Systems and methods for alignment techniques for magnetic cards and devices

Information

  • Patent Grant
  • 10022884
  • Patent Number
    10,022,884
  • Date Filed
    Thursday, October 13, 2011
    13 years ago
  • Date Issued
    Tuesday, July 17, 2018
    6 years ago
  • Inventors
    • Cloutier; Bruce S. (Jeannette, PA, US)
  • Original Assignees
  • Examiners
    • Gray; Linda L
Abstract
Cards may be populated with components and alignment cues. A fully populated card may then be laminated using either of a clear (e.g., transparent) laminate or an obscure (e.g., opaque) laminate. Visual and/or non-visual alignment cues within a card may be utilized to align a trimming and/or singulation device to the card. The card may be singulated and/or trimmed with the aligned singulation and/or trimming device to position one or more components of the card.
Description
BACKGROUND OF THE INVENTION

This invention relates to magnetic cards and devices and related systems.


SUMMARY OF THE INVENTION

A card may include a dynamic magnetic communications device, which may take the form of a magnetic encoder or a magnetic emulator. A magnetic encoder, for example, may be utilized to modify information that is located on a magnetic medium, such that a magnetic stripe reader may then be utilized to read the modified magnetic information from the magnetic medium. A magnetic emulator, for example, may be provided to generate electromagnetic fields that directly communicate data to a read-head of a magnetic stripe reader. A magnetic emulator, for example, may communicate data serially to a read-head of the magnetic stripe reader. A magnetic emulator, for example, may communicate data in parallel to a read-head of the magnetic stripe reader.


All, or substantially all, of the front surface, as well as the rear surface, of a card may be implemented as a display (e.g., bi-stable, non bi-stable, LCD, or electrochromic display). Electrodes of a display may be coupled to one or more touch sensors, such that a display may be sensitive to touch (e.g., using a finger or a pointing device) and may be further sensitive to a location of the touch. The display may be sensitive, for example, to objects that come within a proximity of the display without actually touching the display.


Input and/or output devices may be included on a card, for example, to facilitate data exchange with the card. For example, an integrated circuit (IC) may be included on a card and exposed from the surface of the card. Such a chip (e.g., an EMV chip) may communicate information to a chip reader (e.g., an EMV chip reader). An RFID antenna or module may be included on a card, for example, to send and/or receive information between an RFID reader and the RFID included on the card.


A card may include multiple buttons and each button may be associated with a different product or feature. Alternatively, for example, a card may include a single button, but that single button may be used to, for example, toggle between multiple products. For example, pressing a button on a card a first time may cause a first payment product to be communicated via a dynamic magnetic stripe communications device. Pressing that button on that card a second time may, however, cause a second payment product to be communicated via that dynamic magnetic stripe communications device. Accordingly, a user may utilize a single button to toggle between multiple payment products. Such payment products may include a debit product, credit product, gift product, pre-paid product, or any other type of product. For example, a card may include two credit accounts, where each credit account may be associated with a different association (e.g., Discover, MasterCard, Visa, American Express) or each credit account may be associated with the same association.


A card may be assembled as a combination of two or more circuit boards. A dynamic magnetic stripe communications device, for example, may be fabricated and assembled on a first circuit board while a second circuit board may be fabricated and assembled having other circuitry. For example, a card's processor, dynamic magnetic communications device driver circuitry, user interfaces, read-head detectors, light emitting devices, displays, batteries, and any other type of sensor, device, or associated circuitry may be fabricated on one or more other circuit boards.


A dynamic magnetic communications device may be fabricated on a flexible circuit board, for example, by providing a multiple layer flexible board (e.g., a two layer flexible printed circuit board). A coil for each track of information may be provided by including wire segments on each layer and interconnecting these wire segments through layer interconnections to create a coil. For example, a dynamic magnetic communications device may include two coils such that two tracks of information may be communicated to two different read-heads included in a read-head housing of a magnetic stripe reader. A dynamic magnetic communications device may include three coils such that three tracks of information may be communicated serially to three different read-heads included in a read-head housing of a magnetic stripe reader.


In manufacturing multiple boards dedicated to particular functions, functionality and reliability of each board may be verified separately before assembling. Once verified, one or more of the circuit boards may be mechanically and/or electrically coupled together via, for example, epoxy or conductive tape to form, for example, an electronics package. Such an electronics package may also include a dynamic magnetic communications device.


The electronics package may then be laminated to form a final card assembly. Such a lamination may occur, for example, in an injection molding process (e.g., a reaction injection molding process). A laminate may be, for example, a silicon-based material or a polyurethane-based material. The laminated card may then be provided to a personalization facility for personalization. During personalization, for example, a customer's personal data may be placed on the exterior of the card (e.g., printed, embossed, or laser etched) as well as programmed into a processor's memory of the card.


The process that may be used to laminate a card assembly (e.g., an injection molding process) may yield a final card assembly having non-conforming dimensions. Accordingly, a laminated card assembly may require a trimming process, such that geometric dimensions of the trimmed card assembly may meet predetermined physical characteristics.


Alignment cues may be integrated within the card assembly to align such a trimming process. Accordingly, trimming equipment may be aligned to such alignment cues to precisely define the physical dimensions of the trimmed card.


