It is well known that broadband Internet connectivity is becoming substantially more pervasive among consumers as a result of competition among service providers utilizing various different technologies (e.g., cable, digital subscriber line (DSL), satellite). In many households personal computers (PCs) constitute the primary users of the bandwidth furnished by these broadband connections. In order to facilitate sharing of the Internet connection among PCs in a given household, a variety of “wired” and “wireless” home networking technologies have been utilized.
As a result of the impracticality of installing Ethernet cable throughout a residence, RF-based wireless networking technology is becoming increasingly commonplace among consumers. Although systems based upon the 802.11b, or “Wi-Fi”, wireless networking standard may currently be the most pervasive, versions of the 802.11 standard offering increased bandwidth have been introduced and yet higher-bandwidth approaches have been proposed.
The increased bandwidth available within the home has increased the usage of a number of different services, such as Internet-based delivery of digital audio, video and graphic content. However, since many of these services are facilitated by a desktop or notebook PC capable of communication over a broadband Internet connection, users are forced to remain proximate to their respective computers in order to utilize such services. Although other strategies to leverage the availability of broadband Internet connectivity within the home are currently being developed, many of these approaches involve creation of a relatively powerful, costly centralized communications “hub” (e.g., a PC with enhanced media capabilities, or a multi-purpose cable set-top box). Unfortunately, this typically requires either the purchase of an expensive hardware device or extended subscription plan, and constrains the extent to which Internet-enabled entertainment or other services are enjoyed outside of the immediate vicinity of the centralized hub device.
As broadband networking rapidly expands, the number of device based, as well as networked, applications and services continues to rapidly grow. Accordingly, there is a need in the art for new applications facilitated by these networks of distributed audiovisual devices.
The present application is directed generally to systems and methods for alarm tone selection, purchase, playback and transmission.
In one aspect, the present invention relates to a method of providing alarm tones on a device including providing a first user interface configured to facilitate selection of a first content item, receiving a user input at the first user interface, said user input provided to select the first content item, setting a playback duration associated with the first content item, associating the first content item with a predefined event, determining if the playback duration has been exceeded and rendering the first content item on the device in response to occurrence of the predefined event if the playback duration has not been exceeded.
In another aspect, the present invention relates to a device for selecting, rendering, purchasing and sending alarm tones, the device including a processor and a processor readable memory on which is stored a set of processor executable instructions disposed to provide a first user interface on the device configured to facilitate selection of a first content item, receive a user input at the first user interface to select the first content item, set a playback duration associated with the first content item, associate the first content item with a predefined event, determine if the playback duration has been exceeded and render the first content item on the device in response to occurrence of the predefined event if the playback duration has not been exceeded.
In another aspect the present invention relates to a method of sharing alarm tone content between a first device and a second device including receiving a first content item; said first content item received in response to a request to send the first content item to the second device from an affiliated user associated with the first device, setting a playback duration associated with the first content item, associating the first content item with a predefined event, determining if the playback duration has been exceeded and rendering the first content item on the device in response to occurrence of the predefined event if the playback duration has not been exceeded.
In another aspect the present invention relates to a device for sharing and rendering alarm tones including a processor and a processor readable memory containing a set of processor executable instructions disposed to receive a first content item; said first content item received at the device in response to a request to send the first content item to the device from an affiliated user associated with a second device, provide a first user interface on the device configured to facilitate selection of a first content item, receive a user input at the first user interface to select the first content item, set a playback duration associated with the first content item, associate the first content item with a predefined event, determine if the playback duration has been exceeded and render the first content item on the device in response to occurrence of the predefined event if the playback duration has not been exceeded.
In another aspect the present invention relates to a machine readable medium including processor executable instructions that when executed on a processor are disposed to provide a first user interface on the device configured to facilitate selection of a first content item, receive a user input at the first user interface to select the first content item, set a playback duration associated with the first content item, associate the first content item with a predefined event, determine if the playback duration has been exceeded and render the first content item on the device in response to occurrence of the predefined event if the playback duration has not been exceeded.
Additional aspects of the present invention are further described in the detailed description in conjunction with the drawings.
The invention is more fully appreciated in connection with the following detailed description taken in conjunction with the accompanying drawings, wherein:
a illustrates a portion of one embodiment of a process for registering a device based on device side stages, in accordance with aspects of the present invention.
b illustrates another portion of one embodiment of a process for registering a device based on registration server side stages, in accordance with aspects of the present invention.
a illustrates one embodiment of a process for selection, purchase, playback and transmission of alarm tones in accordance with aspects of the present invention.
b illustrates one embodiment of a process for receipt, purchase and playback of alarm tones in accordance with aspects of the present invention.
The present invention is generally directed to alarm related systems and functions that can be implemented on a system comprised of a set of personalized audiovisual devices in Internet-based communication with a service provider as is further described herein. It is anticipated that the personalized audiovisual devices will be commercially distributed under the trademark Chumby, and may also be referred to herein as “Chumby devices” and/or portable devices. Likewise, associated networking systems/servers may be referred to as the Chumby system/server, Chumby network, or the portable system/server and/or network, respectively. Associated Chumby services may also be provided through a Chumby service provider, also denoted herein as a service provider. In a typical system in accordance with the present invention, a Chumby device communicates with a service provider through an associated network. During communication with the service provider, each Chumby device periodically receives a set of application programs, also denoted herein as “widgets”, which are sequentially or aperiodically executed by the Chumby device after being received from the service provider or locally from a personal computer (e.g., via a USB connection). Since each Chumby device is typically Internet-enabled, each may also be remotely configured and otherwise personalized via the Chumby service provider through a Web browser executed by a remote terminal (e.g., a PC or wireless handset). Such personalization may include, for example, specifying the set of widgets provided to a given Chumby device as well as their sequence and priority of execution.
As is described hereinafter, it is a feature of embodiments of the invention that a user configuring a Chumby device via an interface provided by the Chumby service provider may “drag and drop” icons representative of various widgets onto a rectangular or other portion of the interface representative of the screen of the Chumby device being configured. In this way the “layout” of the screen of the Chumby device may be remotely configured by the owner of the device. Although each Chumby device will preferably be capable of being configured in this manner, in certain embodiments each may also come “loaded” with a default set of widgets (e.g., an “alarm clock” widget) disposed to be executed by the Chumby device upon its registration with the Chumby service provider. Once a Chumby device has been configured (i.e., with either a “default” or user-specified configuration), it will generally execute the widgets defined by the configuration without user intervention.
The configuration of a Chumby device may also specify the events or conditions under which the sequence of execution of widgets is to be altered or interrupted, and allows certain widgets to be accorded the highest available priority with respect to execution. For alarm related functionality, such as, for example, may be provided by an “alarm clock” widget could be granted such priority in order to ensure that its alarm function would not be prevented from being actuated at the scheduled time due to contemporaneous execution of another widget. In one embodiment the Web interface provided by the Chumby service provider is in the form of a “timeline” enabling the sequence of execution of the widgets associated with a given Chumby device to be controlled in an intuitive manner. In an exemplary implementation the timeline defines the order in which the widgets are to be played in a constantly repeating sequence; that is, the timeline is representative of the complete set of widgets played by a given Chumby device as well as their relative order of execution. However, certain widgets (e.g., the “alarm clock” widget) can be specified to be actuated at a given time by appropriately setting the applicable configuration element of such widgets.
Although in exemplary embodiments it is not contemplated that more than a single “content-related” widget be operative at any given time, a system configuration widget may be utilized to run concurrently with each such content-related widget in order to, for example, control the relative priority of execution of such content-related widgets and system settings such as loudness, brightness, navigation, and the like.
In one embodiment Chumby devices are each capable of wireless communication in accordance with an accepted wireless networking standard, such as the 802.11b or 802.11g standard. Accordingly, in homes or other environments containing one or more wireless access points, multiple Chumby devices may be distributed throughout the coverage area of the access points.
Among the features of embodiments of the invention is the capability of the interface presented by each Chumby device to change in accordance with the nature of the widget currently being executed by the device. For example, a “clock radio” widget could be employed to produce audio and visual imagery consistent with a conventional alarm clock at an appointed time in the morning. In exemplary embodiments the clock radio widget would allow for the selection of a standard “wake up” chime or choice of several different audio programs. Later in the day the device interface could be devoted to a rotating selection of several standard information screens such as news headlines, local weather, sports scores, stock market updates, horoscope and the like.
In accordance with another aspect of the invention, users of Chumby devices may optionally participate in a “Chumby Network” along with other users by logging on to a Web site (e.g., www.chumby.com) hosted by the Chumby service provider. At this site (also referred to hereinafter as the “Chumby site”) a user will be able to register with the Chumby Network and access services enabling the basic capabilities of the user's Chumby device to be enhanced and refined. Such enhancements may comprise, for example, the opportunity to send/receive widgets and other content to/from other Chumby users, for improved personalization of the device's generic information features, more detailed alarm-setting capabilities, and better selection and configuration of audio capabilities.
Registration with the Chumby Network, which would potentially require payment of a periodic subscription fee, enables members of the Network to access a wide array of additional widgets. Systems and methods for user registration are further described below in successive sections. It is contemplated that certain of such widgets would be developed by the entity operating the Chumby Network while other widgets would be developed by independent developers. In addition, members of the “Chumby Network would also be able to communicate with the Chumby devices of other members, provided that permission for such communication has been authorized by the other members. Such communication could entail, for example, the sending of a widget and corresponding data from the Chumby service provider to a member of the Chumby Network (the “receiving member”) in response to a request sent to the Chumby service provider by another member (the “sending member”). For example, a sending member could, after receiving permission from a receiving member, request the Chumby service provider to send a “photo-viewer” widget to the receiving member. In addition, the sending member could specify that a link be established between the photo-viewer widget and pictures uploaded by the sending member to the Chumby service provider. In this way the receiving member could, without any effort other than providing authorization to the sending member, enable their Chumby device to essentially automatically receive and display a sequence of photos provided by the sending member. Similarly, while traveling a sending member could send a personalized “wake up” message to the Chumby device of a consenting receiving member. Finally, a sending member could send widgets to a group of receiving members included on a “buddy list” of the sending member, which could be established after the receipt of suitable permissions from those proposed to be included on the list.
In an exemplary embodiment members of the Chumby Network are enabled to completely configure, through any Web browser, their respective Chumby devices by specifying a set of “premium” widget programs or content to play or be shown rotationally (or in some other user-defined sequence) on their respective Chumby devices. Such premium widgets and content may include, for example, webcam shots, RSS readers, filtered news reports, personalized stock performance data, short animations or movies, podcasts or audio files to function as the audio sources for alarms or reminders scheduled to be triggered at different times throughout the day.
As is discussed further below, one exemplary implementation of a Chumby device is comprised of a malleable housing attached to a rigid “core” structure supporting a display screen and the electrical components of the device. The malleable housing would generally encompass all of the electrical components of the Chumby device, and will preferably be filled with an appropriate material or otherwise constructed to enable it to be “squeezed” or otherwise deformed by a user. Moreover, the core structure is designed to be capable of being removed from the housing and “snapped” in to a different housing. A set of “bend sensors” are enclosed by the malleable housing in order to permit the detection of such a squeezing or similar action by a user. In this way a user is afforded the opportunity of conveying information through physical deformation of the Chumby device in addition to the more conventional textual and other modes of communication facilitated by the display screen. For example, in one exemplary system a user could initiate the conveying of a “hug” to another user by squeezing the housing of the user's Chumby device in a particular manner. The electrical signals generated by the sensor array in response to this squeeze would be appropriately interpreted and the user's Chumby device would communicate, via the Chumby service provider, a “hug” message to the intended recipient user. At this point the recipient's Chumby device could register receipt of the hug message by, for example, illuminating an indicator light or sending a message to the display of the device.
In certain embodiments a Chumby device may include hardware, software, or both for use in detecting and tracking device location and relative position as well as for tracking physical contacts with the device and for detecting and tracking motion. In one exemplary embodiment, a Chumby device may include an accelerometer and related hardware and software to implement a variety of motion related functions including motion detection, position identification and tracking, gesture recognition, and user contact such as by squeezing or squishing the device.
In some embodiments a Chumby device may be configured and operative to interface to one or more virtual worlds, such as the virtual world known as Second Life®, accessible at http://www.secondlife.com. Features of such an interface may include, but are not limited to, display of content from the virtual world on a Chumby device, interaction through a Chumby device with other users and features of the virtual world, display and interaction with avatars on the Chumby device and in the virtual world, monitoring of virtual world activities, and other features and functions.
In some embodiments of a Chumby device and system, security and authentication systems and methods may be provided to provide protection of the user's privacy and security and protect against malicious attacks. Because a networked device may inherently be a part of an open architecture, it may become vulnerable to a wide range of security breaches or delivery of undesirable and unwanted content. Problems such as spam, phishing, trojan horse attacks, and a wide variety of other problems may impact the device, render it unusable, or cause loss of a user's private information. Consequently, it may be desirable to employ one or more authentication and security measures such as are described herein to provide protection against these as well as other types of attacks. In embodiments as described in further detail in subsequent sections, systems and methods to implement, configure, and employ security protection are described. In some embodiments security systems and methods are provided to maintain an open architecture wherein secrets are not hidden from a user and/or users are not restricted from repurposing their portable device for applications unrelated to primary services, such as those described herein.
In some embodiments of a Chumby device and system, a graphically based registration process and associated system may be implemented allowing registration of a portable device. Registration may be implemented by providing a user with a reference pattern through a web page or other form, allowing the user to match the reference pattern on a similar grid on the portable device, encoding and/or otherwise processing the user supplied pattern, device ID, and/or other data, and transmitting the encoded information to a registration server where the transmitted data may be verified and the portable device may be registered to a Chumby system.
