130 or any other predetermined amount of air into the HVAC system 102.
While different operative modes were described in reference to
The HVAC system 100 shown in
In accordance with some embodiments, the HVAC system is a distributed air circulation system. This distributed system generally conveys chilled (or heated) fluid to the plurality of indoor spaces, such as rooms, within the enclosed environment, where local air circulation units, such as fan-coil units circulate the indoor air. The fan-coil unit generally comprises a coil chilled (or heated) by the fluid. The coil is provided for adjusting the temperature or humidity of the circulated air and a fan or blower is provided for circulating the indoor air.
The chilled or heated fluid can originate from a centralized chilling or heating system shared by a plurality of fan-coil units, or from a single dedicated heat pump unit. As known in the art, the fluid can be supplied by a Variable Refrigerant Flow (VRF) system, a Fixed Refrigerant Flow system, or by a direct expansion (DX) system. In other distributed air circulation systems the fluid may be water.
The fan coil unit may be placed within a room or space, e.g., within a recess in the ceiling or walls of the room. The fan coil unit may be placed in a plenum adjacent to the room. The circulating air flows from the air circulation unit into the room substantially without reliance on ducts (i.e. a ductless supply) and back from the room or space towards the air. An exemplary distributed air circulation system is described in reference to
According to some embodiments, the enclosed environment 102 may comprise a plurality of indoor spaces 320, such as rooms, cubicles, zones in a building, compartments, railroad cars, caravans or trailers, for example. Adjacent to the indoor space 320 may be an air plenum 324, which may be located above the ceiling of the indoor space 320. As seen in
The air circulation system 308 can convey chilled and/or heated fluid to local air circulation units 326. Each indoor space 320 may be associated with a local air circulation unit 326, which circulates and cools or heats the indoor air of the indoor space 320.
In the embodiments, as shown in
The air circulation unit 326 may be placed at any suitable location. As seen in
The fan-coil unit 328 may comprise a housing 330 including a fan 334 and coils 336. The coils 336 may be cooled or heated by the fluid. The coils 336 may comprise a cooling coil and/or a heating coil and/or any other suitable cooling or heating means, such as radiators, electrical heaters, chillers, heat exchangers, nozzles or jets, for example.
At least a portion of the indoor air may exit the indoor space 320 as return air 114. In accordance with some embodiments, the return air 114 may enter the air plenum 324. The return air 114 can enter the air plenum 324 without flowing through a duct, though in some embodiments, a duct (not shown) may be provided.
In accordance with other embodiments, the indoor space 320 may be associated with an adjacent area above its ceiling instead of the air plenum 324. The return air 114 may flow within a duct (not shown) located in the area above the ceiling to the fan-coil unit 328.
The fan 334 may draw return air 114 to enter fan-coil unit 328, via an entry port 354, and flow in the vicinity of coils 336 for heating or cooling thereof. Return air 114 may flow through a particle filter 358 for removing dust and airborne particles therefrom.
Conditioned air, i.e., return air cooled or heated by the coils 336, may exit via an exit port 364. The conditioned air may enter the indoor space 320 as supply air 112 for circulation thereof. The supply air 112 may flow from the fan-coil unit 328 into the indoor space via a duct 368 or may ductlessly flow into the indoor space 320.
In some embodiments, a portion of the indoor air may be exhausted from the enclosed environment 102 as exhaust air 124 (
As shown in
The volume of the portion of outdoor air 130 flowing into the HVAC system 300 may be controlled by an outdoor air damper 346 and an outdoor air fan 348, or by any other suitable means. The outdoor air damper 346 and outdoor air fan 348 may be placed at any suitable location, such as along intake ducts 340.
As shown in
In some embodiments, scrubbing the return air 114 within the scrubbing system 140 allows reducing or eliminating the volume of fresh, outdoor air 130, which is required to provide for maintaining good air quality within the enclosed environment 102. Accordingly, the energy required to condition the outdoor air 130 is reduced or eliminated.
In accordance with some embodiments, the controller system 220 is provided for controlling the operation of the air circulation system 308 and the scrubbing system 140 for selecting a preferred mode for maintaining good air quality within the enclosed environment 102 with the lowest energy expenditure of the HVAC system 300.