Alignment cues may be utilized to align one or more components of the card assembly (e.g., the one or more tracks of a dynamic magnetic communications device). In so doing, the one or more tracks of a dynamic magnetic communications device may be precisely aligned with one or more dimensions of the card assembly. Once all components of the final card assembly are aligned, placed, and laminated, alignment cues may be used to trim the final card assembly.


Automated processes may be utilized to manufacture card assemblies in large quantities. For example, a pick-and-place machine may be utilized to place one or more electronics packages onto a sheet of material such that once placed, a single sheet may contain multiple (e.g., 16) card assemblies. A dynamic magnetic communications device may be one of the electronics packages that may be placed onto each card assembly by a pick-and-place machine. One or more alignment cues may be utilized by the pick-and-place machine to obtain precise alignment of each electronics package.


A second sheet may be laminated over the sheet of card assemblies to form a continuous sheet of card assemblies, such that both sides of the sheet of card assemblies may be laminated. The continuous sheet of card assemblies may be singulated into individual cards via an automated singulation process. Alignment cues, for example, may be implemented within one or more of the card assemblies to align a singulation machine that may be operating during the automated singulation process. Accordingly, each individual card may be singulated from the sheet of card assemblies and may possess correct physical dimensions.


At least one alignment cue, for example, may be implemented within a sheet of card assemblies. In so doing, an automated singulation machine may train onto the single alignment cue to obtain one or more alignment coordinates that may be necessary to accurately singulate one or more of the card assemblies from the sheet of card assemblies.


An alignment cue, for example, may be implemented as a visual alignment cue, whereby optical indicia, such as notches and tick marks, may be implemented to aid alignment. An alignment cue, for example, may be implemented as a non-visual cue, whereby other indicia, such as electronic and/or magnetic signals, may be implemented to aid alignment.


Such non-visual cues may be required, for example, during singulation and/or trimming of one or more card assemblies that may be laminated with non-transparent laminate material (e.g., opaque laminate material). In so doing, singulation and/or trimming equipment may train onto the non-visual cues to effect accurate singulation and/or trimming processes without the need to optically train onto a visual cue.


Non-visual cues, for example, may be implemented during one or more assembly stages of a card assembly. For example, a magnetic material may be placed within a card assembly at any stage of the assembly process, such that the magnetic material may provide a magnetic alignment cue that may be detected and used to align, locate and/or place components for any remaining assembly processes. In addition, a magnetic alignment cue may be detected and used to align any trimming and/or singulation processes that may be performed after the assembly process is complete.


Electronic cues (e.g., RFID tags) may also be used as alignment cues. For example, an RFID tag may communicate positions of individual electronics packages on a particular card assembly. RFID tags, for example, may communicate alignment cues that may be indicative of positions of one or more card assemblies that may exist on a sheet of card assemblies. Accordingly, pick-and-place machines and/or singulation machines may receive the alignment cues communicated by such RFID tags and may perform their respective procedures in accordance with alignment coordinates received from the RFID tags.





BRIEF DESCRIPTION OF THE DRAWINGS

The principles and advantages of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same structural elements throughout, and in which:



FIG. 1 is an illustration of a card constructed in accordance with the principles of the present invention;



FIG. 2 is an illustration of a card constructed in accordance with the principles of the present invention;



FIG. 3 is an illustration of a card constructed in accordance with the principles of the present invention;



FIG. 4 is an illustration of a card constructed in accordance with the principles of the present invention;



FIG. 5 is an illustration of multiple cards constructed in accordance with the principles of the present invention; and



FIG. 6 is an illustration of process flow charts constructed in accordance with the principles of the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows card 100 that may include, for example, a dynamic number that may be entirely, or partially, displayed using a display (e.g., display 106). A dynamic number may include a permanent portion such as, for example, permanent portion 104 and a dynamic portion such as, for example, dynamic portion 106. Card 100 may include a dynamic number having permanent portion 104 and permanent portion 104 may be incorporated on card 100 so as to be visible to an observer of card 100. For example, labeling techniques, such as printing, embossing, laser etching, etc., may be utilized to visibly implement permanent portion 104.


Card 100 may include a second dynamic number that may also be entirely, or partially, displayed via a second display (e.g., display 108). Display 108 may be utilized, for example, to display a dynamic code such as a dynamic security code. Card 100 may also include third display 122 that may be used to display graphical information, such as logos and barcodes. Third display 122 may also be utilized to display multiple rows and/or columns of textual and/or graphical information.


Persons skilled in the art will appreciate that any one or more of displays 106, 108, and/or 122 may be implemented as a bi-stable display. For example, information provided on displays 106, 108, and/or 122 may be stable in at least two different states (e.g., a powered-on state and a powered-off state). Any one or more of displays 106, 108, and/or 122 may be implemented as a non-bi-stable display. For example, the display is stable in response to operational power that is applied to the non-bi-stable display. Other display types, such as LCD or electrochromic, may be provided as well.


Other permanent information, such as permanent information 120, may be included within card 100, which may include user specific information, such as the cardholder's name or username. Permanent information 120 may, for example, include information that is specific to card 100 (e.g., a card issue date and/or a card expiration date). Information 120 may represent, for example, information that includes information that is both specific to the cardholder, as well as information that is specific to card 100.