In some embodiments of a Chumby device and system, systems and methods may be provided to allow portable device users to select and/or purchase audio or audiovisual content to be played back as an alarm tone in conjunction with alarm features or functions on the portable device. The content may also be sent to other portable device users to be used in conjunction with alarm features or functions on the other users' portable devices and/or may be purchased by the other users for playback in conjunction with alarm features and functions on their portable devices.
Referring again to
In the exemplary embodiment a configuration window may be utilized to configure one or more Chumby devices 102 consistent with the permissions granted by the users of such devices 102. In addition, a user of a given Chumby device 102 may elect to have the interface of the device 102 “mirror” or otherwise replicate that of another device 102 subject to the requisite permissions being granted. Similarly, one or more Chumby devices 102 may be configured to mirror the interface for a “virtual” Chumby device (or vice-versa) defined via a configuration window.
Different users of a given Chumby device 102 may be accorded different roles or privileges in configuring the device 102. For example, a user granted supervisory privileges could be given the authority to filter or monitor the widgets or content sent to the Chumby device 102. This would enable, for example, parents to manage and/or monitor the widgets and content executed and displayed by the one or more Chumby devices 102 used by their children. Moreover, administrators of the system 100 would typically possess an elevated level of privilege relative to users of Chumby devices 102 within the system 100. Also, if a specific widget performs functions requiring communication with a web site controlled by a third party in order to access content, the developer of the widget may create a hierarchical user model to regulate such access (and perhaps the functions of the widget).
Attention is now directed to
Turning now to
The device may or may not include a Security Module (not shown) If included, the Security Module serves to store secrets and compute authentication algorithms in a fashion that fully isolates core security routines from otherwise unsecured code running on CPU 302. The secret storage and authentication capability may or may not be used by the client-server communication protocol to enable authenticated and encrypted communication capabilities for, among other things, financial transactions. The Security Module is initialized in such a way that there is no default mapping of the secrets contained within the module versus the identity of the hardware of the user. Furthermore, the secrets are revocable and a routine exists for generating new secrets based upon a master secret that is never associated with a specific user's profile. This enables opt-in policies for privacy and a limited ability to revoke identity information, barring forensic network analysis, thereby enabling anonymity as well. The anonymous trust network can be extended with a variety of client-server protocols to enable a wide range of anonymous transactions, including but not limited to cash and content transactions.
As shown, software comprising widgets 350 or other applications received from the service provider 106 are stored in memory 310 and loaded into SDRAM 306 or non-volatile memory 310 for execution by the CPU 302. In one embodiment widgets are downloaded from the service provider 106 to Chumby devices in the format of a “Macromedia Flash” file, also referred to as a “Flash movie”. As is known by those skilled in the art, Flash movies are usually accorded a “.swf” file extension and may be played by a Flash Player developed and distributed by Adobe Systems. Accordingly, the memory 310 also includes a Flash Player 360 as well as a copy of the operating system 364 executed by the CPU 302. In other embodiments widgets may be developed in accordance with other formats and played by players compatible with such other formats.
The Chumby device also includes a liquid crystal display (LCD) 320 controlled by an LCD controller 322, which may or may not be integrated into the CPU 302. The display 320 visually renders iconic representations of the widget programs stored within the Chumby device and images generated in connection with the execution of such widgets by the CPU 302. In an exemplary implementation a touchscreen 330 overlays the LCD 320 and is responsive to a touchscreen controller 334. In one embodiment a user may induce the Chumby device to enter a “user interface mode” or “U.I. mode” by touching the touchscreen 330. When this occurs the touchscreen controller 334 informs the CPU 302, which then instructs the LCD 320 to enter U.I. mode and display representations of arrows, buttons and/or icons selectable by the user via the touchscreen 330. As is discussed below, selection of one or more of these elements during operation in the U.I. mode enables the user to control various aspects of the operation of the Chumby device. In alternate implementations the LCD 320 and touchscreen 330 may comprise an integral device controlled by an integrated controller.
Turning to
Referring again to
In certain embodiments a physical button element (not shown) may be provided proximate the LCD screen 320 to enable navigation through menus and the like presented by the LCD screen 320. In one implementation this button element is cross-shaped in order to facilitate two-dimensional navigation, and may further include a smaller, dedicated button (e.g., in the center of the cross) associated with a specific widget (e.g., clock widget). Pressing this dedicated widget would interrupt the operation of all other widgets.
In implementations in which two-dimensional navigation through the user interface of the Chumby device is supported, users may be provided with the ability to navigate forward and back in the configured widget timeline. Similarly, users may navigate up and down a stack of related widgets. This function depends on the implementation of the concept of widget categories—i.e., associating widgets into logical categories that can be displayed sequentially, if configured to be displayed. An example of a category could be “News”. Widgets included within this category could include, for example, a local news widget, a sports news widget, an entertainment news widget, a business news widget, and the like. For each category, there would be a default widget, which is designated by the user on the Chumby web site for each category selected to be displayed by the user's Chumby device.
If more than one widget in a category is selected, then the widgets are conceptually “stacked” with the default widget being:
on the top of the stack; and
the widget that is displayed as the Chumby device automatically cycles through configured widgets.
If a widget for a given category (e.g., “News”) is displayed and there exist additional widgets in the category which are also configured for display, then in the exemplary embodiment these additional widgets are “stacked” below the displayed widget. In this case the user may take some predefined action with respect to the user's Chumby device (e.g., perhaps selecting a control on the touchscreen or accessing a function via the control panel, which is instantiated via actuating the bend sensor) in order to cause the next widget in the “stack” for that category to be displayed. The Chumby device may be configured such that taking further predefined actions of the same type will cause the widgets either above or below in the stack to be displayed, as designated by the user. The last widget that is displayed in the stack for the applicable category when the Chumby device cycles to the next widget category will be the widget displayed in the next cycle for the just exited category (e.g, News).
The tabular illustration below provides a conceptual layout of exemplary widget stacks in various categories:
The following provides a conceptual representation of the case in which the user has navigated into widget stacks for News, Entertainment and Sports:
Attention is now directed to
In one embodiment the rubber-type frame is composed of Texin™, a soft, tactile, rubber-like material similar to TPE (thermo plastic elastomer). The frame provides structure and form to the housing and allows the core electronics unit to be replaced and inserted. The frame will generally be manufactured in a relatively flattened configuration and then manually flexed or curved and stitched to the fabric when assembling the housing the Chumby device.
Turning now to
Referring to
The core electronics module will generally include, for example, a main circuit board, LCD display, touchscreen, ambient light sensor, USB WiFi dongle, 9V backup battery, and an RF shield. This core module is designed to be removable from the frame by the user of the Chumby device. It is typically connected into the housing Chumby device via a 22 pin cable assembly, referred to hereinafter as a “Chumbilical™”.
The WiFi dongle is a part of the core electronics module and provides 802.11 wireless networking support. In an exemplary embodiment, the WiFi dongle attaches externally to the core electronics.
The backup battery, currently consisting as a standard 9V alkaline, is used to provide backup/supplemental power to the Chumby unit in the event of failure of the primary power supply. The backup battery is mounted onto the RF shield and is meant to be replaceable by the user. The RF shield is positioned on a back side of the core electronics module.
The daughterboard provides connectors available to the user, including power input, headphone output, and external USB-style connector for future accessories and/or facilitating device upgrades. The daughterboard is clamped to the fabric in between the daughterboard front and rear bezel components, which are made of rigid ABS-type plastic. The daughterboard connects to the core electronics via the Chumbilical™.
In the exemplary embodiment the Chumby device includes a pair of internally-mounted speakers to provide stereo sound. The speakers are held in place using square pouches sewn into the interior of the unit. The pouches each have a small drawstring to keep the speakers in a relatively fixed position within the interior of the Chumby device. Both speakers connect to the daughterboard.
The bend sensor is connected to the daughterboard and may comprise a flexible resistive element which varies in resistance based upon the angle of flex of the sensor. Accordingly, the bend sensor is capable of detecting physical “squeezing” of the soft housing of the Chumby device. Signals from the bend sensor are processed (e.g., by the core electronics module or dedicated electronic circuitry) and generally will precipitate performance a defined action, which may be dependent upon characteristics of the currently active widget. The bend sensor connects to the daughterboard. The bend sensor will generally be attached to the inside of the Chumby bag and oriented parallel to the vertical access of the Chumby device. In other embodiments, one or more displacement sensors may be used to effect the same function.
Attention is now directed to the exemplary user interface screens of a Chumby device shown in
Although in certain embodiments the flexible or malleable housing of each Chumby device is intended to be essentially permanent and not replaced, in other embodiments such housings may comprise interchangeable “skins” designed to be easily detached and replaced at the discretion of the user. In such implementations the Chumby device may be configured to operate in accordance with various profiles depending upon the particular “skin” currently attached to the underlying hardware “core” of the device. Specifically, one or more sensors could be deployed upon the core of the Chumby device in order to read electronic identifiers embedded within the various skins disposed to be employed as the housing for the Chumby device. Each identifier could consist of a persistent (non-volatile) storage module containing unique identifying information, and would be physically configured so as to make electrical or radio contact with a corresponding sensor on the core of the Chumby device upon its skin becoming attached to the device core. The information read from such embedded identifiers could be used to inform the control system of the Chumby device of the identity of the skin currently enveloping the core of the device. Certain of such skins could, for example, include characteristics or features suggestive of various applications (e.g., “clock radio”, or “boom box”) or intended operating environments (e.g., “car”, “kitchen”, “workshop”)
Once a new skin has been attached or otherwise secured to the core of a Chumby device and the information from the embedded identifier has been read, the Chumby device may send a message to the service provider 106 indicative of its current skin (e.g., “skin #1”). In response, the service provider 106 may reply with a message instructing the Chumby device to utilize a particular profile (e.g., “profile #3”). It is contemplated that users may elect to define, via a Web browser 122 in communication with the service provider 106, profiles for each of their skins or simply utilize default profiles available from the service provider 106. Each profile could define, for example: (i) the widgets to be executed, (ii) the configuration to be used for executing the widgets, and (iii) the style and theme information (color schemes, control decorations, fonts, backgrounds, etc) utilized in presenting information via the LCD display 320.
In some embodiments a Chumby device may include hardware, software, or hardware and software in combination to implement functionality related to acceleration, motion, and location detection and tracking. Additional related applications and functions are also envisioned, such as detection of contact with the device including contact caused by persons or objects hitting or squeezing the device, as well as contact caused by the device impacting other surfaces or objects such as a floor, table, desk, or other surface or object. In some applications, motion detection and tracking may also be used to implement gesture recognition where movement of the device in pitch or roll axes or in rectilinear motion may be used to control device functionality.
Referring now to
Driver software module 3510 will generally be configured to interface with other system software modules to provide data related to the accelerometer signals. In some embodiments, driver software module 3510 may interface with the operating system and other software modules within the Chumby device via an application programming interface (API) 3530 as shown in
In addition to the conventional interface as described previously, driver module 3510 may also serve as an interrupt source, wherein an interrupt is generated based on the acceleration data, processed results, buffer status, or other related parameters. The driver module may also serve as a source of polled data that can be used to emulate the interrupt event. In some embodiments, a system integrator may use the interrupt mode of the accelerometer to provide better response to certain events, such as rapid changes in the Chumby device position.
In addition to low level software as described above, a Chumby device may also include higher level software modules for processing accelerometer data to extract related information. Such software may apply a variety of signal processing algorithms to the raw accelerometer data to extract useful information. This information may include a range of related parameters such as relative angle and position of the Chumby device, rate of angular or rectilinear positional change, and other useful parameters. For example, in some embodiments it may be desirable to measure the relative angle of the device with respect to a previous or reference position. In the case of a reference position, determination of the reference position may be done by calibrating the device as further described in detail in later sections of this document discussing calibration. It will be noted that the relative angle of the device with respect to a reference position may be given in three dimensional coordinates x, y, and z, as (θ, φ, π). Given a reference orientation defined as (gxo, gyo, gzo), and a current orientation defined as (gx, gy, gz), the relative angle may be approximately determined simply by the following equation:
θ=sin−1(gx−gxo)
φ=sin−1(gy−gyo)
φ=sin−1(gz−gzo)
Where each of the terms of sin−1 may be saturated to +1 or −1 as appropriate. In order to improve the fidelity of this operation, the values of gn recorded may be oversampled and averaged.
In some embodiments it may be desirable to determine relative velocity and position of the device in one or more axes. As is well known in the art, acceleration is the time derivative of velocity and velocity is the time derivative of position. Therefore, velocity, v(x,y,z), and position, p(x,y,z) may be determined by integrating acceleration, a(x,y,z) as shown below.
It will be noted that a system based on integration may be sensitive to offsets in acceleration which may further enhance errors in calculating velocity and position. Furthermore, when implementing such a system with discrete time sampled data, additional errors may be introduced, however, these errors may be addressed by various means known in the art. In a digital system, integration such as might be applied to determine velocity or position may be implemented in the form of a Reimann sum:
In such an implementation, the error term can be somewhat minimized by applying the trapezoidal rule, which yields an error term that is bounded as follows:
where M2 is the maximum value of the absolute value of f″ (x).
Eliminating errors due to the inherent limitations of Reimann approximation as well as to systematic offsets in the electronics is not a trivial task. However, as is known in the art, a variety of techniques, including DC offset cancellation and heuristics to disable cancellation in the case that an actual gesture is identified, may be employed.