In accordance with some embodiments, the temperature and/or humidity sensor 230 may be placed within the indoor space 320 for measuring the temperature and/or humidity within the indoor air of the enclosed environment 102 and may be placed out of the enclosed environment 102 for measuring the temperature and/or humidity within the outdoor air 130 in the ambient. Additionally, the temperature and/or humidity sensor 230 may be provided to measure the temperature and/or humidity of heater 196. Other sensors for measuring the pressure, volume and/or energy may be provided for determining the abovementioned parameters.
Contaminant sensors, such as the CO2 sensor 236, the VOC sensor 238 and/or any other contaminant sensors, may be placed within the indoor air of the enclosed environment 102 to measure the contaminant level therein. One or more contaminant sensors may be placed at any suitable location, such as within the indoor space 320.
Contaminant sensors may be placed within the scrubbing system 140 for measuring the level of contaminants in the adsorbent material within the scrubbing assembly 142. The contaminant sensors may be placed at any suitable location within the scrubbing system 140, such as in proximity to the entry port 166 of at least one scrubbing assembly 142 and/or to the exit port 170 therefrom. The level of contaminants in the adsorbent material may be determined by comparing the level of contaminants measured in the air at the exit port 170 to the level of contaminants measured in the air at the entry port 166.
In some embodiments, the scrubbing system 140 comprises a plurality of scrubbing assemblies 142 the contaminant sensors may be placed at an entry port and exit port of scrubbing system 140 or at the entry port and exit port of a least some of the scrubbing assemblies 142.
The controller system 220 may receive any other additional data for controlling the operation of the air circulation system 308 and the scrubbing system 140. For example, the HVAC system settings, such as the time, such as the time of day, date and operation schedule may be provided. Additionally, signals from pressure gauges, air flow meters of the return air 114 circulating in the circulation system and/or of the outdoor air 130 may be received by the controller system 220. Moreover, data may be received from components within the HVAC system 300, such as the temperature, humidity, pressure or flow rate, and energy expenditure of the HVAC refrigerant, the chilled or heated fluid, chiller, compressor, fan-coil unit 328 and/or heat pump, for example.
In
In
In
Following the scrubber regeneration mode, in some embodiments, the controller system 220 may activate a cool down mode for allowing the adsorbent material to cool down prior to activating the scrubbing mode.
In
The outdoor air 130 may be introduced into the HVAC system 300 in any suitable manner. In some embodiments, as seen in
In
In accordance with some embodiments, the scrubbing system 140, along with the controller system 220, may be added to an existing circulation system 308. In such embodiments, the pre-existing outdoor air inlet 342 may be utilized for introducing outdoor air, or an outdoor air inlet 342 may be installed. Thus, a single system for operating the HVAC system 300 may be easily installable in a pre-existing circulation system 308.
In accordance with some embodiments, the scrubbing system 140 and the controller system 220 may be installed along with a circulation system 308.
Another operative mode, according to some embodiments, may be a circulation off or standby mode, where the circulation system 308 or the HVAC system 300 is inactive and air (indoor and/or outdoor) is not circulated therein. The circulation off or standby mode may be operated as described hereinabove in reference to HVAC system 100, mutatis mutandis.
Different operative modes according to various embodiments were described in reference to
In accordance with some embodiments, the scrubbing system 140 may be provided independently in respect to the circulation system 108. The scrubber 142 may be located in any suitable location, such as within the enclosed environment 102. The scrubber 124 may be mounted at a window (not shown), on the floor, on the wall or at the ceiling of the enclosed environment 102, for example.
An exemplary independent scrubbing system 140 in association with a central HVAC system is described in reference to
In accordance with some embodiments, the controller system 220 controls the operation of the air circulation system 108 and the scrubbing system 140 for selecting a preferred mode for maintaining good air quality within the enclosed environment 102 with the lowest energy expenditure of the HVAC system 380.
In accordance with some embodiments, the temperature and/or humidity sensor 230 may be placed within the enclosed environment 102 for measuring the temperature and/or humidity therewithin and may be placed out of the enclosed environment 102 for measuring the temperature and/or humidity within the outdoor air 130 in the ambient. Additionally, the temperature and/or humidity sensor 230 may be provided to measure the temperature and/or humidity of heater 196 (
One or more contaminant sensors, such as the CO2 sensor 236, the VOC sensor 238 and/or any other contaminant sensors, may be placed within the enclosed environment 102 to measure the contaminant level therein.