Card 100 may accept user input data via any one or more data input devices, such as buttons 110-118. Buttons 110-118 may be included to accept data entry through mechanical distortion, contact, or proximity. Buttons 110-118 may be responsive to, for example, induced changes and/or deviations in light intensity, pressure magnitude, or electric and/or magnetic field strength. Such information exchange may then be determined and processed by a processor of card 100 as data input.


Dynamic magnetic stripe communications device 102 may, for example, provide one, two and/or three tracks of magnetic stripe data upon receiving data input from one or more buttons 110-118 (e.g., magnetic stripe data may be communicated after detection of a housing of a magnetic stripe reader and after receiving data input from a button). Dynamic magnetic stripe communications device 102 may, for example, include alignment cue 124 that may provide alignment information for placement of one or more components of card 100. Alignment cue 124 may, for example, provide magnetic information for placement of one or more components of card 100.



FIG. 1 shows architecture 150, which may include one or more processors 154. One or more processors 154 may be configured to utilize external memory 152, internal memory of processor 154, or a combination of external memory 152 and internal memory for dynamically storing information, such as executable machine language, related dynamic machine data, and user input data values.


One or more of the components shown in architecture 150 may be configured to transmit information to processor 154 and/or may be configured to receive information as transmitted by processor 154. For example, one or more displays 156 may be coupled to receive data from processor 154. The data received from processor 154 may include, for example, at least a portion of dynamic numbers and/or dynamic codes.


One or more displays 156 may be, for example, touch sensitive and/or proximity sensitive. For example, objects such as fingers, pointing devices, etc., may be brought into contact with displays 156 and/or in proximity to displays 156. Detection of object proximity or object contact with displays 156 may be effective to perform any type of function (e.g., transmit data to processor 154). Displays 156 may have multiple locations that are able to be determined as being touched, or determined as being in proximity to an object.


Input and/or output devices may be implemented on architecture 150. For example, integrated circuit (IC) chip 160 (e.g., an EMV chip) may be included within architecture 150, that can communicate information with a chip reader (e.g., an EMV chip reader). Radio frequency identification (RFID) module 162 may be included within architecture 150 to enable the exchange of information with an RFID reader.


Other input and/or output devices 168 may be included within architecture 150, for example, to provide any number of input and/or output capabilities. For example, other input and/or output devices 168 may include an audio device capable of receiving and/or transmitting audible information.


Other input and/or output devices 168 may include a device that exchanges analog and/or digital data using a visible data carrier. Other input and/or output devices 168 may include a device, for example, that is sensitive to a non-visible data carrier, such as an infrared data carrier or electromagnetic data carrier.


Persons skilled in the art will appreciate that a card (e.g., card 100 of FIG. 1) may, for example, be a self-contained device that derives its own operational power from one or more batteries 158. Furthermore, one or more batteries 158 may be included, for example, to provide operational power for a period of time (e.g., approximately 2-4 years). One or more batteries 158 may be included, for example, as rechargeable batteries.


Electromagnetic field generators 170-174 may be included within architecture 150 to communicate information to, for example, a read-head of a magnetic stripe reader via, for example, electromagnetic signals. For example, electromagnetic field generators 170-174 may be included to communicate one or more tracks of electromagnetic data to read-heads of a magnetic stripe reader. Electromagnetic field generators 170-174 may include, for example, a series of electromagnetic elements, where each electromagnetic element may be implemented as a coil wrapped around one or more materials (e.g., a magnetic material and/or a non-magnetic material). Additional materials may be placed outside the coil (e.g., a magnetic material and/or a non-magnetic material).


Electrical excitation by processor 154 of one or more coils of one or more electromagnetic elements via, for example, driving circuitry 164 may be effective to generate electromagnetic fields from one or more electromagnetic elements. One or more electromagnetic field generators 170-174 may be utilized to communicate electromagnetic information to, for example, one or more read-heads of a magnetic stripe reader.


Materials may be placed inside and/or outside of the coils of magnetic field generators 170, 172, and/or 174, for example, and such materials may provide alignment cue 178. Accordingly, automated machinery such as a pick-and-place machine, a trimming machine, and/or a singulation machine may detect alignment cue 178 to determine a substantially precise placement of the components of a card (e.g., dynamic magnetic stripe communications device 102 of card 100 of FIG. 1). In addition, relative positions of other components of a card and/or the relative position of one or more sides of a card may determined from alignment cue 178.


RFID module 162 may communicate alignment information. For example, RFID module 162 may communicate a position of one or more components of a card (e.g., card 100 of FIG. 1) to a machine that may be used during the assembly of the card. Accordingly, a subsequent trimming and/or singulation process may establish, for example, a position of electromagnetic field generators 170-174 relative to one or more sides of a card after a trimming and/or singulation process completes. For example, electromagnetic field generators 170-174 may be substantially aligned at a particular distance from the long and/or short sides of a card (e.g., card 100 of FIG. 1) after trimming and/or singulation is completed.


Other alignment cues 178 may be implemented within architecture 150. For example, notches, tick marks, and/or alignment targets, may be implemented. Accordingly, manual or automated machinery may be trained onto alignment cue 178 to allow precise placement and/or alignment of one or more components of a card.