Referring now to
As further shown in
In some embodiments a Kalman filter may be provided to improve prediction of the device's position, velocity, and acceleration in the presence of noise. As is known in the art, Kalman filters are widely used in navigation systems to improve performance in the presence of limited or inaccurate data samples and noise. As shown in
In some embodiments a matched filter may be provided to detect particular motion related signatures. As is known in the art, a matched filter may be used to detect particular signals by correlating an incoming signal with a sampled representation of a desired target signal and making a decision on whether the desired signal is present based on the output of the correlator. For example, acceleration data, velocity, or positional data may be provided to a matched filter module 3690 to detect a particular motion event such as vibration of the Chumby device at a particular frequency. Motion events may be based on either preset or system programmed target events, or may be programmed by the user. In some embodiments, matched filter module 3690 may be provided with one or more reference signals corresponding to targeted motion profiles such as acceleration, velocity, or position profiles related to particular targeted movements. Matched filter module 3690 may then correlate the incoming signals with the target signals and signal a match when the correlation output exceeds a preset threshold. Alternately, the user may train the matched filter to detect a particular motion sequence. For example, a user might train the filter to monitor motion processes related to their washing machine. The user might do this by selecting a training mode, placing the device on the washing machine while it is operating with a particularly desired motion for a specified amount of time, perhaps 5 seconds, and then recording the motion signature. The motion signature may then be stored in the matched filter module 3690 as a target signal and the incoming signal could then be correlated with the target signal to detect the desired motion signal. As is apparent, a wide variety of other motion related matched filter applications are possible within the spirit and scope of the present invention.
In some embodiments a gesture recognition module 3620 may be included. Such a module may operate on position data, such as interpolated position output data from Kalman filter module 3660 to detect particular position sequences associated with motions of the device caused by hand movement. A wide range of gesture implementations are possible. For example, in one embodiment, a dynamic programming algorithm such as the Viterbi algorithm or a similar trellis algorithm may be used to determine the most likely user intended gesture based on the input position profile. In this implementation, a state diagram may be laid out consisting of the various legal states and branching conditions that may occur. As the user traces a trajectory through the state diagram, a maximum likelihood predictor may be dynamically applied to determine which gesture is implied by the transaction through state space. To further illustrate one possible example, the device may be configured with 4 control motions providing four different functions based on rotation about 2 orthogonal axes X and Y. Rotation in one direction about the X axis controls the first motion, rotation in the opposite direction controls the second, and likewise for the 2 directions along the Y axis. Applying the positional data to the gesture recognition module 3650 results in detection of both the corresponding axis and direction of rotation for device movements. This information may then be provided to other applications or widgets to provide associated functionality.
As discussed previously with respect to
Another mode of operation using gesture recognition may be implemented using common gestures in a form of sign language. For example, a series of sign language motions for particular words or expressions could be predefined. Flipping a chumby upside down and shaking it, like one might shake a piggy bank, could be defined to switch the Chumby device to a stock portfolio application or widget. Other common gestures, such as those associated with frustration, affection, or simple symbols, could be used as a method of activating a particular behavior on the device. Other embodiments could allow the user to throw the device and measure how fast it has been thrown, or acceleration data could be stored on the device in non-volatile memory to indicate that the device is no longer in warranty because it was thrown or dropped too hard. It will be noted that all of the above profiles could be used in a variety of applications from video game interfaces to control panel configurations.
In certain embodiments Chumby devices may use a bend sensor to detect when the device is squeezed by a user. Alternately, the accelerometer and associated modules may also be trained to recognize this type of gesture. In particular, there are at least two types of motions that Chumby devices may be configured to learn that are specific to soft devices. The first is denoted here as the squeeze, and the second is denoted as the squish. A squeeze motion occurs when a user takes the device and compresses it in their hands, as may be done with a stress ball or similar device. This may cause the accelerometer to deflect in a characteristic velocity and tilt profile. As previously discussed with reference to
A squish motion occurs when a user pushes a Chumby device down on a hard surface, such as a table, similar to pushing off an alarm clock sounding in the morning. This type of motion can be detected through a variety of mechanisms, including matched filtering, acceleration profiling, tilt detection, or by other means. As defined, the difference in detection of a squeeze motion versus a squish motion lies in the way the device is manipulated. A squeeze motion compresses the device primarily depth-wise, while a squish motion compresses the device height-wise. It will be recognized, however, that both motions are related to the more general motion related detection processes and systems described previously.
In some embodiments, Chumby devices may use the accelerometer and related modules to detect and track the position of the device within a building. For example, in some embodiments the device may be configured to detect and track which room it is currently located in. In order to determine location in this way, it is assumed that the device is fitted with proper hardware and software to allow it to operate in a portable, mobile mode. In the simplest implementation, the X, Y, and Z accelerations are double integrated, such as is illustrated in
With reference to
In the second mode, denoted the running mode as illustrated in
These motion tracking features may be used to implement a number of clever and fun applications on a Chumby device, especially if the device is coordinated with data from a central server so that the device has some knowledge or awareness of other the Chumby or similar devices in it's vicinity. In addition, these motion tracking features can be used to implement security features. For example, if a device is moved without a known user entering a security code, it may be configured to sound an alarm. Alternately, it could be hung on a door handle to provide an alarm or door chime when moved.
As previously discussed with reference to
In some embodiments it may be desirable to provide for calibration of the Chumby device. It will be noted that there are a variety of methods for calibrating a device either based on a known reference position or relative to the current device position. Due to natural static offsets in the accelerometer, it may not be possible to determine, based on a particular analog output such as a voltage, a representative fixed tilt angle. As a consequence, in some embodiments it may only be possible to reliably determine the relative angle of the device given an initial starting point. Therefore, in some embodiments calibration of the device may be an important step prior to operation.
In one exemplary embodiment of a calibration procedure as illustrated in
In some embodiments a Chumby device may be configured and operative to interface to one or more virtual worlds, such as the virtual world known as Second Life®, accessible at http://www.secondlife.com. Features of such an interface may include, but are not limited to, display of content from the virtual world on a Chumby device, interaction through a Chumby device with other users and features of the virtual world, display and interaction with avatars on the Chumby device and in the virtual world, monitoring of virtual world activities, and other features and functions.
Virtual worlds allow users to interact with other users, typically using avatars to represent the users in the virtual world. In a virtual world users may be presented with a type of “virtual webcam,” where virtual world services such as Second Life®, World of Warcraft, Toontown, Entropia Universe, and others host a machine or group of network machines or servers to render views into the virtual world from a variety of vantage points. Virtual worlds may include rendered versions of practically any feature of the real world, as well as fantasy features and functions that do not or could not exist in the real world. Example features include parks, meeting places, stores, battle areas, and a wide variety of other public and private places. Users, in the form of avatars, may be able to navigate the virtual world in a variety of ways including by walking as in the real world, or by other ways such as by flying.
User interaction with virtual worlds may be analogized to a webcam that may be described as a “virtual webcam,” providing a webcam like view into the virtual world. Once the world is created and user avatars are instantiated, the interaction may become much like a real webcam, where images are streamed on demand to client applications. Typical virtual world interaction is done via a personal computer (PC) where the user accesses the virtual world via a web browser interface or standalone desktop application and navigates and interacts with the virtual world using PC controls such as a mouse and keyboard.
Aspects of the present invention include extending interaction with the virtual world to a mobile, and/or portable device such as a Chumby device. In some embodiments there may be an authentication process to allow a Chumby device to interface and interact with the virtual world. Alternately, in some embodiments, as is done with many webcams, no authentication may be necessary or used. In some embodiments no user avatar may be provided in conjunction with access via the portable device, however, in other embodiments the normal user avatar or a unique device specific avatar such as an avatar representing a camera, Chumby device, a combination of camera and Chumby device, or another similar type of avatar may be provided in the virtual world.
In some embodiments user access to a virtual world may be limited to a fixed or stationary position wherein the user may be able to see, hear, or otherwise sense activities in the virtual world but may not be able to move around within the virtual world. Alternately, in some embodiments an interface may be configured to allow the user to move around within the virtual world using controls provided on the portable device. For example, controls associated with a Chumby device such as those described elsewhere in this document may be configured and operative to allow the user to move around within and interact with the virtual world in a similar fashion to the movements and interactions effected via PC based controls.
In some embodiments user interaction with the virtual world via the portable device may be limited to monitoring activities for those of interest to the user, wherein the user may then access the virtual world through a PC or other access means to participate in any available event or activities. For example, the portable device may be configured and operative to monitor the virtual world for some defined event, such as a big battle, unexpected crowd activity, friends showing up, or other targeted activity, and then notify the user through any available notification mechanism that an event of interest is occurring. In response, the user may then access the virtual world through their PC and engage in the associated event or activity.
Alternately, in some embodiments the portable device may be configured and operative to allow the user limited or full engagement with the virtual world through control devices and functions described herein as well as through audible and visual display devices, such as speakers, buzzers, LEDs, LCDs, LCD display panels, and/or other audible, visual, tactile or motion related devices.
Many virtual worlds provide interfaces allowing users to interact with the service provider using existing infrastructure. Interfaces such as these may be used to allow a portable device to interact with the virtual world without requiring changes to the existing infrastructure. For example, Second Life® provides a mechanism in which users can interact with custom in-game objects via XML-RPC. In one embodiment, this interface and associated protocols may be used to allow a portable device to interact with objects and processes real-time information. Second Life provides a representative example OSX dashboard widget, at http://secondlife.com/devdown/detail.php?pid=00000005, designed by Sweet Vitriol (http://www.sweetvitriol.com) that implements such functionality.
In the following description and examples of systems and methods for interaction with virtual worlds, steps and configurations are shown in conjunction with devices, processes, and methods associated with embodiments of the invention. It will be recognized that a variety of alternate steps and configurations may be used, and therefore those described and shown in the figures are provided for purposes of illustration only and are not in any way intended to be limiting unless explicitly so stated.
Attention is now directed to
The user may be provided with a means or option to configure the VWCW based on relevant configuration parameters in step 4115. In one embodiment the configuration parameters may include the ID of the virtual world. Alternately, there may be one or more specific widgets for each virtual world where two or more virtual worlds are accessed. Each widget may also be configured with identification information for the virtual world being accessed. For example, identification information may include a username/password combination or some other type of security key, token, or other identification means. In some virtual worlds identification may not be needed or used to allow either limited or full entry and access. For example, in some embodiments a user may be able to gain limited or even full access to features and functions of the virtual world without having to enter identification information. In one embodiment a user may be able to view a specific location such as a previous location, default location, random location, neutral location, or other location in the virtual world upon connection. Other variations on access and initial user positioning within the virtual world are also envisioned within the scope of the present invention.
The user may then be provided with a means for “playing” the widget on the portable device. For example, in one embodiment, a Chumby device may retrieve and instantiate a widget to be “played” using a method such as those described herein, where playback consists of execution of operations of the widget associated with configuration, connection, and operation of the widget in conjunction with the virtual world. Widget “playing” may be executed on associated hardware, software, firmware, interface devices, and other related elements. Once widget playing has begun, the widget may then contact the virtual world in step 4120 over an available interconnection pathway such as the Internet, wired or wireless networks, or other networks such as the telecommunications network. The access protocol will vary depending on the type of connection and service. For example, in some embodiments the XML-RPC protocol may be used.
The widget may then authenticate the user to the virtual world service in step 4125. For example, the user may use the secure identification proxy on the Chumby web site or authenticate directly with the service at its web site, such as at http://www.secondlife.com.
The widget may then retrieve information from the virtual world site at step 4130. Such information may include data, files, objects, application programs, controls, or other information provided in such a way as to allow the widget to interact with the virtual world and user. For example, the virtual world may provide data to allow a Chumby device to render a view on a display screen such as an LCD display on the device. The data may also allow audible information, speech, music, videos, sounds, buzzers, visible displays, or other content or indicators to be output by the portable device. In some embodiments the information link may be configured to provide data in a primarily unidirectional fashion, wherein content associated with the virtual world is displayed and/or played back audibly on the portable device. Alternately, in some embodiments the information link may be bi-directional allowing content delivery from the virtual world site to the portable device as well as content and/or control information to be sent from the portable device to the virtual world site. For example, in some embodiments the portable device and associated widget may be configured and operative to allow a user to control operations in the virtual world such as changing views, panning, tilting, zooming, or moving around within the virtual world. In addition, in some embodiments users may be able to upload content to the virtual world and signal or otherwise interact with other users and associated avatars in the virtual world.
Once instantiated, the VWCW may send a request to a virtual world service provider at step 4320, such as at a web page URL associated with a virtual world. In one representative example, the Second Life® top level domain, www.secondlife.com, may have one or more associated URLs for access and interface to the virtual world. The virtual world service (VWS) may be hosted on a range of hardware and software, such as a virtual world server or servers running one or more programs implementing the virtual world. The request may be transmitted between the Chumby device and the virtual world service by any available means of communication included wired Internet connections, wireless connections such as Wi-Fi, telecommunications interfaces, or other available wired or wireless connection means. The request may use a standard communications protocol, such as the XML-RPC protocol, which is a simple protocol using XML to encode calls and HTTP as a transport mechanism. For example, Second Life® provides a mechanism in which users can interact with custom virtual world objects via XML-RPC. It is also noted that other protocols may be used.
Once a request has been transmitted to the VWS, the VWS may process the request according to a supported protocol and procedures in step 4325. In some embodiments, the VWS may provide for direct access without additional user identification. In other embodiments, however, the VWS may require an identification and/or authentication step 4330 prior to establish a connection. Authentication may include typical authentication procedures based on a userid and password, or may use other alternate identification procedures. If ID/Authentication is used, the VWS may then send an ID/Authorization request to the portable device requesting the desired information. In some embodiments the portable device may be configured to respond directly to the request, however, in other embodiments such as that shown in
At this point, a session token may be generated and sent from the VWS to the portable device in step 4355. The portable device may then cache the token and request data from the virtual world in step 4365. In one exemplary embodiment, the portable device may request location or positional data from the VWS in step 4365 so that it may render an image of the present virtual world location such as might be shown by a standard webcam. Additional or alternate data may also be requested such as text, audible, other visual, or similar types of data about the virtual world or other virtual world users/avatars.