Contaminant sensors may be placed within the scrubbing system 140 for measuring the level of contaminants in the adsorbent material within the scrubbing assembly 142. The contaminant sensors may be placed at any suitable location within the scrubbing system 140, such as in proximity to the entry port 166 of at least one scrubbing assembly 142 and/or to the exit port 170 therefrom (such as shown in
In some embodiments, the scrubbing system 140 may comprise a plurality of scrubbing assemblies 142 the contaminant sensors may be placed at an entry port and exit port of scrubbing system 140 or at the entry port and exit port of a least some of the scrubbing assemblies 142.
In some embodiments, the controller system 220 may receive other additional data for controlling the operation of the air circulation system 108 and the scrubbing system 140. For example, the HVAC system settings, such as the time, such as the time of day, date and operation schedule, may be provided. Additionally, signals from pressure gauges, air flow meters of the return air 114 circulating in the circulation system and/or of the outdoor air 130 may be received by the controller system 220. Moreover, data may be received from components within the HVAC system 380, such as the temperature, humidity, pressure or flow rate, and energy expenditure of the HVAC refrigerant, the chilled or heated fluid, chiller, compressor, air handling unit 110 and/or heat pump, for example.
In
In
Following the scrubber regeneration mode, in some embodiments, the controller system 220 may activate a cool down mode for allowing the adsorbent material to cool down prior to activating the scrubbing mode.
In
The outdoor air 130 may be introduced into the HVAC system 380 in any suitable manner. In some embodiments, as seen in
In
In accordance with some embodiments, the scrubbing system 140, along with the controller system 220, may be added to an existing circulation system 108. In such embodiments, the pre-existing outdoor air inlet 250 may be utilized for introducing outdoor air, or an outdoor air inlet 250 may be installed. Thus, a single system for operating the HVAC system 100 may be easily installable in a pre-existing circulation system 108.
In accordance with some embodiments, the scrubbing system 140 and the controller system 220 may be installed along with a circulation system 108.
Another mode, according to some embodiments, may be a circulation off or standby mode, where the circulation system 108 or the HVAC system 380 is inactive and air (indoor and/or outdoor) is not circulated. The circulation off or standby mode may be operated as described hereinabove in reference to HVAC system 380, mutatis mutandis.
Different operative modes according to some embodiments were described in reference to
It is noted in reference to
At step 406, the controller system 220 may check the occupancy of the enclosed environment 102. Wherein the occupancy level is at or below a predetermined number of people the scrubbing bypass mode shown in step 408 may be activated.
If the occupancy level is high, the controller system 220 may further asses, in step 410, if the return air conditions are closer to the supply air conditions than the outdoor air conditions. If the conditions of the outdoor air 130 are relatively similar to the desired conditions of the supply air 112, the economizer mode may be activated, as shown in step 412.
Upon the conditions of the return air 114 are relatively similar to the desired conditions of the supply air 112, the controller system 220 may check the indoor air quality, as shown in step 416.
When the indoor air quality is within a desired air quality range, namely the air quality is good, the scrubbing bypass mode may be activated, as shown in step 418. If the indoor air quality is out of the desired air quality range, the controller system 220 may compare the cost of conditioning the outdoor air 130 with the cost of conditioning the return air 114 in step 420. If the cost for conditioning the outdoor air 130 is less than the return air 114, then the controller system 220 may activate the economizer mode in step 422. If the cost for conditioning the outdoor air 130 is greater than the cost for conditioning the return air 114, the controller system 220 may activate the scrubbing mode in step 424.
The controller system 220 may periodically or continually check the indoor air quality in step 426 to control the duration of the scrubbing mode. If the indoor air quality is within the desired air quality range the controller system 220 may activate the scrubbing bypass mode and further proceed from step 418. If the indoor air quality is out of the desired air quality range, the controller system 220 may check the saturation level of the adsorbent material of the scrubber 142, as seen in step 430. The saturation level may be determined by checking the level of a contaminant in the adsorbent material.
A finding that the contaminant level in the adsorbent material is above the contaminant predetermined threshold may indicate that the adsorbent material is saturated and the scrubber regeneration mode may be operated at step 432. Accordingly, the scrubber regeneration mode may be operated for a period of time in accordance with various embodiments, as described in reference to
Where a contaminant level in the adsorbent material is found to be below the contaminant predetermined threshold while the indoor air quality is out of the desired air quality range (step 426), this may indicate that the scrubbing system 140 has malfunctioned and a service call is required, as seen in step 434, or any other suitable action for rectifying the malfunctioning of scrubbing system 140. During the scrubbing system malfunction, the scrubbing bypass mode may be activated and a determined amount of outdoor air 130 may be introduced into the enclosed environment 102.