Timing aspects of information exchange between architecture 150 and the various I/O devices implemented on architecture 150 may be determined by processor 154. One or more detectors 166 may be utilized, for example, to sense the proximity, mechanical distortion, or actual contact, of an external device, which in turn, may trigger the initiation of a communication sequence. The sensed presence or touch of the external device may then be communicated to a controller (e.g., processor 154), which in turn may direct the exchange of information between architecture 150 and the external device. The sensed presence, mechanical distortion, or touch of the external device may be effective to, for example, determine the type of device or object detected.


For example, the detection may include the detection of, for example, a read-head housing of a magnetic stripe reader. In response, processor 154 may activate one or more electromagnetic field generators 170-174 to initiate a communications sequence with, for example, one or more read-heads of a magnetic stripe reader. The timing relationships associated with communications to one or more electromagnetic field generators 170-174 and one or more read-heads of a magnetic stripe reader may be provided through use of the detection of the magnetic stripe reader.


Persons skilled in the art will appreciate that processor 154 may provide user-specific and/or card-specific information through utilization of any one or more of buttons 110-118, RFID 162, IC chip 160, electromagnetic field generators 170-174, and other input and/or output devices 168.



FIG. 2 shows card 200. A distance between an edge of card 200 (e.g., edge 210) and track 1 of a magnetic stripe is substantially equal to dimension 202, which may be approximately between 0.220 and 0.225 inches (e.g., 0.223 inches). In addition, a track height may be measured along edge 212, which may be approximately between 0.109 and 0.111 inches (e.g., 0.110 inches).


Tracks 1, 2, and/or 3 may be the track locations of one or more magnetic encoders. Accordingly, a magnetic medium may be placed onto card 200 substantially in locations 204, 206, and/or 208, such that one or more magnetic encoders may change magnetic information stored within tracks 1, 2, and/or 3 of such a magnetic medium. Such changed information may then be read by a magnetic stripe reader.


Tracks 1, 2, and/or 3 may be the track locations of one or more magnetic emulators. Accordingly, a magnetic medium may not be placed onto card 200. Rather, one or more coils of such magnetic emulators may be placed substantially at locations 204, 206, and/or 208. In so doing, such magnetic emulators may generate electromagnetic fields that may communicate data to a read-head of a magnetic stripe reader.


One or more materials 214 may, for example, be placed within one or more track locations 204-208. One or more materials 216 may, for example, be placed outside one or more track locations 204-208. Materials 214 and 216 may, for example, provide alignment cues to establish a distance (e.g., distance 202) that may define a location of one or more tracks 204-208 relative to a side of card 200 (e.g., side 210). Materials 214 and 216 may, for example, be magnetic or non-magnetic materials.



FIG. 3 shows card 300 that may include, for example, board 312, board 316, permanent magnet 314, RFID 322, board 310, and conductive leads 318 and 320. Board 316 may include, for example, two or three coils. Each coil may have material inside the coil (e.g., a magnetic or non-magnetic material). Permanent magnet 314 may be placed across all such coils. Alternately, multiple magnets may be provided, for example, where each magnet may be positioned over a coil.


Additional circuitry may be provided on board 310 and/or board 312. For example, a processor, a battery, a display, a display driver, driver circuitry for a dynamic magnetic stripe communications device, light emitting diodes, light sensors, infrared sensors and transmitters, capacitive sensing contacts, and any type of button may be provided.


All boards, circuitry, and other components of card 300 may be laminated to form card assembly 326. Card assembly 326 may, for example, require trimming. For example, card assembly 326 may be trimmed such that a dynamic magnetic stripe communications device that may be located on board 312 may exhibit a proper separation distance from an edge of card assembly 326.


Card assembly 326 may, for example, exhibit a non-transparent laminate structure, which may obscure an optical verification of a position of a dynamic magnetic stripe communications device that may be located on card assembly 326. A magnetic field that may be produced, for example, by hard magnet 314 may nevertheless be sensed by a trimming device. Accordingly, card assembly 326 may first be properly aligned to such a magnetic field and then trimmed in accordance with such an alignment to maintain a separation distance between an edge of card assembly 326 and a dynamic magnetic stripe communications device that may be located on card assembly 326.


RFID 322 may provide location information that may define, for example, coordinates of all components, boards, and other devices on card assembly 326. Such information may be received by a trimming device to determine relative positioning and alignment of card assembly 326 prior to trimming. Accordingly, post-trim dimensions of card assembly 326 and the relative positioning of components (e.g., a dynamic magnetic stripe communications device) on card assembly 326 may be held within tolerances.



FIG. 4 shows card 400. Card 400 may include one or more boards (e.g., boards 414, 416, and 418). Boards 414, 416, and/or 418, may contain, for example, a processor, a battery, a display, a button, and any other component that may be provided on a card. Card 400 may include dynamic magnetic stripe communications device 412. Positioning of dynamic magnetic stripe communications device 412 may be determined, such that dimension 410, for example, may be held to within tolerance.


Alignment cues (e.g., notches 404 and 406) may be provided to aid in the alignment of, for example, dynamic magnetic stripe communications device 412. For example, gaps 420 and 422 may be used to optically align board 416 onto board 414, for example, such that dynamic magnetic stripe communications device 412 exhibits a correct placement with respect to board 414.