In step 4370 the VWS may process the data request, such as by processing a request for location information, and then retrieve, process, and send virtual world data, such as location view data, to the portable device in step 4375. Once the data is received at the personal device, the VWCW may then process the data as necessary in step 4380, and render a view, other images, audio, text, or related content at step 4384. In some embodiments this process may be repeated until the user provides an input to stop or change processing. In other embodiments, additional optional steps such as step 4386 may be provided to allow user manipulation of the interaction with the virtual world. For example, in a personal device playing an appropriately configured widget, a user may be able to effect controls such as zoom, pan, tilt, rotation, translation, and other functions. The associated information may be sent to the virtual world in order to enable the interaction, and an associated request for new or additional data may be sent in step 4388 to the VWS to update the personal device display and/or output to reflect the user's manipulations. Process execution may then return to step 4370 where new location or other data is requested and sent to the personal device/VWCW.
In some embodiments a Chumby device and associated system may be configured to provide user authentication and security. It is noted that the embodiments described herein are illustrative only and not intended to be limiting. Other embodiments in keeping within the spirit and scope of the invention are fully contemplated herein.
In order to clarify some of the details of the embodiments described herein, a number of acronyms or abbreviations, including those described below, may be used, along with others known in the art.
PAQS,X Public Key number X of the widget server
PCC,X Public Key number X of the chumby client
SAQS,X Private Key number X of the widget server
SCC,X Private Key number X of the chumby client
ID The ID number for a Chumby
PID A putative ID
CC Chumby Client (inclusive of CP)
PSP Persistent storage partition
BORE Break once everywhere
Rx Random number X
Tx Time stamp X
3PS Third party server
OKx Owner key number X (symmetric key)
STx Security Token number X
H(x) Hash of X, in this document, SHA-1 of X
E(x,k) x encrypted with key k
In typical embodiments, a Chumby device is an open architecture Internet client for push-content delivery (as, for example, is described elsewhere in this document with respect to various embodiments). One advantage of such a device is that it can simplify the Internet experience. However, a major technical challenge is how to do this without compromising a user's privacy or security. This presents challenges including ensuring that authentic content is delivered to users (for example, anti-spam, anti-phishing, anti-trojan), as well as how to proxy, in a secure fashion, third-party authentication to the client (as would be required if one wished to view their email, bank balance, or other personal information on a portable device such as a Chumby client). These tasks must be done without hiding secrets from the user or restricting users from repurposing the Chumby for applications unrelated to the primary service, such as those described elsewhere herein.
For example, a Chumby device may not want the burden of owning or knowing about the user's email or bank passwords. In that situation it is important that users ultimately retain control over their third-party keys even though they may be stored physically on a Chumby server in embodiments such as are described elsewhere herein.
For exemplary embodiments of security systems and methods it may be desirable to implement one or more of the following tasks: authenticating a Chumby client while preserving, as much as commercially possible, the privacy of users; enabling authenticity/integrity checking of delivered content to a client; enabling a revocable mechanism for lease of security authentication facilities to third-party providers; enabling owner-override by deleting all secrets in the system upon owner's request via a hardware-enabled path; enabling owner token-revocation by encrypting all security tokens in the Chumby database to keys stored on the chumby client only; as well as other tasks.
In order to address these needs, a basic authentication and token transfer protocol may be used. In conjunction with the particular security protocol used, basic assumptions may be made regarding the security needs of the particular system. For example, in one exemplary embodiment it will be assumed that the value of secrets to be protected by the security system is less than $300, and the mean duration of the secret value will be less than four years. Typically secrets expire due to obsolescence, such as by obsolescence due to password changes, hardware turnover, third party software migration, account changes, or imposed password limits. An optional secondary mechanism employing a force-flush of encrypted secrets at designated times or time intervals may also be employed. It will be noted that the systems and methods as described herein may be implemented in similar or analogous fashion based on different assumptions from those above.
Attention is now directed to
Client Element: Open Client with Tamper-Resistant Crypto Processor
A typical Chumby system will include a Chumby device (Chumby client) 4410 as shown in
One approach is to include a lightly tamper-resistant crypto processor (CP) 4414 in a Chumby device for use in facilitating security and authentication of the device consistent with the invention. A principle property of a CP such as CP 4414 is that its execution path should be in a separate and unreachable domain from the core processor, making it much more difficult to create software-only attacks that can compromise secrets stored in the CP. The CP 4414 may also be configured in an open way, and its entire source code, specification and schematics may be published as well.
The CP 4414 may be configured to contain a set of Private Keys (PRKs) and Owner Keys (OKs). Note that no third-party authentication tokens will normally be stored in the CP. The CP will typically be used as a front-line authentication device to a Closed Server (CS), which can then store secrets in an environment that is constantly monitored (such as a network operations center (NOC)). This approach is not intended to be completely foolproof. Rather, it is intended to provide a commercially reasonable assurance that secrets cannot be abused, and more importantly provide a quick and easy path for remedying and detecting most security breaks.
In order to save on costs, in some embodiments the CP may be configured so that it does not generate its own private keys, as generating a large set of private keys requires a high-quality entropy source and significant amounts of computational power. The CP's keys may instead be generated by a testing machine in a factory, and controls must be placed on the key generating machine in the factory to ensure that it is not logging the private keys it generates. It will nevertheless be apparent that other means of generating and providing security keys as are known in the art may also be used.
Requirements of the CP
In an exemplary embodiment of the present invention the CP implements one or more of the following key features (typically all of the them):
the CP implements elements of RSA PKCS #1; the CP is capable of storing at least 16 1024-bit RSA key pairs (with an option to go up to 30 1024-bit key pairs with tighter memory packing); the CP is capable of storing at least 16 128-bit symmetric keys; a pair of pins used to implement a serial TTL level protocol to the Chumby client processor; the serial protocol is implemented for communication with the core processor per the serial protocol spec outlined in detail below; a three-deep authentication queue with immediate response and delayed flushing (i.e., the queries from the queue may be responded to immediately, but the answered queries persist in the queue for at least 15 minutes before being flushed and queries that overflow the queue are ignored); the reset pin of the CP is tied to the client's reset pin in a method that is inconvenient to bypass (to prevent resetting of the CP without resetting the core processor to bypass a 15-minute authentication query time-out); an external pin (the “SETAC_ASTRONOMY” pin) is made available that enables a user to destroy the secrets inside a CP (this is the equivalent of an “owner override” feature in the presence of an environment where the owner's identity cannot be easily established over an attacker, assuming a hostile physical environment); all other pins are ignored or otherwise passivated on the CP. In addition, optional features may include: a method for preventing back-door hardware access to secure ROM contents (e.g., a security fuse to prevent code/data readout via JTAG or programmer); the JTAG port may be made available to test equipment so that it is easy to audit if the CP implements the anti-JTAG readout ROM fuse.
As noted above, an immediate-response, delayed-flush authentication queue feature may be implemented to meet one or both of the following competing requirements (1) A requirement that a Chumby client rapidly authenticates itself to a server, even in an environment where network connectivity is spotty and packets can be dropped, thereby mandating a retry of the authentication sequence; (2) A requirement that the Chumby client be robust against an attack where a user can hack their Chumby and use their CP as a query server so that other Chumbys can proxy their authentication requests through the CP on the hacked Chumby. The authentication queue essentially limits the rate of “authentication leakage” to less than one unit every 15 minutes minus the regular authentication queries mandated by the system design. In one exemplary embodiment it is suggested that the server re-authenticate a Chumby device once every 46 minutes. A depth three authentication queue may be provided to help ensure that up to three queries can be immediately and quickly serviced when network connectivity is spotty and the authentication must retry several times due to excessive packet loss.
In an exemplary embodiment, the queue may be implemented as a counter in the main loop of the code. Every time the loop executes, it checks the real time clock and decrements an expiration timer. Whenever the expiration timer runs out, the authentication count is decremented until it hits a value of zero. Whenever an authorization request is performed, the authorization count variable is immediately incremented. Authorization requests are denied if the count variable value exceeds the preset authorization maximum value. Authorization count saturates at the maximum value; it does not accumulate beyond the maximum value so as to prevent a denial of service attack on the device from a rogue program spamming the CP with authorization requests.
A depth 3 queue is suggested because it is highly unlikely for a network request to fail three times in a row to the authorization server. Higher or lower level queues may be used; however, if the network connectivity is sufficiently poor that the authorization request packet fails to return to the server three times within 46 minutes then the network is likely performing poorly enough that the user experience is not adequate anyway.
Server Element: Closed Server with Split Domains
In addition to the client side Chumby device, a typical Chumby system will include one or more servers 4420 as shown in
One of these physically distinct computers is denoted herein as a “Widget Server” (WS) 4422, and the other is denoted herein as an Authentication Query Server (AQS) 4424. One embodiment of these elements is illustrated in
A single piece of information—a Putative ID (PID)—may be used to share the authentication status of a user. A WS may index its databases on the PID key, and the AQS may index its database on a secure hash of the PID. The hash of the PID may be used to index the AQS to increase the system's privacy robustness in the case that an intruder compromises the AQS database. The WS simply asks the AQS, “is this PID authentic?” and the AQS simply responds with a yes or a no answer.
Alternately, if a user is disciplined about not divulging private information, they may enjoy the benefits of using the Chumby service to proxy passwords to their secure accounts, yet not be identifiable as a particular individual. On the other hand, certain practical conveniences are typically conferred through the exchange of identifying information (such as credit card payments). Corporate policy associated with deployment of Chumby systems may be established such that owners are educated on the risks of such conveniences. However, even if a user does divulge certain private information, the fact that the widget server may be configured to be oblivious to which exact physical Chumby is being authenticated (only the AQS knows this, but the AQS is oblivious to which exact user is being authenticated) creates a layer of possible deniability in certain scenarios.
Server Element: Owner-Managed Token Database
In order for a WS to work as a proxy for security tokens, the security tokens must be stored somewhere on the WS. Accumulating millions of users' private security tokens and writing them into a single database is problematic for many reasons, including but not limited to the difficulty of maintaining the security of something so valuable, the threat of a subpoena intended for a single user inadvertently leading to the leak of all the user's tokens, and also the fact that this requires the user to trust the Chumby network to manage his or her keys. Clearly, the user should not be required to trust the Chumby network, as the user would typically have no reason to do so. Therefore, in typical embodiments users will be empowered to manage their own keys remotely.
In order to facilitate this process, a set of “owner keys” (OKs) may be stored on the CP. An OK may comprise a 128-bit symmetric cipher key. The OKs may be used to encrypt the security tokens that the user hands over to the Chumby network. Each client may have or be provided with a set of unique OKs that are not shared with any other client.
The WS only stores E(OKx,ST), where E(x,k) denotes the encryption of message x with key k, so that even if the entire ST database were compromised the attacker cannot decrypt security tokens without first contacting every client in the database and requesting the corresponding OK. This is complicated by the fact that the client may not respond to queries for the OK without first verifying authenticity through the Cert PUK's, which can only be done with the assistances of the AQS. Therefore, the attacker must typically compromise the AQS and the WS. in order to “fool” a Chumby client into divulging its OKs.
Finally, if a user decides he or she no longer wants to be a part of the Chumby network, all she has to do is destroy OKx (i.e., the one OK used during her tenure with the Chumby network) and all her tokens stored on the Chumby server as E(OKx,ST) become essentially unrecoverable. If the Chumby client is then resold to another customer, the next OK on the list may be used, and so on, until the list is exhausted.
Server Element: Secure Server Off-Network Signing Authority
An additional component of the system may be an Off-Network Secure Signing Agent (ONSSA) 4450 as shown in
In exemplary embodiments the ONSSA includes an image signing computer 4452 that is ideally entirely air-gapped from the network, and methods such as are known in the art may be employed to split secret access across multiple individuals so no individual can act alone to compromise the contents of the ONSSA. A device such as USB dongle 4454 may be used to sign master dongle images by, for example, physical insertion in image signing computer 4452 to implement signing.
Exemplary Embodiments of Chumby System Protocols
The following description illustrates exemplary embodiments of system protocols to achieve one or more of the above described criteria. It will be noted that these embodiments are provided for the purpose of illustration and not limitation, and therefore other embodiments in keeping within the spirit and scope of the invention are fully contemplated.
Primitive—Generating Random Numbers on the Cryptographic Processor
In a typical embodiment a CP will not have a native hardware facility for generating random numbers, nor does it have a facility for setting time in a secure fashion. In order to facilitate the generation of random numbers, the following procedures may be used:
Each CP, in the factory, is programmed with a seed entropy list. This is not intended to be a long-term source of entropy but it does guarantee a minimum amount of difference between each CP so as to prevent easy BORE attacks.
Each CP samples with its internal analog to digital (A/D) converter, which will typically be a noisy Sigma-Delta implementation. The least significant bits (LSBs) of the A/D converter are noisy. The LSBs of this sampling process are folded into an entropy pool maintained by a running a secure hashing algorithm (SHA-1) digest of the initial entropy pool and the additional entropy of the A/D converter.
The value of the RTC is folded into the entropy pool once every random number generator (RNG) request. Small variations in the clock setting and random drift help add a little extra entropy to the pool.