Example embodiments of the methods and components of the current subject matter have been described herein. As noted elsewhere, these example embodiments have been described for illustrative purposes only, and are not limiting. To that end, other embodiments are possible and are covered by the current disclosed subject matter. Such embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Moreover, a feature(s) from one embodiment(s) may be used in combination or in place of a feature(s) of another embodiment(s). Thus, the breadth and scope of the current subject matter should not be limited by any of the above-described exemplary embodiments. To that end, the following claims, and their equivalents, include a scope covering at least some of the disclosed embodiments.
This application is a continuation of and claims priority to and the benefit of U.S. patent application Ser. No. 13/738,737, filed Jan. 10, 2013, entitled “Methods And Systems For Managing Air Quality And Energy Use In Air-Conditioning Systems.” which in turn claims priority to: U.S. Provisional Patent Application No. 61/585,201, filed Jan. 10, 2012 and entitled “Methods and Systems for Control of Air-Conditioning Systems”; and U.S. Provisional Patent Application No. 61/650,204, filed May 22, 2012 and entitled “Air Management Systems with Integrated Ventilation and Scrubbing Functionality”. The disclosures of the above applications are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1522480 | Allen | Jan 1925 | A |
1836301 | Bechtold | Dec 1931 | A |
3107641 | Haynes | Oct 1963 | A |
3511595 | Fuchs | May 1970 | A |
3619130 | Ventriglio et al. | Nov 1971 | A |
3702049 | Morris, Jr. | Nov 1972 | A |
3751848 | Ahlstrand | Aug 1973 | A |
3808773 | Reyhing et al. | May 1974 | A |
3885928 | Wu | May 1975 | A |
4182743 | Rainer et al. | Jan 1980 | A |
4228197 | Means | Oct 1980 | A |
4249915 | Sircar et al. | Feb 1981 | A |
4292059 | Kovach | Sep 1981 | A |
4322394 | Mezey et al. | Mar 1982 | A |
4325921 | Aiken et al. | Apr 1982 | A |
4433981 | Slaugh et al. | Feb 1984 | A |
4451435 | Holter et al. | May 1984 | A |
4530817 | Hölter et al. | Jul 1985 | A |
4551304 | Holter et al. | Nov 1985 | A |
4559066 | Hunter et al. | Dec 1985 | A |
4711645 | Kumar | Dec 1987 | A |
4810266 | Zinnen et al. | Mar 1989 | A |
4892719 | Gesser | Jan 1990 | A |
4917862 | Kraw et al. | Apr 1990 | A |
4987952 | Beal et al. | Jan 1991 | A |
5046319 | Jones | Sep 1991 | A |
5087597 | Leal et al. | Feb 1992 | A |
5137548 | Grenier et al. | Aug 1992 | A |
5186903 | Cornwell | Feb 1993 | A |
5221520 | Cornwell | Jun 1993 | A |
5231063 | Fukumoto et al. | Jul 1993 | A |
5281254 | Birbara et al. | Jan 1994 | A |
5290345 | Osendorf et al. | Mar 1994 | A |
5292280 | Janu et al. | Mar 1994 | A |
5322473 | Hofstra et al. | Jun 1994 | A |
5352274 | Blakley | Oct 1994 | A |
5376614 | Birbara et al. | Dec 1994 | A |
5389120 | Sewell et al. | Feb 1995 | A |
5464369 | Federspiel | Nov 1995 | A |
5492683 | Birbara et al. | Feb 1996 | A |
5584916 | Yamashita et al. | Dec 1996 | A |
5675979 | Shah | Oct 1997 | A |
5707005 | Kettler et al. | Jan 1998 | A |
5827355 | Wilson | Oct 1998 | A |
5869323 | Horn | Feb 1999 | A |
5876488 | Birbara et al. | Mar 1999 | A |
5948355 | Fujishima et al. | Sep 1999 | A |
5964927 | Graham et al. | Oct 1999 | A |
5984198 | Bennett et al. | Nov 1999 | A |