The location of other components of card 400 may also be aligned with alignment cues 404 and/or 406. Automated alignment using, for example, a pick-and-place machine may be utilized to place one or more components onto boards 414, 416, and/or 418. In so doing, such a pick-and-place machine may align itself to alignment cues 404 and 406, where placement of the components of card 400 may be referenced to alignment cues 404 and 406 for precise placement.


Persons skilled in the art will appreciate that alignment cues 404 and 406 may provide both visual alignment cues as well as mechanical alignment cues. For example, automated machinery that may be involved with the assembly of card 400 may include protrusions that engage notches 404 and 406 to mechanically align the automated machine to card 400. Once aligned, the automated machine may place components onto card 400 using the alignment as a placement reference.


Card 400 may be laminated to form card assembly 402, such that the laminate may cover dynamic magnetic stripe communications device 412. Such a laminate may, for example, be transparent or translucent. Accordingly, an orientation of dynamic magnetic stripe communications device 412 with respect to, for example, dimension 410 may nevertheless be implemented through alignment of a trimming and/or a singulation device to cues 404 and/or 406, since cues 404 and/or 406 may remain visible despite being covered by the laminate. In so doing, the trimming and/or singulation device may optically train onto cues 404 and/or 406 so as to maintain dimension 410 within tolerance after a trimming and/or singulation process on card assembly 402 is complete.


Persons skilled in the art will appreciate that other visual cues may be implemented to aid in alignment. For example, one or more datums 424-430 may be placed onto one or more boards 414-418 to act as visual alignment cues during assembly. One or more datums 424-430, for example, may be printed (e.g., using a silkscreen) onto boards 414-418.



FIG. 5 shows a sheet of cards 500. Sheet assembly 502 may consist of a plurality of fully populated cards 508 that may have been placed by automated processes. For example, a pick-and-place machine may be utilized to place (e.g., simultaneously place) a plurality of electronics packages 508 onto a sheet of material. A second sheet of material may be laminated over populated cards 508 to form sheet assembly 502.


One or more alignment cues 504 and/or 506 may be implemented within sheet assembly 502 to obtain, for example, precise alignment of each electronics package 508 with respect to sheet assembly 502. For example, an automated singulation machine may train onto alignment cues 504 and/or 506 to obtain one or more alignment coordinates that may be necessary to accurately singulate each card assembly 508 from sheet assembly 502. In so doing, dimensions of each card assembly 508 singulated from sheet assembly 502 may conform to predetermined card dimensions.


Multiple process flow charts are shown in FIG. 6. Step 611 of sequence 610 may include fully populating a card with components, such as processors, batteries, buttons, and dynamic magnetic stripe communication devices. Alignment cues may be installed within the card (e.g., as in step 612) and the fully assembled card may then be laminated with an obscure (e.g., opaque) laminate (e.g., as in step 613). The non-visual alignment cues (e.g., electronic and/or magnetic alignment cues) may be used to align the card (e.g., as in step 614) so that the card may be precisely trimmed (e.g., as in step 615).


Steps 621 and 622 of sequence 620 may include fully populating a card with components and installing alignment cues within the card. The fully assembled card may then be laminated with a clear (e.g., transparent) laminate (e.g., as in step 623). The visual alignment cues (e.g., notches and/or indicia) may be used to align the card (e.g., as in step 624) so that the card may be precisely trimmed (e.g., as in step 625).


A sheet of populated cards may be placed (e.g., simultaneously placed) to form a sheet assembly of cards (e.g., as in step 631). Alignment cues may be installed within the sheet assembly (e.g., as in step 632) and laminated with an obscure (e.g., opaque) laminate (e.g., as in step 633). The sheet assembly may be aligned with a singulation device in accordance with non-visual alignment cues (e.g., as in step 634) and then singulated to precise dimensions (e.g., as in step 635).


A plurality of populated cards may be placed to form a sheet assembly of cards (e.g., as in step 641 of sequence 640). Alignment cues may be installed within the sheet assembly (e.g., as in step 642) and laminated with a clear (e.g., transparent) laminate (e.g., as in step 643). The sheet assembly may be aligned with a singulation device in accordance with visual alignment cues (e.g., as in step 644) and then singulated to precise dimensions (e.g., as in step 645).


Step 651 of sequence 650 may include partially populating a card with one or more components (e.g., an RFID device). Alignment cues may, for example, be communicated by the device (e.g., as in step 652) to populate the remaining components at particular locations on a card (e.g., as in step 653). An alignment cue may, for example, be the location of a device, such that other devices on the card may be placed at a relative displacement from the location of the device. An alignment cue may, for example, be location information that may be communicated by the device (e.g., via an RF field of an RFID device) such that other devices on the card may be placed at locations defined by the communicated location information.


Persons skilled in the art will also appreciate that the present invention is not limited to only the embodiments described. Instead, the present invention more generally involves dynamic information and the exchange thereof. Persons skilled in the art will also appreciate that the apparatus of the present invention may be implemented in other ways than those described herein. All such modifications are within the scope of the present invention, which is limited only by the claims that follow.