As a result, the RNG inside the Chumby is not so much a true RNG (TRNG) but rather a pseudo RNG (PRNG) with several rather hard to control and predict parameters.
Task 1: Authenticating a Chumby Client while Preserving, as Much as Commercially Possible, the Privacy of the Users
The following procedures may be used to accomplish task 1.
Pre Shipping (Factory) Configuration/Test Steps
The following exemplary procedural steps may be used, typically but not necessarily in the order shown, and would typically be done in a factory prior to shipping a Chumby device to a sales chain or user. Additional and/or alternate steps may also be used. The factory/production environment is considered to be mostly trusted, with the possible exception of unscrupulous factory workers.
A unique 128-bit sequence number, the device ID, is assigned to the CP by the factory.
2. The CP programmer/tester generates a set of private and public key pairs {PCC,N, SCC,N}, and writes ID, PCC,N, and SCC,N to internal memory of the CP, along with the program code for the CP. All keys and the ID are stored as binary numbers.
3. An entropy pool is generated and programmed into the CP.
4. After programming and verification, the CP internal memory may optionally be locked to prevent readout via JTAG (this step may not add significantly to the robustness of the protocol, however, it may nevertheless be beneficial).
5. The PCC,N and SHA1(ID) data is recorded to fixed media, and SCC,N data is destroyed on the tester.
6. Periodically, a list of PCC,N and SHA1(ID)'s are forwarded to the AQS via a secure method such as a non-network method. Use of a non-network method is not necessarily done to insure the secrecy of the transmitted data, but rather to reduce venues for remote attacks on the AQS database (minimize number of ports open on the AQS).
User Authentication Transaction
The following process steps illustrate one embodiment of a user authentication transaction according to aspects of the present invention
1. CP→WS→AQS: h(PIDx),x using PIDX(x)
2. AQS WS>CP: rn
3. CP: authcount=authcount+1, proceed only if authcount<MAXAUTH
4. CC→CP:CHAL(x,rn)
5. CP→WS→AQS: rm, PAQS(OK), vers, SCP,X(rn,rm,x, h(PIDx), PAQS(OK), vers)
6. AQS→WS: verified_or_not
7. CP: every 1,000 seconds, authcount=authcount−1
The protocol is shepherded by the CC and the WS.
In step 3, CHAL(x,rn) command involves the following steps:
In a typical embodiment this protocol is managed by the Chumby client (CC) and Widget server (WS).
In this process, robustness against impersonation is provided via the proof of knowledge of the secret public key provided by the signature with appendix. This implementation relies on random numbers instead of timestamps for robustness against replay attacks. Timestamps are not practical in typical implementations with Chumby devices because the clock on the client side cannot be trusted. The use of two random numbers, rn and rm, and ensuring that both of these numbers are referenced in step 3 of the protocol, helps provide protection against interleaving attacks. The protocol is also structurally sound against reflection attacks due the asymmetric nature of the protocol. The embedding of rm and ro in the optional step 4 may provide robustness against chosen-plaintext attacks. It will also be noted that there may not be any protection against a forced-delay attack inherent in the protocol, and consequently the AQS should implement a timeout of its own.
Because the CP typically has no ability to certify the integrity of its connection to the AQS, there exists an opportunity for a type of interleaving attack where a CC is acting as a reflector for authentication requests across multiple devices. The use of the internal clock to measure relative time between authorization requests may not solve the problem entirely but it may be helpful in slowing the rate of leakage to limit damage.
While potentially worrisome in some contexts, it may also be a feature in other contexts, if one or more Chumbys (up to the replication limit) wish to share content with each other. In other words, a system could be designed so that this “attack” is actually used as a weak (e.g., somewhat insecure) method for legitimately sharing the authentication with a limited number of Chumbys.
Task 2: Enabling Authenticity/Integrity Checking of Delivered Content to a Client
It will be noted that the following feature is optional, and users will be generally free to opt-out of any authenticity/integrity checking if they so desire by simply loading the alternate code they wish to run on the client processor.
Basic operations that the content integrity mechanism may implement are: (1) a method for implementing the ONSSA; (2) a method for signing a given binary package; and (3) A method for verifying the signature of a given binary package.
OffNetwork Secure Signing Agent Implementation
The ONSSA should be kept off-network in all ways and kept in a secure, monitored location. The ONSSA typically stores a single private key, although new keys may be rotated in at the expense of having to do a lookup on the devices' PID to identify the correct key.
Signing Mechanism
When presented with a block of data of a given length, the ONSSA may execute PKCS#1v12's RSASSA-PSS algorithm (described in further detail below) using the SHA-1 hash, and emit the signature as an octet stream.
Verification Mechanism
Verification of the signed data may be done on the client using PKCS#1v12's RSASSA-PSS (described in further detail below). The public key for verification may be selected by the index specified in the first octet of the data stream requested for verification. The index may first be checked against the revocation list, as described below.
Task 3: Enabling a revocable mechanism for lease of security authentication facilities to third-party providers
Implementation may be done in a fashion similar or identical to Task 1 (above) with the role of the Widget server (WS) being played by a third-party provider.
The Chumby security mechanism has the potential to store multiple public/private key pairs. Since one of the biggest challenges in security is how to distribute keys, the Chumby system provider's ownership of a database of somewhat hardened keys across a large user base may be an asset. In some embodiments third parties may be enabled to lease authentication keys from an operator of the Chumby system in a fashion that is securely revocable in the case that the third party ceases to require or pay for the authentication service.
Put another way, this mechanism opens up the AQS to generic queries from third-party servers (3PS) that may play the role of the WS in the Task 1 protocol. The third party would thus be given the explicit ability to read the PIDs out of Chumby clients (it will be noted that in a typical embodiment any third party with the right software can obtain this information since the PID is an open piece of information), and the service Chumby may provide is to authenticate PID's against an internal database of public keys through yes/no queries via the AQS. In the situation where the lease is revoked, the AQS may simply be configured to deny answering requests from a particular source.
Task 4: Enable Owner-Override
In an exemplary embodiment the CP has a “SETAC ASTRONOMY” pin. By asserting this pin, the CP enters an operational mode where a command set is enabled that will allow the erasing of all secret data inside the CP. This means that the CP is hiding no secrets from the user, and it also means that the user can no longer enjoy the authentication benefits of the network. This is a feature that may be provided for owners who believe that the hardware should never hide secrets from them, regardless of the potential benefit to the owner.
Task 5: Enable Owner Token Revocation
The following process steps illustrate one embodiment of a procedure for enabling owner token revocation.
In the Factory, Before Shipping
As part of the PAQS,X/PCC,Y/PID programming process (described previously in Pre Shipping (Factory) Configuration/Test Steps), a set of OK's are generated and also burned into the same image.
Recording an Owner's Token
Widgets are typically configured via a web interface over SSL (as described elsewhere herein). Some widgets may require a security token to be presented to enable personalized access (for example, accessing an owner's MySpace private messages). Recording an owner's token may be done using the following steps:
The OK is fetched periodically per step 4 of the process shown previously (User Authentication Transaction). Note that the OK may be sent encrypted to the AQS using PAQS.
2. The OK is cached for the standard authorization interval (30 minutes in one exemplary embodiment).
3. When the ST is entered on the server web page it is immediately encrypted using the OK and the plaintext version is discarded.
Note that in order for this process to work the user must leave their Chumby on and connected so that the OK is periodically refreshed. If the target Chumby is turned off, the implementation of the security token handling is defined by service provider policy. In one implementation users are denied the ability to enter an ST without the target Chumby being on and authenticated. An alternate embodiment providing more convenience caches the ST in the plain until the next authorization transaction occurs, and updates the OK so that the ST can be encrypted for permanent storage in the database. While more convenient, this approach does introduce the possibility of the token being lost, stolen, or abused for the duration of the interval between when the token is entered and when the token is encrypted.
It will be noted that no matter which implementation is used care must be exercised in implementing the caching of the STs and OKs so that the cached values are securely erased after they have been encrypted. For example, it may increase risk to use a transactional database to store the temporary values so that the retired ST and OKs remain in the transaction history of the database and hence remain vulnerable to attack or loss through unintended mechanisms (e.g., insecure disposal of broken hard drives with sensitive information on them).
Owner Revocation
In exemplary embodiments the CP will include a command that enables owner revocation. For example, the owner may request the CP to delete a given OK. Two successive requests to delete the same OK using different commands may be required to confirm deletion of a given OK. Once the owner has deleted OKx, all of the keys held by the WS may then become unrecoverable.
Miscellaneous Tasks
In some embodiments, as a practical cost matter the CP may be configured to perform power management for the Chumby client. In typically embodiments the CP is a general purpose microcontroller and its presence enables the implementation of a “soft power on” facility using techniques known in the art. It will, however, be noted that feature creep of outside tasks into the CP represents a potential venue for information leak about the internal state of the CP and therefore careful consideration must be made before providing other features on the CP.
Exemplary System Implementation
The following section provides a description of details one embodiment of a system implementation according to aspects of the present invention.
CP Interface to Core Processor—The CP interface to the core processor is via a TTL-level serial link using asynchronous communication at a rate of 38400, 8-N-1. The format of the serial data is described below.
Query Formats—The CP implementation consists of a state-machine driven by a parser. The parser must first accept a query; once it is accepted, an internal flush timer is set for the query and it is entered into the query queue. The parser has a reset state which is simply referred to as the Reset State.
The query parser must digest the following query sequence strictly. All unrecognized formats and states must bring the parser to the Reset State, and a clearing of all the parser internal variables. The parser expects query data in a stream format, with byte 0 being sent first, and all data is presented in ASCII format with base-64 encoding.
The general format of a query stream is as follows:
The following is the list of valid commands recognized by the CP:
The following is the data portion format for each command:
CHAL
The CP responds to a CHAL request with the following base-64 encoded sequence:
DLK0, DLK1
The key field must be identical between two successive requests of DLK0 and then DLK1 for the key deletion to happen.
WIPE, SURE
There is no data for WIPE and SURE. The two commands must be issued back to back, and the SETAC ASTRONOMY pin must be active.
PKEY
The response to this is as follows:
RFC2440 section 5.5.2-compliant version 3 public key subkey packet, terminated by EOF 1 byte N/A (constant, 0xD)
VERS
There is no data associated with the request.
The response to this is as follows:
ALRM
The alarm only sets the alarm time as the offset from the current time in seconds. This is because the real time clock in the CP is only relative to boot, and cannot be set to match absolute time.
4 bytes in seconds provides a little more than 118 years of forward looking time alarm setting. The CP does not handle overflow on this field. The possible responses from the CP on attempting to set the alarm are:
The string “OVFW” on return means that the alarm setting failed and the field overflowed. The string ASET confirms that the alarm setting was successful.
Note that once the alarm is set, the host gets rebooted even if the host is still on. This should not be used as the “nominal wakeup” alarm. It should just be used as alarm to power the system back on before going into deep sleep alarm.
DOWN, RSET
These commands have no data associated with them, and they immediately take effect.
TIME
This command has no data associated with it. The response is as follows:
CKEY
This command has no data associated with it. The response is as follows:
SNUM
This command has no data associated with it. The response is as follows:
HWVR
This command has no data associated with it. The response is as follows:
PIDX
The response is as follows:
Unrecognized Commands
In the case of an unrecognized command, the CP responds with the string “CMD?” if an unrecognized command is caught. Command parsing is self-synchronizing to the EOF character, so only one “CMD?” response will be received per malformed request.
Command requests that are too long are not honored even if all the other fields are valid. The response to dishonored commands is simply “CMD?” as well.
Backdoors and Test Routines
These routines may be included in the CP during test and development. They should either be removed and verified and removed, or evaluated as not a threat if they remain in place.
A random number can be retrieved from the CP by issuing a “RAND” string similar to other commands. This isn't harmful per se but it could facilitate attacks on the random number generator if the implementation is flawed. It should be removed before production.
The ADC value of channel 2 at the current time can be requested by the CP for testing purposes by issuing an “ADVL” string similar to other commands. The channel 2 ADC value is significant because its LSBs are used in the random number generator as an entropy source. The actually value used by the random number generator is never retrieved, but there is a possibility of some time correlation between the ADC value and the value used by the random number generator. This should be removed before production.
Specifies of CP Key Map
The CP as implemented for production (major version 3, corresponding to spec 1.2) contains the following types of keys:
24 (twenty four) 1024-bit private keys with CRT remainders+PID pairs
128 (one hundred twenty eight) 16 byte OK's
1 (one) 2048-bit AQS public key slot
16 (sixteen) 16 byte entropy seeds
1 (one) 16 byte hardware version code register
1 (one) 16 byte serial number register
1 (one) 16 byte device unique ID
Embodiments of the invention relate to a process and associated system for facilitating registration of a portable device (e.g., Chumby device) to a service provider or system (e.g., the service provider 106).
Processes and associated systems as described below may be used to provide a service provider with user identification information as well as a device specific ID such as a GUID or putative ID and/or other information.
Attention is now directed to
As shown in
A user of a portable device 4610 may also be provided with a registration grid reference pattern 4730. The registration grid reference pattern may be provided via a web page to which the user may be directed, or may be provided by other means. In an exemplary embodiment a user is directed to a web page associated with the service provider 106. The web page displays a reference pattern from a set of possible reference patterns, such as the example pattern shown in registration grid pattern 4730. The registration pattern will have a specific arrangement of blank spaces and selection objects. For example, in reference pattern 4730 there are 16 total entry spaces, with nine blank spaces and seven spaces containing selection objects (in the form of black dots).