6027550 | Vickery | Feb 2000 | A |
6102793 | Hansen | Aug 2000 | A |
6113674 | Graham et al. | Sep 2000 | A |
6123617 | Johnson | Sep 2000 | A |
6187596 | Dallas et al. | Feb 2001 | B1 |
6280691 | Homeyer et al. | Aug 2001 | B1 |
6364938 | Birbara et al. | Apr 2002 | B1 |
6432367 | Munk | Aug 2002 | B1 |
6533847 | Seguin et al. | Mar 2003 | B2 |
6547854 | Gray et al. | Apr 2003 | B1 |
6605132 | Fielding | Aug 2003 | B2 |
6623550 | Shah et al. | Sep 2003 | B2 |
6711470 | Hartenstein et al. | Mar 2004 | B1 |
6726558 | Meirav | Apr 2004 | B1 |
6773477 | Lindsay | Aug 2004 | B2 |
6796896 | Laiti | Sep 2004 | B2 |
6797246 | Hopkins | Sep 2004 | B2 |
6866701 | Meirav | Mar 2005 | B2 |
6908497 | Sirwardane | Jun 2005 | B1 |
6916239 | Siddaramanna et al. | Jul 2005 | B2 |
6916360 | Seguin et al. | Jul 2005 | B2 |
6930193 | Yaghi et al. | Aug 2005 | B2 |
6974496 | Wegeng et al. | Dec 2005 | B2 |
7288136 | Gray et al. | Oct 2007 | B1 |
7407533 | Steins | Aug 2008 | B2 |
7407633 | Potember et al. | Aug 2008 | B2 |
7449053 | Hallam | Nov 2008 | B2 |
7472554 | Vosburgh | Jan 2009 | B2 |
7645323 | Massenbauer-Strafe et al. | Jan 2010 | B2 |
7662746 | Yaghi et al. | Feb 2010 | B2 |
7666077 | Thelen | Feb 2010 | B1 |
7802443 | Wetzel | Sep 2010 | B2 |
7891573 | Finkam et al. | Feb 2011 | B2 |
8157892 | Meirav | Apr 2012 | B2 |
8317890 | Raether et al. | Nov 2012 | B2 |
8491710 | Meirav | Jul 2013 | B2 |
9328936 | Meirav | May 2016 | B2 |
20010021363 | Poles et al. | Sep 2001 | A1 |
20020056373 | Fielding | May 2002 | A1 |
20020078828 | Kishkovich et al. | Jun 2002 | A1 |
20020083833 | Nalette et al. | Jul 2002 | A1 |
20020147109 | Branover et al. | Oct 2002 | A1 |
20020183201 | Barnwell et al. | Dec 2002 | A1 |
20020193064 | Michalakos et al. | Dec 2002 | A1 |
20030097086 | Gura | May 2003 | A1 |
20030188745 | Deas | Oct 2003 | A1 |
20040005252 | Siess | Jan 2004 | A1 |
20040069144 | Wegeng et al. | Apr 2004 | A1 |
20040118287 | Jaffe et al. | Jun 2004 | A1 |
20050147530 | Kang | Jul 2005 | A1 |
20050191219 | Uslenghi et al. | Sep 2005 | A1 |
20050262869 | Tongu et al. | Dec 2005 | A1 |
20050284291 | Alizadeh-Khiavi et al. | Dec 2005 | A1 |
20060032241 | Gontcharov et al. | Feb 2006 | A1 |
20060054023 | Raetz et al. | Mar 2006 | A1 |
20060079172 | Fleming et al. | Apr 2006 | A1 |
20060148642 | Ryu et al. | Jul 2006 | A1 |
20060249019 | Roychoudhury et al. | Nov 2006 | A1 |
20080119356 | Ryu et al. | Mar 2008 | A1 |
20080078289 | Sergi et al. | Apr 2008 | A1 |
20080127821 | Noack et al. | Jun 2008 | A1 |
20080135060 | Kuo et al. | Jun 2008 | A1 |
20080182506 | Jackson et al. | Jul 2008 | A1 |
20080210768 | You | Sep 2008 | A1 |
20080293976 | Olah et al. | Nov 2008 | A1 |
20090000621 | Haggblom et al. | Jan 2009 | A1 |
20090220388 | Monzyk et al. | Mar 2009 | A1 |
20090120288 | Lackner et al. | May 2009 | A1 |
20090260372 | Skinner et al. | Oct 2009 | A1 |
20100076605 | Harrod et al. | Mar 2010 | A1 |
20100154636 | Liu et al. | Jun 2010 | A1 |
20100254868 | Obee et al. | Oct 2010 | A1 |
20100262298 | Johnson et al. | Oct 2010 | A1 |
20100278711 | Find | Nov 2010 | A1 |
20110064607 | Hedman | Mar 2011 | A1 |
20110079143 | Marotta et al. | Apr 2011 | A1 |
20110085933 | Mazyck et al. | Apr 2011 | A1 |
20110146494 | Desai et al. | Jun 2011 | A1 |
20110179948 | Choi et al. | Jul 2011 | A1 |
20110189075 | Wright et al. | Aug 2011 | A1 |