Claims
  • 1. A method, comprising: populating a card with at least one alignment cue and a plurality of components to form a populated card, wherein one of said plurality of components includes a dynamic magnetic stripe communications device;laminating said populated card to form a laminated card;aligning a trimming device to said at least one alignment cue; andtrimming said laminated card with said aligned trimming device to position said dynamic magnetic stripe communications device within a distance from a side of said card,wherein said laminating of said populated card includes laminating such that a portion of said trimmed card includes said at least one alignment cue.
  • 2. The method of claim 1, wherein said at least one alignment cue is at least one material.
  • 3. The method of claim 1, wherein said at least one alignment cue is at least one magnetic material.
  • 4. The method of claim 1, wherein said at least one alignment cue is at least one hard magnet.
  • 5. The method of claim 1, wherein said aligning a trimming device includes aligning said trimming device to a magnetic field.
  • 6. The method of claim 1, wherein said at least one alignment cue is at least one notch.
  • 7. The method of claim 1, wherein said at least one alignment cue includes at least one notch, said trimming device includes at least one protrusion, andsaid aligning a trimming device includes engaging said at least one notch with said at least one protrusion.
  • 8. The method of claim 1, wherein said at least one alignment cue is at least one datum.
  • 9. The method of claim 1, wherein said at least one alignment cue is an optical alignment cue.
  • 10. The method of claim 1, wherein said at least one alignment cue is a non-optical alignment cue.
  • 11. The method of claim 1, wherein said at least one alignment cue is at least one indicia.
  • 12. The method of claim 1, wherein said at least one alignment cue is at least one tick mark.
  • 13. The method of claim 1, wherein said at least one alignment cue is at least one alignment target.
  • 14. The method of claim 1, wherein said aligning a trimming device includes training said trimming device onto said at least one alignment cue.
  • 15. The method of claim 1, wherein said at least one alignment cue is a mechanical alignment cue.
  • 16. The method of claim 1, wherein at least one of said plurality of components is a flexible printed circuit board, and said populating a card with at least one alignment cue includes printing indicia onto said flexible circuit board.
  • 17. The method of claim 1, wherein at least one of said plurality of components is a display.
  • 18. The method of claim 1, wherein said plurality of components includes at least a board, a processor, a battery, a display, and a button.
  • 19. A method, comprising: populating a card assembly with a plurality of components and at least one alignment cue to form a populated card assembly, wherein one of said plurality of components includes a dynamic magnetic stripe communications device;laminating said populated card assembly with a laminate layer including at least one laminate material;aligning a trimming device to said at least one alignment cue; andtrimming said laminate layer with said aligned trimming device to form a trimmed laminate layer,wherein said dynamic magnetic stripe communications device is positioned at a target distance from a side of said trimmed laminate layer, andsaid laminating of said populated card assembly includes laminating such that a portion of said populated card assembly includes said at least one alignment cue.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Patent Application No. 61/393,511, titled “SYSTEMS AND METHODS FOR ALIGNMENT TECHNIQUES FOR MAGNETIC CARDS AND DEVICES,” filed Oct. 15, 2010, which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (232)
Number Name Date Kind
3711353 Zimmer Jan 1973 A
4051484 Martin Sep 1977 A
4353064 Stamm Oct 1982 A
4394654 Hofmann-Cerfontaine Jul 1983 A
4614861 Pavlov et al. Sep 1986 A
4667087 Quintana May 1987 A
4701601 Francini et al. Oct 1987 A
4720860 Weiss Jan 1988 A