The number of blank spaces and selection objects provided on the registration pattern may vary, as may the specific positions of blank spaces and selection objects. In a typical embodiment the patterns on reference pattern 4730 will change over time so that a particular user will be presented with a temporally unique pattern that may change based on the user, the time of day, or other parameters. Also, trivial patterns may be omitted, such as patterns including all, none, or only a few selection objects, patterns with known shapes such as rectangles, crosses, X patterns and the like, and other patterns that would be readily apparent to predict. In some embodiments a set of available reference patterns may be provided to one or more users in a specific time period, wherein the available grid patterns may be provided in a particular sequence or at random. Reference patterns may be recycled over time; however, reference patterns will typically be temporally unique so that the same active pattern is not presented to two or more users at the same time.
The registration process may continue by merely allowing the user to enter selection objects or by providing a prompt to the user to enter the selection objects of reference pattern 4730 onto the blank grid 4710 on the user's portable device 4610. The user may then interact with portable device 4610 to enter the reference grid pattern onto the grid of portable device 4610. This may be done by a variety of means such as by allowing a user to contact a touch sensitive screen or display, using a pointing or contact device, a mouse, switch, rotational selector, motion sensor, or by other means of providing input to the portable device such as are described herein or are known in the art. The goal is to have the user enter the reference pattern 4730 to the blank grid 4710 on the portable device so that the pattern on the device 4740 matches the reference pattern 4730.
The device may provide means, such as a switch, touch screen menu item, submission button, mouse click, motion sensor, or other means for submitting information to the registration server or other servers. Once the user has entered the grid pattern onto the device 4610, the user may submit the grid pattern to a system server such as a reference server 4630 as shown in
As shown in
1—go to www.chumby.com
2—if you already have an account, log in; if not, then create an account
3—from the “MY CHUMBY” page, select the “Register a new chumby” link and follow the instructions provided on the page
Once the user has navigated to the registration web page or otherwise accessed registration information and logged on as required, the user may then be provided with a reference pattern at stage 4814, such as reference pattern 4730 as shown in
The device may provide means, such as a switch, touch screen menu item, submission button, mouse click, motion sensor, or other means for submitting information to the registration server or other servers. Once the user has completed entry of selection objects, the user may submit a request, at stage 4825, to send the user entered pattern to the registration server. The portable device may then receive the user's submitted request at stage 4825. Prior to transmission of the information by the portable device, one or more additional steps may occur. At stage 4830 one or more modules on the portable device may encode the user input grid pattern along with other information such as a device ID, information on the user, or other related information. It is noted that this step need not be done after the user's submission request, and data may be encoded and or otherwise processed dynamically during proceeding steps as the data is entered and/or the grid pattern is filled in. The encoded information may be in the form of an instance of a data object, conforming to a predefined data structure, to be transmitted to the registration server. At stage 4835 the portable device may optionally sign the encoded data using, for example, a private key on the portable device and/or may optionally encrypt the data using encryption methods known in the art. In an exemplary embodiment the data sent to the registration server includes the encoded (and optionally signed and/or encrypted) grid pattern and a unique device ID.
In embodiments where the data is signed, a signature verification stage 4850 may be performed at the server, where the signature is checked for validity. If a signature is determined to be invalid, the user may then be presented with an error message on the portable device and/or on the web page at stage 4855. Execution may then be returned to initial stage 4810 where the user may once again be presented with an empty grid, and the process repeated, typically with a new reference pattern 4730 provided to the user.
Alternately, if the optional signature is validated and the data is not encrypted, the process may continue to stage 4860, where the user supplied grid pattern may be compared to the provided reference pattern.
In embodiments where the data is encrypted, a decryption stage 4857 may be performed at the server. If the server is unable to decrypt the data, the user may then be presented with an error message at stage 4859. Execution may then be returned to initial stage 4810 where the user may once again be presented with an empty grid, and the process repeated with a new reference pattern 4730 provided to the user.
Alternately, if the optionally encrypted data is validly decrypted, the process may continue to step 4860, where the user supplied grid pattern may be validated by being compared to the provided reference pattern.
In an exemplary embodiment of step 4860, the user supplied grid pattern is compared to active reference patterns on the registration server for a match. Registration patterns will typically be active and valid for a period of time after they are provided to a user for registration; however, patterns typically will be timed out after a predetermined period.
If the user supplied grid completely matches the reference grid, the match is deemed valid. Alternately, in some embodiments a score may be assessed to the match, wherein a less than complete match with sufficient score to indicate likelihood of validity may be used. In either scenario, if the user supplied grid fails to adequately match the reference grid the submission may be rejected at stage 4860 and execution transferred to stage 4865 where an error message is presented to the user on the portable device, web page, or both.
Assuming a valid match has been detected at stage 4860, execution may then continue to stage 4870, where the registration information may be saved in a database. In an exemplary embodiment the database is a database associated with user accounts, and the database entries include information about the user as well as a unique device specific ID. In conjunction with storage of this information in the database, a successful registration message may be provided to the user at stage 4880. The successful registration message may be provided to the user on the portable device, on the web page, or by other means of distribution.
In some embodiments, a portable device and associated system may include features and functions associated with alarm tone selection, purchase, subscription, distribution, and/or playback. As described in this section, a portable device refers generally to a user personalizable portable device, as denoted elsewhere herein as a Chumby device or personal device; however, the scope of a personal device as described in this section is not so limited, and other embodiments on other types of portable or fixed devices, such as personal computers, cellular phones, PDAs, or other types of devices supporting the described functionality, are within the spirit and scope of the present invention. Such a personal or portable device may also be described merely as a “device” in this section for purposes of brevity.
As described herein, alarm tones refer to audible, visual, or combined audible and visual content that may be rendered by a portable device (e.g. “played”) to provide portable device users or others with an indication of an alarm or other predefined event. Examples of alarm tones include content such as audio provided by audio clips, hardware provided audible indications (such as buzzer or speaker clicks, buzzes, and the like), still images provided by image/photo files, video provided by video clips, multimedia content provided by combined audio/video clips and/or combined audio, video or image clips, and multimedia content provided by other types of multimedia files and multimedia formats. Content may be in the form of standard or proprietary file types/formats such as jpg, png, gif, mp3, aac, wav, mpeg video formats, h.263, h.264, On2 vp6, avi, or other standard or proprietary image, audio, video, and audiovisual or multimedia formats. These various types of content and associated files may also be described collectively as media files. In some embodiments, content may include media files stored on the user's personal device or on a separate system that is identified and/or accessed by a reference to the content's location, such as a URL or other content reference to a local or remote source location, and/or rendered from the referenced content's location.
Alarm tone features and functionality generally relate to the ability of a user of a portable device to select alarm tone content to be associated with one or more applications (also denoted herein as “widgets”) such as alarm clock widgets, meeting applications, such as meeting time clocks, calendars, or other scheduling or event triggering applications, or other applications having functions related to notifying a user of a particular time and/or event. The content may be rendered (i.e., played back on the device) by the alarm widget when a particular predefined event occurs, such as a wakeup alarm in an alarm clock widget. In some embodiments where content is identified by a reference such as a URL, the content may be downloaded and stored on the device before playback time or may be downloaded and/or directly rendered from the reference's location at playback time. Alternately or in addition, in some embodiments alarm tone features may be associated with to a dedicated alarm system implemented in the portable device which enables the user of the device to select alarm tone content to be associated with one or more user configured alarm events. This dedicated alarm functionality may be provided in hardware in the device, in software, such as in the device's operating system or an application program, or in a hardware/software combination module in the device. In some embodiments, this dedicated alarm functionality may be provided separately from any widgets or other application programs running on the device.
The predefined event may be any event associated with triggering a user alarm or other user indication and may be provided by or triggered by an action internal to the device (such as a timeout or other time signal in the device itself), or by an action external to the device, such as an action triggered by a separate external device or external application. For example, an event may be triggered by the action of another device coupled to the user's device via the service provider network or another network, or may be triggered by an application associated with another user, such as another user on the service provider network.
It is noted that the alarm tone functionality as described herein may also be applied to a range of other types of applications where media files such as images, audio, video, or multimedia content may be presented to a user. This alternative functionality may be applicable to any number of applications where users are presented with image, audio, video, or multimedia content in conjunction with the occurrence of a selection, event, or other input or output associated with the application (collectively denoted as a “predefined event”). In some implementations, where content use is not authorized, such as when a user does not own, license, subscribe to or otherwise have authorization to use selected content, the user may be still be able to use the selected content with limited functionality for a “trial” period, after which content functionality may be disabled and/or the content removed if the content is not purchased or licensed for use by the user. Alternately or in addition, in some embodiments a user may be allowed to purchase or license content so that it is usable for a limited or finite duration, such as by allowing a discounted purchase price for content limited to playback for a week, month, year, number of plays, or based on other content limitation criteria such as is described elsewhere herein. Alternately or in addition, in some embodiments a user may be allowed to subscribe to a service that provides access to a range or collection of content, which may remain static or which may be updated over time by the content provider or other content manager or curator.
In addition, alarm tones and associated functionality may optionally be provided by a first portable device user (also denoted herein as a primary user) to other devices associated with other users (also denoted herein as affiliated or associated users). Affiliated users may include other users of portable devices on common systems, such as affiliated users of Chumby devices on a Chumby System and Chumby (or other) Network as is described elsewhere herein. In an exemplary embodiment, a primary user may be provided with the ability to select and send content and/or a reference to content to affiliated users, such as, for example, other users on a primary user's “buddy” or personal contacts list. The affiliated users may then be able to receive the content and/or reference to content, have the content and/or reference stored on their portable device, have the content and/or reference associated with one or more applications or dedicated alarm events on their portable device so that the content may then be played back in conjunction with the application or dedicated alarm event, and purchase, license or subscribe to use of the content if so desired. In some implementations, where an affiliated user does not own or have authorization to use the provided and/or referenced content, the affiliated user may be able to use the provided and/or referenced content with limited functionality, such as for a “trial” period, after which content functionality may be disabled and/or content and/or reference removed from the associated user's device.
Attention is now directed to
a illustrates an embodiment of a process comprising a series of stages for enabling alarm tone functionality. As shown in
Once the user has selected content for use, the selected content may be screened for authorization of use, such as based on the user's ownership, licensing, subscription or other use authorization at stage 4920. Content owned by a user will generally be allowed to have unlimited playback capability on the user's device, whereas purchasable or licenseable content provided by third parties will generally be allowed only limited playback functionality or no playback functionality if the content has not been purchased, licensed or subscribed to, or is not otherwise authorized for use. As used herein, “owned” content generally refers to content that is owned, licensed or subscribed to for use by the owner or other user of the device, content created by the owner or user of the device, or content that is otherwise authorized to be used on the device without restriction. In some embodiments, content that is owned based on a subscription or license, rather than purchased without restriction, may include additional restrictions or limitations on use, such as playback duration restrictions, use restrictions or other restrictions. Conversely, non-owned content generally refers to content that is not owned by the owner or user of the device or is not otherwise authorized to be used without a purchase, license, subscription or other authorization. As noted previously, non-owned content will typically be made available for purchase, license or subscription and distributed by or through functionality provided by a service provider associated with the device or by another third party and will typically be restricted or precluded from use until the content is purchased, licensed, subscribed to or otherwise authorized for use.
Once content is selected, a playback duration may be associated with the content, where user owned content will typically be set by default to an unlimited playback duration, and non-owned content may be set to a limited duration or may be excluded from playback entirely. These playback durations may be set by default and/or may be modified by the user or service provider based on user input or content purchase (as used in this section, purchase of content generally refers to both purchase of content as well as licensing or subscription of the content for use). For example, stage 4920 may be provided to test for content usage authorization and provide branching to an optional sub-sequence of stages providing an interface to allow users to preview and/or purchase content that is not owned or authorized for use by the user and also establish and/or set playback limitation criteria, such as playback duration, for content that is not owned or purchased by the user. As used herein, purchased content generally refers to content that is purchased without restriction, as well as content that is purchased in the form of a license, subscription or other purchase mechanism that provides either unlimited or limited use of the content by the user. Assuming a user does not own the selected content, upon branching to stage 4922, the user may be provided with an interface to purchase the content. This may be done by prompting the user for purchase information directly on the user's personal device, redirecting the user to a web page or other mechanism of content purchase, or by other means of content purchase as are known or developed in the art. Once the content is purchased, it may be marked or identified as purchased or owned content on the device and/or on another system, such as a system provided by an associated service provider. In one embodiment, the portable device may be configured so that content purchased from a service provider or third party may be purchased directly from a user interface on the portable device by using, for example, a selection button, menu items, or user selectable options provided on a portable device display screen or other interface to implement the purchase. This process may be facilitated by the security/authentication procedures and/or registration procedures described herein and in the related applications. Once purchased, the selected content may then be downloaded and/or streamed to the device either automatically or through user interaction with the device. The content may be stored directly on the device and/or may be accessed through a reference, such as a URL, at the time the content is needed.
Stage 4924 may then be provided wherein playback limitation criteria and limitation constraints may be set (such as, for example, limiting the number of plays, playback time intervals, playback dates and times, quality, or by limiting other functionality of the content during playback—these limitations may be denoted collectively herein as the “playback duration” for brevity) if the user chooses not to purchase the content and/or the user purchases limited playback duration or functionality. For example, in some embodiments content playback for non-owned content may be limited in the number of instances that can be played (i.e. a user can play the content a fixed number of times, such as three times). Alternately and/or in combination with the above, the playback time interval may be limited (i.e., a three minute song may only be allowed to play for a portion of the three minutes, such as for thirty seconds of the total three minutes). Another configuration that may be used alone or in combination with those described above is limiting playback for a fixed time or date period (i.e., non-owned content may be limited to playback for a period of one week from first use, where a user can play the content an unlimited amount of time during the one week period). It is apparent that various combinations of the above playback limitation criteria, as well as other playback limitation criteria not explicitly described above, may also be employed in various embodiments. Alternately, if the user owns or purchases the content, playback will typically be set to be unlimited in instances and time, and will typically not be limited in quality. In some embodiments, if the user chooses not to purchase the content, the content may be identified as being non-owned and playback capability of the content may be terminated and process 4900 may be exited, with return to execution of another application on the device. In this case, a default alarm tone may be used for alarm functions on the device in place of the non-owned content.