20110192172 | Delacruz | Aug 2011 | A1 |
20110198055 | Meirav et al. | Aug 2011 | A1 |
20110206572 | McKenna et al. | Aug 2011 | A1 |
20110250121 | Schmidt | Oct 2011 | A1 |
20110262327 | Dillon et al. | Oct 2011 | A1 |
20110265648 | Meirav | Nov 2011 | A1 |
20110269919 | Min et al. | Nov 2011 | A1 |
20110277490 | Meirav | Nov 2011 | A1 |
20110296872 | Eisenberger | Dec 2011 | A1 |
20120004092 | Raatschen et al. | Jan 2012 | A1 |
20120012005 | Burke | Jan 2012 | A1 |
20120052786 | Clawsey | Mar 2012 | A1 |
20120076711 | Gebald et al. | Mar 2012 | A1 |
20120129267 | Daly | May 2012 | A1 |
20120148858 | Wu | Jun 2012 | A1 |
20120168113 | Karamanos | Jul 2012 | A1 |
20120216676 | Addiego et al. | Aug 2012 | A1 |
20120222500 | Riess et al. | Sep 2012 | A1 |
20130052113 | Molins et al. | Feb 2013 | A1 |
Number | Date | Country |
---|---|---|
2640152 | Apr 2010 | CA |
2141873 | Sep 1993 | CN |
101072620 | Nov 2007 | CN |
101500704 | Aug 2009 | CN |
201363833 | Dec 2009 | CN |
0475493 | Mar 1992 | EP |
2387791 | Oct 2012 | ES |
56-158126 | Dec 1981 | JP |
59-225232 | Dec 1984 | JP |
60194243 | Oct 1985 | JP |
02-092373 | Mar 1990 | JP |
09085043 | Mar 1997 | JP |
2001-170435 | Jun 2001 | JP |
2001232127 | Aug 2001 | JP |
3207936 | Sep 2001 | JP |
2005-090941 | Apr 2005 | JP |
2006275487 | Oct 2006 | JP |
2009-202137 | Sep 2009 | JP |
2010-149086 | Jul 2010 | JP |
WO 8805693 | Aug 1988 | WO |
WO 2002008160 | Jan 2002 | WO |
WO 200212796 | Feb 2002 | WO |
WO 2007128584 | Nov 2007 | WO |
WO 2008155543 | Dec 2008 | WO |
WO 2009126607 | Oct 2009 | WO |
WO 2010091831 | Aug 2010 | WO |
WO 2010124388 | Nov 2010 | WO |
WO 2011114168 | Sep 2011 | WO |
WO 2011146478 | Nov 2011 | WO |
WO 2012134415 | Oct 2012 | WO |
WO 2012158911 | Nov 2012 | WO |
WO 2013074973 | May 2013 | WO |
WO 2013106573 | Jul 2013 | WO |
Entry |
---|
Gesser, H.D., “The Reduction of Indoor Formaldehyde Gas and that Emanating from Urea Formaldehyde Foam Insulation (UFFI)”, Environmental International, vol. 10, pp. 305-308, 1984. |
Jones, Christopher W., “CO2 Capture from Dilute Gases as a Component of Modern Global Carbon Management”, Annual Review of Chemical and Biomolecular Engineering, vol. 2, pp. 31-52, 2011. |
Ma, Chanjuan et al., “Removal of low-concentration formaldehyde in air by adsorption on activated carbon modified by hexamethylene diamine”, Carbon, vol. 49, pp. 2869-2877, 2011. |
Nuckols, M. L. et al., “Technical Manual: Design Guidelines For Carbon Dioxide Scrubbers”, Naval Coastal Systems Center, vol. 4110, pp. 1-83, Revision A, Jul. 1985. |
United States Environmental Protection Agency, “Carbon Adsorption for Control of VOC Emissions: Theory and Full Scale System Performance”, vol. 450, pp. 88-012, Jun. 1988. |
Serna-Guerrero, Rodrigo et al., “Triamine-grafted pore-expanded mesoporous silica for CO2 capture: Effect of moisture and adsorbent regeneration strategies”, Adsorption, vol. 16, pp. 567-575, 2010. |
International Search Report and Written Opinion, dated Sep. 5, 2012 for PCT/US2012/024333. |
International Search Report and Written Opinion, dated Jul. 25, 2013 for PCT/US2013/035933. |
International Search Report and Written Opinion, dated Dec. 20, 2013 for PCT/US2013/051077. |
International Search Report and Written Opinion, dated Jan. 3, 2014 for PCT/US2013/042239. |
International Search Report and Written Opinion, dated Mar. 22, 2013 for PCT/US2012/065600. |