4786791 Hodama Nov 1988 A
4791283 Burkhardt Dec 1988 A
4797542 Hara Jan 1989 A
5038251 Sugiyama et al. Aug 1991 A
5168520 Weiss Dec 1992 A
5237614 Weiss Aug 1993 A
5276311 Hennige Jan 1994 A
5347580 Molva et al. Sep 1994 A
5361062 Weiss et al. Nov 1994 A
5412199 Finkelstein et al. May 1995 A
5434398 Goldberg Jul 1995 A
5434405 Finkelstein et al. Jul 1995 A
5478994 Rahman Dec 1995 A
5479512 Weiss Dec 1995 A
5484997 Haynes Jan 1996 A
5485519 Weiss Jan 1996 A
5585787 Wallerstein Dec 1996 A
5591949 Bernstein Jan 1997 A
5608203 Finkelstein et al. Mar 1997 A
5623552 Lane Apr 1997 A
5657388 Weiss Aug 1997 A
5834747 Cooper Nov 1998 A
5834756 Gutman et al. Nov 1998 A
5856661 Finkelstein et al. Jan 1999 A
5864623 Messina et al. Jan 1999 A
5907142 Kelsey May 1999 A
5913203 Wong et al. Jun 1999 A
5937394 Wong et al. Aug 1999 A
5955021 Tiffany, III Sep 1999 A
5956699 Wong et al. Sep 1999 A
6025054 Tiffany, III Feb 2000 A
6045043 Bashan et al. Apr 2000 A
6076163 Hoffstein et al. Jun 2000 A
6085320 Kaliski Jul 2000 A
6095416 Grant et al. Aug 2000 A
6130621 Weiss Oct 2000 A
6145079 Mitty et al. Nov 2000 A
6157920 Jakobsson et al. Dec 2000 A
6161181 Haynes, III et al. Dec 2000 A
6176430 Finkelstein et al. Jan 2001 B1
6182894 Hackett et al. Feb 2001 B1
6189098 Kaliski Feb 2001 B1
6199052 Mitty et al. Mar 2001 B1
6206293 Gutman et al. Mar 2001 B1
6240184 Huynh et al. May 2001 B1
6241153 Tiffany, III Jun 2001 B1
6256873 Tiffany, III Jul 2001 B1
6269163 Rivest et al. Jul 2001 B1
6286022 Kaliski et al. Sep 2001 B1
6308890 Cooper Oct 2001 B1
6313724 Osterweil Nov 2001 B1
6358353 Maliner Mar 2002 B1
6389442 Yin et al. May 2002 B1
6393447 Jakobsson et al. May 2002 B1
6411715 Liskov et al. Jun 2002 B1
6446052 Juels Sep 2002 B1
6460141 Olden Oct 2002 B1
6592044 Wong et al. Jul 2003 B1
6607127 Wong Aug 2003 B2
6609654 Anderson et al. Aug 2003 B1
6631849 Blossom Oct 2003 B2
6655585 Shinn Dec 2003 B2
6681988 Stack et al. Jan 2004 B2
6705520 Pitroda et al. Mar 2004 B1
6755341 Wong et al. Jun 2004 B1
6764005 Cooper Jul 2004 B2
6769618 Finkelstein Aug 2004 B1
6805288 Routhenstein et al. Oct 2004 B2
6811082 Wong Nov 2004 B2
6813354 Jakobsson et al. Nov 2004 B1
6817532 Finkelstein Nov 2004 B2
6873974 Schutzer Mar 2005 B1
6902116 Finkelstein Jun 2005 B2
6970070 Juels et al. Nov 2005 B2
6980969 Tuchler et al. Dec 2005 B1
6985583 Brainard et al. Jan 2006 B1
6991155 Burchette, Jr. Jan 2006 B2
7013030 Wong et al. Mar 2006 B2
7035443 Wong Apr 2006 B2
7039223 Wong May 2006 B2
7044394 Brown May 2006 B2
7051929 Li May 2006 B2
7083094 Cooper Aug 2006 B2
7100049 Gasparini et al. Aug 2006 B2
7100821 Rasti Sep 2006 B2
7111172 Duane et al. Sep 2006 B1
7114652 Moullette et al. Oct 2006 B2
7136514 Wong Nov 2006 B1
7140550 Ramachandran Nov 2006 B2
7163153 Blossom Jan 2007 B2
7195154 Routhenstein Mar 2007 B2
7197639 Juels et al. Mar 2007 B1
7219368 Juels et al. May 2007 B2
7225537 Reed Jun 2007 B2
7225994 Finkelstein Jun 2007 B2
7246752 Brown Jul 2007 B2
7298243 Juels et al. Nov 2007 B2
7334732 Cooper Feb 2008 B2
7337326 Palmer et al. Feb 2008 B2
7346775 Gasparini et al. Mar 2008 B2
7356696 Jakobsson et al. Apr 2008 B1
7357319 Lin et al. Apr 2008 B1
7359507 Kaliski Apr 2008 B2
7360688 Harris Apr 2008 B1
7363494 Brainard et al. Apr 2008 B2
7380710 Brown Jun 2008 B2
7398253 Pinnell Jul 2008 B1
7404087 Teunen Jul 2008 B2
7424570 D'Albore et al. Sep 2008 B2
7427033 Roskind Sep 2008 B1
7454349 Teunen et al. Nov 2008 B2
7461250 Duane et al. Dec 2008 B1
7461399 Juels et al. Dec 2008 B2
7472093 Juels Dec 2008 B2
7472829 Brown Jan 2009 B2
7494055 Fernandes et al. Feb 2009 B2
7502467 Brainard et al. Mar 2009 B2
7502933 Jakobsson et al. Mar 2009 B2
7503485 Routhenstein Mar 2009 B1
7516492 Nisbet et al. Apr 2009 B1
7523301 Nisbet et al. Apr 2009 B2
7530495 Cooper May 2009 B2
7532104 Juels May 2009 B2
7543739 Brown et al. Jun 2009 B2
7559464 Routhenstein Jul 2009 B2
7562221 Nystrom et al. Jul 2009 B2
7562222 Gasparini et al. Jul 2009 B2
7580898 Brown et al. Aug 2009 B2
7584153 Brown et al. Sep 2009 B2
7591426 Osterweil et al. Sep 2009 B2
7591427 Osterweil Sep 2009 B2
7602904 Juels et al. Oct 2009 B2
7631804 Brown Dec 2009 B2
7639537 Sepe et al. Dec 2009 B2