Once the content purchase stages are completed, execution may then be returned to optional stage 4930 wherein the portable device may provide a user interface including a selection, display, button, or other means for a primary user to select one or more affiliated users to receive the selected content for playback on their portable devices. An embodiment of this sub-process is further detailed below in conjunction with
Once the content is selected and ownership and/or playback limitation criteria are determined, configured, and set, the content may then be associated with one or more applications at stage 4940. In a typical embodiment the applications will be widgets associated with an alarm function or functions; however, content may also be associated with other types of applications where image, audio, video, or multimedia content may be used. Alternately or in addition, the content may be associated with a dedicated alarm system implemented on the personal device.
Following this association in stage 4940, whenever an application on the portable device desires to play the selected content, the content playback limitation criteria may be assessed at stage 4950, and if no constraints are placed on content playback (i.e. if the content is owned or purchased by the primary user or is otherwise authorized to be used and the playback duration has not been exceeded) the content may then be played in conjunction with the associated application at stage 4960 when a triggering event or action occurs. Alternately, if content playback limitation criteria have been exceeded, such as, for example, is described above with respect to playback duration parameters such as the number of plays, duration of play, or time period of allowable play, the user may be provided with a user interface to facilitate purchase of the content at stage 4952, and may be prompted to purchase the content via a selection display, button, web page, or other mechanism for facilitating purchasing the content. If the content is purchased at stage 4954 the user may then be redirected to stage 4960 where the content remains associated or is again associated with the user's selected application or applications, and playback duration will typically be set to be unlimited in instances, time, and quality. Alternately, if the user chooses not to purchase the content, the content playback and/or application associations may be disabled and/or content removed from the portable device at stage 4956. Execution may then exit process 4900 and resume with another application on the device. In some embodiments the user may alternately be allowed to purchase the content for a limited playback duration, in which case the playback duration will be set accordingly. Alternately or in addition, if the content is associated with a dedicated alarm system implemented in the personal device and if the content playback limitation criteria have been exceeded, then the device may play/render a default alarm tone to indicate the occurrence of the associated alarm event.
b illustrates additional optional aspects of an embodiment of the present invention directed towards sharing content with other devices and/or users. As described above, a primary user may be provided with user interface having a button, display option, menu selection item, or other means to prompt for sending content to affiliated users and select and facilitate providing the selected content to the affiliated users. This selection item may be provided on the primary user's device or may be provided in conjunction with a web page or other application provided by a service provider associated with the primary user's device. Upon input provided by the primary user to send content to an affiliated user or users, the affiliated user or users may first receive content or a request to provide content from a primary user at stage 4970. The content and/or request to provide content may come from a primary user at stage 4930 as shown in
Enablement of execution of received content may be checked at stage 4972 by, for example, checking whether a flag, register, or other object is set or cleared to allow for receipt of content from other users in general, or from specific users that may be uniquely selected and/or otherwise identified. If third party content receipt is not enabled, the content provision process may then be terminated and/or execution returned to other applications or widgets at stage 4973 as would normally be done on the portable device.
If third party content reception is enabled for the affiliated user, execution may continue by optionally examining content for ownership and/or use authorization at stage 4974. If content is owned by the affiliated user and/or full use is authorized, the affiliated user will generally be allowed unlimited use of the content and unlimited content playback duration. Alternately, if the content is not owned and/or use authorized by the affiliated user (as will typically be the case), execution may continue to stage 4976, where the affiliated user's portable device may provide a selection option, button, display, menu item, or other means of allowing the affiliated user to purchase the content at stage 4976. In a typical embodiment the affiliated user will be provided with an option to purchase the content directly from their portable device as was described previously.
Playback limitation criteria may then be set at stage 4978, where, for example, an affiliated user's purchase of the content will typically allow unlimited playback, or, if the affiliated user chooses not to purchase the content or purchases some limited functionality, playback will be limited based on parameters such as those previously described with respect to stage 4924. These may include playback limitation based on number of playbacks, duration of playback, time period of playback, quality, or other playback limitation criteria. In some embodiments, playback on the affiliated user's device may be disabled.
Execution may then continue to stage 4980 where the provided content may be associated with one or more alarm features or functions, or with other applications that may use the content. When an application on the affiliated user's portable device then desires to play the content, the playback limitation criteria as set at stage 4978 may be checked at stage 4982, and the content may be played back at stage 4988 if the playback limitation criteria have not been exceeded. Alternately, if the playback limitation criteria have been exceeded, the portable device may then notify or prompt the affiliated user that playback limitations have been exceeded, and may provide the user with a button, selection, menu item, or other means to allow the affiliated user to purchase the content at stage 4984 for continued use. In a typical embodiment the affiliated user will be provided with an option to purchase the content directly from their portable device. Alternately or in addition, if the content is associated with a dedicated alarm system implemented in the personal device and if content playback limitation criteria have been exceeded, then the device may play/render a default alarm tone to indicate the occurrence of the associated alarm event.
The content may then be checked to see whether it has been purchased at stage 4986, and if it has been purchased, execution may be resumed at stage 4988 with the playback limitation criteria typically configured to allow unlimited playback. Alternately, if the affiliated user has chosen not to purchase the content, playback and association of the content at stage 4990 with the one or more applications to which it had been previously associated may be disabled and/or the content deleted, and normal portable device operation resumed.
Referring now to
As shown in
A user account server 714 maintains user account data and provides authentication services to the other servers depicted in
One or more widget servers 718 are used to serve widgets to Chumby devices 102. Each widget server 718 will typically be sufficiently powerful to encrypt and sign widgets on demand. In addition, each server 718 will be configured to “store-and-forward” widgets being sent from one user to another.
The service provider 106 may also utilize a number of content servers 724 to provide information (e.g., new, weather, stock market information) to Chumby devices 102. In an exemplary embodiment all content servers function in a “pull” mode of operation; that is, Chumby device 102 polls the applicable content server 724 for new data on some periodic basis. Each response from a content server 724 preferably contains the schedule and frequency for subsequent polls. For example, a content server 724 disposed to provide stock market information can change the polling frequency to reflect whether or not the stock market is open. In other implementations a Chumby device 102 may be provided with the capability to change polling frequencies on the basis of, for example, environmental conditions (e.g., ambient room brightness) or other factors. One or more of the content servers 724 may be used for serving certain types of content uploaded by users for use on their own or other Chumby devices 102 and stored within the system database 712.
The Chumby service provider 106 will typically maintain a small number of load-balanced Network Time Protocol (NTP) servers 730 to provide time to Chumby devices 102. Each such server 730 will be configured to fetch their time from a “primary” NTP server, which fetches time from an upstream external public NTP server. If the primary NTP server 730 is inoperative, secondary NTP servers 730 will synchronize with a random selection of upstream servers. If all servers 730 are unavailable, a Chumby device 102 will either fetch time information from random public NTP servers or simply have its time adjusted via user input. In one embodiment each Chumby device 102 requests time upon connecting to the Internet and at jittered intervals thereafter, no more frequently than once a day.
Turning now to
In one embodiment the user registration and account creation process is initiated by a user through submission, via a Web browser 122, of a Chumby ID so as to identify a particular Chumby device 102. The act of creating a user account results in the construction of a default profile and one or more widget instances, each of which is automatically assigned to the Chumby device 102 (as identified by its Chumby ID) currently being registered. When a user adds a widget to the user's profile, the user is presented with a list of potential categories based upon information within the categories table. The user then selects a category from the categories table, and the user is presented with a list of widgets belonging to the chosen category. After the user chooses a widget, a widget instance is constructed and information is entered into the appropriate fields (e.g., profile id, widget id, index). The user is then presented a user interface via the Web browser 122 for editing the widget-specific parameters associated with the selected widget. In response to the user's parameter selections, records are appropriately updated in the parameters table.
In general, it is contemplated that embodiments of the invention will be implemented such that each Chumby device 102 will function as a client relative to various servers existing within the Chumby service provider 106. In these embodiments the Chumby devices 102 do not engage in direct communication with each other, but may do so via independent client-sever relationships established with the service provider 106. In this way the service provider 106 may facilitate the communication of a variety of different types of executable files (e.g., widgets or other computer programs, audio clips, short “Flash” movies, etc.) among Chumby devices 102, subject to the permission of the content owner and potential recipient. A user may designate that a widget or other content be sent to another user, or to the members of a user's “buddy list” or the like. This designation may be made via a Web browser 122 in communication with the service provider 106, or directly through the interface of the user's Chumby device 102.
In one embodiment executable files may be created by users of Chumby devices 102 or other third parties and loaded within the system database 712 after being approved by the entity operating the service provider 106. Once a widget or other executable file has been created and stored within the system database 712, it is made available for use by all those users of Chumby devices 102 that have been granted the requisite permission. Various schemes for granting permissions among and between users are possible. For example, one such type of permission could entail that any user X that is given permission by a user Y to send widgets to user Y's Chumby device may select any widget for which user X has usage rights and “send” such widget to user Y's Chumby device. Other restrictions could be placed on the transferability of widgets or other files from the service provider 106 to a Chumby device at the request of another user. For example, a user could be provided with the capability to “lock” certain widgets on only the user's Chumby device, or a Chumby device could reach a “full” state and advertise itself as being incapable of receiving any additional widgets.
Although widgets and other executable files could be transferred between the service provider 106 and Chumby devices 102 in a number of different formats, in one embodiment such transfers will occur in the Flash movie format (i.e., as .swf files, when not signed or encrypted). In this case the process for downloading widgets from the service provider 106 includes receiving a notification at a Chumby device 102 that a “new” widget is ready for downloading. Since in the exemplary embodiment each Chumby device 102 acts in a “pull” mode, each device 102 periodically polls the service provider and inquires as to whether any configuration changes are available to load. In the case in which a new widget is available for downloading, the Chumby device 102 will generally use standard HTTP (or HTTPS) protocols in downloading the applicable widget file.
Attention is now directed to
Each Chumby device 102 will have a unique GUID. Time codes will be represented in ISO-8061 format.
Requesting a Chumby Configuration
Referring to
As shown in
http://server.chumby.com/xml/chumbies/CB6A8A20-DFB8-11DA-98FA-00306555C864
The service provider 106 receives the request (stage 904), and retrieves the requested configuration from the system database 712 (stage 908). If the requested configuration exists, the service provider responds with an XML-based configuration; if not, the service provider 106 responds with an XML-based error message (stage 912). An exemplary XML-based response generated by the service provider 106 is given below:
Once the response is received by the Chumby device 102, it is processed by the Master Controller (stage 916). If an error is instead received, it is processed by the Master Controller as well (stage 920).
Requesting a Profile
Referring to
As shown in
http://server.chumby.com/xml/profiles/00000000-0000-0000-0000-000000000001
The service provider 106 receives the request (stage 1004), and retrieves the requested profile from the system database 712 (stage 1008). If the requested profile exists, the service provider responds with an XML-based profile; if not, the service provider 106 responds with an XML-based error message (stage 1012). An exemplary XML-based response generated by the service provider 106 is given below:
Once the response is received by the Chumby device 102, it is processed by the Master Controller (stage 916). If an error is instead received, it is processed by the Master Controller as well (stage 920).
Each Profile has a name, a description, a skin, and a list of “Widget Instances”. The Profile will be periodically refetched in order to reflect changes made by the owner, for instance, adding and removing Widget Instances.
The Chumby device 102 processes each Widget Instance in turn, fetching the settings for each widget, and the Widget itself, and displays the Widget with the settings encapsulated by the Widget Instance.
A process similar to that described with reference to
An exemplary XML-based response corresponding to such a request which contains the updated profile could be provided by the service provider 106 as follows:
Widget Instance Upload/Download
Turning now to
As shown, the widget instance change operation is initiated when the Chumby device 102 sends an HTTP POST and an XML request to a widget instance object within the system database 712 maintained by the service provider 106 (stage 1102). This type of “UPLOAD” operation informs the service 106 that the parameters of a specific widget instance have been updated by the applicable user. As shown, the updated parameters are received by the service provider (stage 1104), and are attempted to be written to a corresponding widget instance object within the system database 712 (stage 1108). If this attempted write operation is unsuccessful (stage 1112), the service provider 106 responds with an error message that is processed by the requesting Chumby device 102 (stage 1120). If the write operation is successful, the newly updated widget instance are retrieved from the system database 712 (stage 1116) and sent to the applicable Chumby device 102 (stage 1120).
Once received, the widget instance is processed by the Chumby device 102 (stage 1124). In general, the processing of the parameters contained in a widget instance are dependent upon the characteristics of the particular widget. In certain cases the parameters may be sufficient to enable the widget to display information, while other widgets may use the parameters to fetch content from another service. As an example of the former, consider a “clock” widget capable of displaying information following receipt of a parameter indicating a time zone. In contrast, a “stock widget” may have stock symbols as parameters and use such symbols to fetch quote information.