International Search Report and Written Opinion, dated Mar. 29, 2013 for PCT/US2013/021033. |
International Search Report and Written Opinion, dated Mar. 17, 2014 for PCT/US2013/070383. |
International Search Report and Written Opinion, dated Jul. 10, 2014 for PCT/US2014/023488. |
International Search Report and Written Opinion, dated Aug. 15, 2014 for PCT/US2014/031009. |
International Search Report and Written Opinion, dated Nov. 24, 2014 for PCT/US2014/055863. |
International Search Report and Written Opinion, dated Nov. 24, 2014 for PCT/US2014/056097. |
Sidheswaran, Meera A. et al., “Energy efficient indoor VOC air cleaning with activated carbon filter (ACF) filters”, Building and Environment, vol. 47, Apr. 2011, pp. 357-367. |
Zorflex® ACC, 100% Activated Woven Carbon Cloth, Calgon Carbon Corporation, 2008, www.calgoncarbon.com, 2 pages. |
Zorflex® ACC, 100% Activated Woven Carbon Cloth, Calgon Carbon Corporation, 2011, www.calgoncarbon.com, 2 pages. |
Gray, M. L. et al., “Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide”, International Journal of Greenhouse Gas Control, vol. 2, Issue 1, Jan. 2008, pp. 3-8. |
International Search Report and Written Opinion, dated Sep. 27, 2011, for PCT/US2011/036801. |
International Preliminary Report on Patentability, dated Nov. 29, 2012, for PCT/US2011/036801. |
“EPA Ventilation and Air Quality in Offices, Fact Sheet” United States Environmental Protection Agency, Air and Radiation (6609J), Revised Jul. 1990. |
International Preliminary Report on Patentability, dated Aug. 22, 2013, for PCT/US2012/024333. |
International Preliminary Report on Patentability, dated May 30, 2014 for PCT/US2012/065600. |
International Preliminary Report on Patentability, dated Jul. 24, 2014 for PCT/US2013/021033. |
International Preliminary Report on Patentability, dated Oct. 23, 2014 for PCT/US2013/035933. |
International Preliminary Report on Patentability, dated Dec. 4, 2014 for PCT/US2013/042239. |
International Preliminary Report on Patentability, dated Jan. 29, 2015 for PCT/US2013/051077. |
International Search Report and Written Opinion, dated Dec. 19, 2013 for PCT/US2013/061422. |
International Preliminary Report on Patentability, dated Apr. 2, 2015 for PCT/US2013/061422. |
International Preliminary Report on Patentability, dated May 28, 2015 for PCT/US2013/070383. |
International Search Report and Written Opinion, dated Sep. 2, 2014, for PCT/US2014/035114. |
International Search Report and Written Opinion, dated May 15, 2015, for PCT/US2015/015690. |
Goeppert et al., “Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent,” J. Am. Chem. Soc., vol. 133, No. 50, Nov. 21, 2011 (Nov. 21, 2011) pp. 20164-20167 entire document. |
International Search Report and Written Opinion, dated May 5, 2014, for PCT/US2014/011078. |
International Search Report and Written Opinion, dated Jan. 28, 2013, for PCT/US2012/038343. |
International Preliminary Report on Patentability, dated Nov. 28, 2013, for PCT/US2012/038343. |
International Preliminary Report on Patentability, dated Jul. 23, 2015, for PCT/US2014/011078. |
Number | Date | Country | |
---|---|---|---|
20160282001 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
61650204 | May 2012 | US | |
61585201 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13738737 | Jan 2013 | US |
Child | 15085979 | US |