7641124 Brown et al. Jan 2010 B2
7660902 Graham et al. Feb 2010 B2
7828207 Cooper Nov 2010 B2
20010034702 Mockett et al. Oct 2001 A1
20010047335 Arndt et al. Nov 2001 A1
20020059114 Cockrill et al. May 2002 A1
20020082989 Fife et al. Jun 2002 A1
20020096570 Wong et al. Jul 2002 A1
20020120583 Keresman, III et al. Aug 2002 A1
20030034388 Routhenstein et al. Feb 2003 A1
20030052168 Wong Mar 2003 A1
20030057278 Wong Mar 2003 A1
20030116635 Taban Jun 2003 A1
20030152253 Wong Aug 2003 A1
20030163287 Vock et al. Aug 2003 A1
20030173409 Vogt et al. Sep 2003 A1
20030179909 Wong et al. Sep 2003 A1
20030179910 Wong Sep 2003 A1
20030226899 Finkelstein Dec 2003 A1
20040035942 Silverman Feb 2004 A1
20040054574 Kaufman et al. Mar 2004 A1
20040133787 Doughty Jul 2004 A1
20040162732 Rahim et al. Aug 2004 A1
20040172535 Jakobsson Sep 2004 A1
20040177045 Brown Sep 2004 A1
20050043997 Sahota et al. Feb 2005 A1
20050080747 Anderson et al. Apr 2005 A1
20050086160 Wong et al. Apr 2005 A1
20050086177 Anderson et al. Apr 2005 A1
20050116026 Burger et al. Jun 2005 A1
20050119940 Concilio et al. Jun 2005 A1
20050154643 Doan et al. Jul 2005 A1
20050228959 D'Albore et al. Oct 2005 A1
20060000900 Fernandes et al. Jan 2006 A1
20060037073 Juels et al. Feb 2006 A1
20060041759 Kaliski et al. Feb 2006 A1
20060085328 Cohen et al. Apr 2006 A1
20060091223 Zellner May 2006 A1
20060161435 Atef et al. Jul 2006 A1
20060163353 Moulette et al. Jul 2006 A1
20060174104 Crichton et al. Aug 2006 A1
20060196931 Holtmanns et al. Sep 2006 A1
20060256961 Brainard et al. Nov 2006 A1
20070034700 Poidomani et al. Feb 2007 A1
20070114274 Gibbs et al. May 2007 A1
20070124321 Szydlo May 2007 A1
20070152070 D'Albore Jul 2007 A1
20070152072 Frallicciardi et al. Jul 2007 A1
20070153487 Frallicciardi et al. Jul 2007 A1
20070174614 Duane et al. Jul 2007 A1
20070241183 Brown et al. Oct 2007 A1
20070241201 Brown et al. Oct 2007 A1
20070256123 Duane et al. Nov 2007 A1
20070192249 Biffle et al. Dec 2007 A1
20070291753 Romano Dec 2007 A1
20080005510 Sepe et al. Jan 2008 A1
20080008315 Fontana et al. Jan 2008 A1
20080008322 Fontana et al. Jan 2008 A1
20080010675 Massascusa et al. Jan 2008 A1
20080016351 Fontana et al. Jan 2008 A1
20080019507 Fontana et al. Jan 2008 A1
20080028447 O'Malley et al. Jan 2008 A1
20080040271 Hammad et al. Feb 2008 A1
20080040276 Hammad et al. Feb 2008 A1
20080058016 Di Maggio et al. Mar 2008 A1
20080059379 Ramaci et al. Mar 2008 A1
20080096326 Reed Apr 2008 A1
20080126398 Cimino May 2008 A1
20080128515 Di Iorio Jun 2008 A1
20080148394 Poidomani et al. Jun 2008 A1
20080201264 Brown et al. Aug 2008 A1
20080209550 Di Iorio Aug 2008 A1
20080288699 Chichierchia Nov 2008 A1
20080294930 Varone et al. Nov 2008 A1
20080302877 Musella et al. Dec 2008 A1
20090013122 Sepe et al. Jan 2009 A1
20090036147 Romano Feb 2009 A1
20090046522 Sepe et al. Feb 2009 A1
20090065138 Engel et al. Mar 2009 A1
20090108064 Fernandes et al. Apr 2009 A1
20090150295 Hatch et al. Jun 2009 A1
20090152365 Li et al. Jun 2009 A1
20090159700 Mullen Jun 2009 A1
20090242648 Di Sirio et al. Oct 2009 A1
20090244858 Di Sirio et al. Oct 2009 A1
20090253460 Varone et al. Oct 2009 A1
20090255996 Brown et al. Oct 2009 A1
20090290704 Cimino Nov 2009 A1
20090303885 Longo Dec 2009 A1
20110028184 Cooper Feb 2011 A1
Foreign Referenced Citations (10)
Number Date Country
102007042470 Mar 2009 DE
0578992 Jun 1993 EP
05210770 Aug 1993 JP
WO9852735 Nov 1998 WO
WO0247019 Jun 2002 WO
WO06066322 Jun 2006 WO
WO06080929 Aug 2006 WO
WO06105092 Oct 2006 WO
WO06116772 Nov 2006 WO
WO08064403 Jun 2008 WO
Non-Patent Literature Citations (6)
Entry
U.S. Appl. No. 60/594,300, Poidomani et al.
U.S. Appl. No. 60/675,388, Poidomani et al.
The Bank Credit Card Business. Second Edition, American Bankers Association, Washington, D.C., 1996.
A Day in the Life of a Flux Reversal. http://www.phrack/org/issues.html?issue=37&id=6#article. As viewed on Apr. 12, 2010.
Dynamic Virtual Credit Card Numbers. http://homes.cerias.perdue.edu/˜jtli/paper/fc07.pdf. As viewed on Apr. 12, 2010.
English translation of JP 05210770 A.
Provisional Applications (1)
Number Date Country
61393511 Oct 2010 US