Referring now to
http://server.chumby.com/xml/widgetinstances/5D81823A-E77D-11DA-B4BD-00306555C864
The service provider 106 receives the request (stage 1204), and retrieves the requested parameters from the system database 712 (stage 1208). If the requested parameters exist, the service provider 106 responds with an XML-based widget instance message (stage 1212). Using the example of a weather widget, which utilizes a zip code to identify the location for which weather is to be retrieved, such a message could comprise:
The Chumby device 102 uses the GUID in the “widget” tag to fetch the information about the Widget to be displayed. Once the widget has been started, it is passed the name/value pairs in the “widget parameters” section, in order to customize the behavior of the widget.
If the requested parameters do not exist, a default widget instance is attempted to be retrieved from the system database 712 (stage 1224). If such a widget instance exists (stage 1228), the service provider 106 responds with an XML-based parameters message that is processed by the Chumby device 102 upon receipt (stage 1220). If such a default widget instance does not exist, an error message is returned to the Chumby device 102 (stage 1232).
Downloading a Widget
Referring now to
http://server.chumby.com/xml/widgets/BF4CE814-DFB8-11DA-9C82-00306555C864
The service provider 106 receives the request (stage 2704), and attempts to retrieve the requested widget description from the system database 712 or other data source available to the service provider 106 (stage 2708). If the requested widget description is able to be retrieved, the service provider 106 responds with an XML-based widget description message; if not, the service provider 106 responds with an XML-based error message (stage 2712). An exemplary XML-based response generated by the service provider 106 is given below:
Once the requested widget description is received by the Chumby device 102, the Chumby device 102 uses the URL referencing the “movie” for the requested widget to download the movie (e.g., .swf) file from the service provider 106. The Chumby device 102 sends an HTTP GET request containing the GUID of the requested movie to a specific movie object within the system database 712 maintained by the service provider 106 (stage 1320). An example of such a request is provided below:
http://server.chumby.com/xml/movies/BF4CE814-DFB8-11DA-9C82-00306555C864
The service provider 106 receives the request (stage 2724), and attempts to retrieve the requested movie from the system database 712 or other data source available to the service provider 106 (stage 2728). If the requested movie is able to be retrieved, the service provider 106 responds with the .swf file which implements the movie; if not, the service provider 106 responds with an XML-based error message (stage 2732). Once the requested movie is received by the Chumby device 102, it is loaded by the Master Controller and queued for subsequent execution (stage 2736). If an error is instead received, it is processed accordingly (stage 2740).
Requesting Content
Referring now to
http://content.chumby.com/tides/United %20States/National %20City %2C %20San %20Diego %20Bay %2C %20California
The service provider 106 receives the request (stage 1304), and attempts to retrieve the requested content from the system database 712, internal content service, external content service or other data source available to the service provider 106 (stage 1308). If the requested content is able to be retrieved, the service provider 106 responds with an XML-based content message; if not, the service provider 106 responds with an XML-based error message (stage 1312). Once the requested content is received by the Chumby device 102, corresponding audiovisual output is generated by the device 102 for the benefit of its user (stage 1316). If an error is instead received, it is processed accordingly (stage 1320). An exemplary XML-based response generated by the service provider 106 is given below:
In the case where content is retrieved directly from an external content service provider (i.e., from other than the service provider 106), a series of web-based transactions (most likely HTTP and/or XML-based) defined by such content service provider will take place between the Chumby device 102 and such provider.
Chumby devices 102 may optionally include a hardware security module, which in one implementation is accessed via a character driver interface in the operating system (“OS”) of the device 102. The module may or may not be installed. When the module is not installed, the OS preferably virtualizes the hardware security module by emulating it in software. While losing all the security benefits of a hardware module, this feature enables cost reduction savings while maintaining protocol interoperability with a secured system.
The hardware security module of a Chumby device 102 may be implemented in a number of ways. As an example, the hardware security module may be implemented using a cryptographic Smart Card module. This module, or its emulated counterpart, is capable of at a minimum, the following operations: (1) storage of secret numbers in hardware; (2) the ability to compute public-key signatures; (3) the ability to compute one-way cryptographic hashes; and (4) the ability to generate crytographically trusted random numbers.
During the manufacturing process the hardware security module, or its emulated counterpart, is initialized with a set of secret numbers that are only known to the module and to the Chumby service provider 106. These secret numbers may or may not consist of public and private keys. If the numbers consist of public and private keys, then a mutual key-pair is stored by both the Chumby service provider 106 and the hardware module, along with a putative, insecure identifier number for the pair. Furthermore, these numbers are prefereably not recorded by the Chumby service provider 106 in association with any other identifying information, such as the MAC address for the WLAN interface, or any other serial numbers that are stored in insecure memory for customer service purposes.
When the user or service wishes to initiate a strong authenticated transaction, the Chumby device 102 sends the putative insecure key-pair identifier to the service provider 106. The service provider 106 looks up the putative insecure key-pair identifier and issues a challenge to the hardware module, consisting of a random number and time stamp encrypted by the public key whose private key is stored only inside the target hardware module. In particular, the challenge is packetized and sent through the Internet to the Chumby device 102. The device 102 unpacks the challenge and passes it directly to the hardware module. The hardware module decrypts the random number and time stamp, optionally hashing it, adds another time stamp and encrypts the entire message with the unique server public key associated with the putative insecure key-pair identifier. Again, this message is packetized and transmitted by the device 102 to the service provider 106 over the Internet. Upon receipt, the service provider 106 decrypts the message and verifies that the random number or its hash is valid, and that the timestamps are unique and increasing within a reasonable error bound. At the conclusion of this transaction, the service provider 106 has authenticated the device 102, and can fall back to any number of session keys that can be either dynamically generated or statically stored for further secured transactions. Advantageously, this authentication transaction does not involve uniquely associating the hardware module with user information. Rather, the service provider 106 is simply aware of the existence of the approved hardware module and upon completion of the authentication transaction may safely trust the integrity of the secrets stored therein.
A user of the device 102 may opt-out of privacy mode and provide identifying information, as required by some billing services such as credit cards and banks. Optionally, an anonymous cash-based transaction network can be established where accounts are opened and managed only by secrets contained within the hardware module.
To enable limited revocation of user-identifying information, the specific embodiment of the master authentication protocol should operate on a set of clean-room servers with a multiplicity of connections that are trusted by the Chumby service provider 106, and authenticated session keys are then passed on laterally to the content servers. Thus, the anonymity of the master authentication key is nominally preserved, although it is possible to recreate and correlate transactions from forensic logs and transaction timings. The use of multiple servers and multiple connections, along with network routing randomization techniques, can be used to increase the anonymization resistance to forensic logging (cf. Tor network), but this configuration is in no way essential to the network's operation.
Attention is now directed to
Initial Power-Up
In one embodiment a Chumby device downloads configuration information from the service provider 106 each time it is powered on or otherwise re-establishes communication with the service provider 106. However, a minimal amount of widget and configuration information may be locally stored on a Chumby device so that it may continue to function in the absence of network connectivity. For example, a clock widget may be permanently stored on a Chumby device so that its clock function could remain operational at all times. A Chumby device will typically include sufficient memory capacity to hold configuration information received from the service provider 106 for all of the widgets to be executed by the device, up to some reasonable number of widgets. If a user changes the configuration for a Chumby device through the Web site maintained by the service provider 106, a polling function implemented on the corresponding Chumby device will typically be used to “pull” the modified configuration information from the service provider 106. Alternatively, an operation may be manually initiated via the interface of the corresponding Chumby device in order to obtain this information (e.g., an “Update My Chumby Device Now” operation).
Touchscreen Calibration
Turning now to
Wireless Base Station Selection
During or prior to stage 1720 the user may also be provided with the opportunity to enter a desired channel/frequency and to select a mode of encryption (e.g., WEP, WPA, WPA2). Although
Registration
Referring now to
Account Association
In one embodiment user accounts are configured to be capable of hosting and moderating sub-accounts.
Disabling a Chumby Device
Referring now to
Mirroring a Chumby Device
Attention is now directed to
Overview of Widget Management Process
Turning now to
As shown in
Adding Widgets
If the user decides to exit the process of adding widgets to the current configuration, the user may perform one of several actions, including, but not limited to: select another Chumby device to configure; navigate to another page on the Chumby site; log out from the Chumby site; or close the applicable browser window (stage 2316). If the user instead chooses to save the current widget configuration for the applicable Chumby device (stage 2350), the user selects a “Submit”, “Commit”, “Ok” or similar button to cause any changes made to be recorded in the system database 712 (stage 2354). After either saving the current widget configuration or electing to exit the process, the user may be directed to a predefined page (stage 2360).
Widget Removal
Referring now to
Widget Configuration
In an exemplary embodiment the service provider 106 populates a corresponding widget and parameters tables within the system database in accordance with the user's parameter selections. In this regard the widget table may include an XML-based “param_desc_xml” field containing instructions enabling the construction of associated records in parameters table. For example, for a “clock” widget the XML-based instructions could indicate that a time zone should be a valid parameter, and could also be utilized to create appropriate records in the parameters table.
It is noted that in various embodiments the present invention may relate to processes such as are described or illustrated herein and/or in the related applications. These processes are typically implemented in one or more modules comprising systems as described herein and/or in the related applications, and such modules may include computer software stored on a computer readable medium including instructions configured to be executed by one or more processors. It is further noted that, while the processes described and illustrated herein and/or in the related applications may include particular stages, it is apparent that other processes including fewer, more, or different stages than those described and shown are also within the spirit and scope of the present invention. Accordingly, the processes shown herein and in the related applications are provided for purposes of illustration, not limitation.
As noted, some embodiments of the present invention may include computer software and/or computer hardware/software combinations configured to implement one or more processes or functions associated with the present invention such as those described above and/or in the related applications. These embodiments may be in the form of modules implementing functionality in software and/or hardware software combinations. Embodiments may also take the form of a computer storage product with a computer-readable medium having computer code thereon for performing various computer-implemented operations, such as operations related to functionality as describe herein. The media and computer code may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well known and available to those having skill in the computer software arts, or they may be a combination of both.
Examples of computer-readable media within the spirit and scope of the present invention include, but are not limited to: magnetic media such as hard disks; optical media such as CD-ROMs, DVDs and holographic devices; magneto-optical media; and hardware devices that are specially configured to store and execute program code, such as programmable microcontrollers, application-specific integrated circuits (“ASICs”), programmable logic devices (“PLDs”) and ROM and RAM devices. Examples of computer code may include machine code, such as produced by a compiler, and files containing higher-level code that are executed by a computer using an interpreter. Computer code may be comprised of one or more modules executing a particular process or processes to provide useful results, and the modules may communicate with one another via means known in the art. For example, some embodiments of the invention may be implemented using assembly language, Java, C, C#, C++, or other programming languages and software development tools as are known in the art. Other embodiments of the invention may be implemented in hardwired circuitry in place of, or in combination with, machine-executable software instructions.
The foregoing description, for purposes of explanation, used specific nomenclature to provide a thorough understanding of the invention. However, it will be apparent to one skilled in the art that specific details are not required in order to practice the invention. Thus, the foregoing descriptions of specific embodiments of the invention are presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed; obviously, many modifications and variations are possible in view of the above teachings. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, they thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the following claims and their equivalents define the scope of the invention.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 60/949,775, entitled SYSTEMS AND METHODS FOR ALARM TONE SELECTION, DISTRIBUTION, AND PLAYBACK IN A NETWORKED AUDIOVISUAL DEVICE, filed on Jul. 13, 2007. This application is related to U.S. Utility patent application Ser. No. 12/144,561, entitled SYSTEMS AND METHODS FOR INTERACTION WITH VIRTUAL WORLDS USING A PORTABLE DEVICE, filed on Jun. 23, 2008, to U.S. Utility patent application Ser. No. 12/142,630, entitled SYSTEMS AND METHODS FOR DEVICE REGISTRATION, filed on Jun. 19, 2008, to U.S. Utility patent application Ser. No. 12/131,809, entitled SECURITY AND AUTHENTICATION SYSTEMS AND METHODS FOR PERSONALIZED PORTABLE DEVICES AND ASSOCIATED SYSTEMS, filed on Jun. 2, 2008, to U.S. Utility patent application Ser. No. 11/953,756, entitled SYSTEMS AND METHODS FOR LOCATION, MOTION, AND CONTACT DETECTION AND TRACKING IN A NETWORKED AUDIOVISUAL DEVICE, filed Dec. 10, 2007, to U.S. Utility patent application Ser. No. 11/845,027, entitled SYSTEM AND METHOD FOR AUTOMATICALLY UPDATING THE SOFTWARE OF A NETWORKED PERSONAL AUDIOVISUAL DEVICE, filed Aug. 24, 2007, to U.S. Utility patent application Ser. No. 11/845,026, entitled SYSTEM AND METHOD FOR TRANSFERRING ELECTRONIC CONTENT TO NETWORKED PERSONAL AUDIOVISUAL DEVICES, filed Aug. 24, 2007, to U.S. Utility patent application Ser. No. 11/845,021, entitled NETWORKED PERSONAL AUDIOVISUAL DEVICE HAVING FLEXIBLE HOUSING, filed Aug. 24, 2007, to U.S. Utility patent application Ser. No. 11/845,018, entitled CONFIGURABLE PERSONAL AUDIOVISUAL DEVICE FOR USE IN NETWORKED APPLICATION-SHARING SYSTEM, filed Aug. 24, 2007, and to U.S. Provisional Patent Application Ser. No. 60/945,548, entitled SYSTEMS AND METHODS FOR INTERACTION WITH VIRTUAL WORLDS WITH A NETWORKED AUDIOVISUAL DEVICE, filed on Mar. 21, 2007. The content of each of these applications is hereby incorporated by reference herein in its entirety for all purposes. These applications may also be denoted collectively herein as the related applications.
Number | Date | Country | |
---|---|---|---|
60949775 | Jul 2007 | US |