The present disclosure is directed to methods and systems for medical procedures, and more particularly, to methods and systems involving imaging for such procedures.
Many microsurgical procedures require precision cutting and/or removal of various body tissues. For example, in ophthalmic microsurgical procedures inner limiting membrane (ILM) removal and epi-retinal membrane (ERM) removal are useful surgical treatments of different macular surface diseases. However, the surgical techniques for ILM and ERM peeling require skill and patience. In the ophthalmic context and in other microscopic surgical contexts, precise and carefully constructed surgical instruments are used for each aspect of the surgical technique.
To aid the operator with these types and other types of surgical procedures, operators may use an imaging system that presents a microscope subject view of the tissue to be treated, such as a view of the tissue of the patient's eye. Accordingly, the user of such an imaging system may be provided with a close-up view of the surgical instruments, such as forceps or other tools, as well as the region of the eye that is of interest. In some cases, the operator may also be provided with additional information that may be useful to the operator. For example, the operator may be presented with additional information in an overlaid display, visible through the eyepieces of the microscope. However, overlaid images can block or obscure the view of the microsurgical site. Additionally, the overlaid images may visually compete with the view of the microsurgical site for the attention of the surgeon. In some instances, the overlaid images may be missed by the surgeon if the images are not displayed to the surgeon's dominant eye. In other instances, the images may be too distracting when displayed to the surgeon's dominant eye. Accordingly, there is a need for continued improvement in the use and operability of surgical systems and tools for various ophthalmic procedures and/or other microscope-assisted procedures.
The present disclosure is directed to exemplary optical systems configured to display a composite image and may include at least two eyepieces through which the composite image is viewable to a user. An exemplary optical system may further include a lens system having a subject image plane viewable through the at least two eyepieces. The subject image plane may include a subject image, such as an image of tissue to be treated or observed. The optical system may further include a projection system that overlays a projected image onto a projected image plane, viewable through the at least two eyepieces, thereby including the projected image and the subject image in the composite image. The projection system may include an adjustable optical component, wherein a position of the projected image plane is adjustable relative to the subject image plane by adjustment to the adjustable optical component.
Exemplary microscopes may include a left eyepiece and a right eyepiece through which a composite image is viewable to a user and may also include a lens system having a subject image plane viewable through the left and right eyepieces. The subject image plane may include a subject image. Such an exemplary microscope may also include a projection system that overlays a projected image onto a projected image plane to include the projected image and the subject image in the composite image. The projection system may further include a projected image source to provide the projected image, an adjustable optical component coupled to an adjusting component, such as a kinematic mount, to enable surgeon-controlled positioning of the adjustable optical component, and a beam coupler configured to combine the subject image and the projected image into the composite image. A position of the projected image plane may be adjustable relative to the subject image plane by adjustments to the positioning of the adjustable optical component.
Exemplary projection systems may include a projected image source to insert or introduce a projected image into a subject image path. Such exemplary projection systems may further include a beam splitter and an adjustable optical component. The beam splitter may split the projected image into a left eyepiece projected image along a left projected image path toward a left eyepiece and a right eyepiece projected image along a right projected image path toward a right eyepiece. The projection system may include an adjustable optical component, wherein a position of a projected image plane relative to a subject image plane is adjustable by positioning and/or orienting the adjustable optical component. The projection system may further include an adjusting component coupled to the adjustable optical component to enable controlled positioning of the adjustable optical component. The projection system may also include a left beam coupler and a right beam coupler to combine at least one of the left eyepiece projected image and the right eyepiece projected image into the subject image path to generate a composite image.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory in nature and are intended to provide an understanding of the present disclosure without limiting the scope of the present disclosure. In that regard, additional aspects, features, and advantages of the present disclosure will be apparent to one skilled in the art from the following detailed description.
The accompanying drawings illustrate embodiments of the devices and methods disclosed herein and together with the description, serve to explain the principles of the present disclosure.
The accompanying drawings may be better understood by reference to the following detailed description.
For the purposes of promoting an understanding of the principles of the present disclosure, reference will now be made to the embodiments illustrated in the drawings, and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is intended. Any alterations and further modifications to the described devices, instruments, methods, and any further application of the principles of the present disclosure are fully contemplated as would normally occur to one skilled in the art to which the disclosure relates. In particular, it is fully contemplated that the features, components, and/or steps described with respect to one embodiment may be combined with the features, components, and/or steps described with respect to other embodiments of the present disclosure. For simplicity, in some instances the same reference numbers are used throughout the drawings to refer to the same or like parts.
The present disclosure is directed to methods and systems for displaying additional information relating to a surgical procedure along with a standard subject image of a surgical site. In various procedures, a user may observe a region of interest, such as a particular tissue region at a surgical site, by using an imaging system, including a microscope. The imaging system may also include a projected image system to include a display of additional surgical data to the user in connection with the image of the region of interest shown by the optics of the microscope. In one example, an informational peripheral data display region or frame about a central surgical viewing area may be projected into a subject image path of the microscope to permit the user to view the surgical site and the additional information. As such, the surgeon may continue to perform the surgery while visually being made aware of changing states or measured parameters during the surgery. The projected image system may provide for interactive virtual buttons to be displayed to the user's view.
In another example, the additional surgical data includes an OCT image. For example, some imaging systems include a microscope imaging system and an OCT imaging system. The OCT imaging system obtains an OCT image that includes a cross-sectional view of the region of interest. Thus, the OCT image may be used to visualize tissue below the outer surface tissue. In some cases, the OCT image or another pre-operative image or image set is provided as a surgical data overlay within the microscope image. In yet another example, a zoomed-in view of the subject image obtained by the microscope is projected into the image path to provide a standard view and a zoomed-in view. The additional information, interface elements, and/or images provided to the user through the microscope may increase the quality and efficiency of the surgery, benefiting both the surgeon and the patient.
In order to prevent the projected images from obstructing the surgeon's view or from posing a distraction to the surgeon during a procedure, the principles of the present disclosure enable the projected image to appear as if on a different visual plane than the subject image obtained from the microscope. Accordingly, when the surgeon is focused on the subject image, the projected image may not appear in focus. In this way the information is presented to the surgeon in a way that does not obstruct the surgeon's view and that decreases the distraction posed by the overlaid information. The surgeon may be able to adjust the separation distance between the subject image plane and the projected image plane and to adjust the relative brightness of images included in each visual plane. Additionally, the surgeon may be able to select one side of the stereoscopic microscope in which to include the projected image, according to the particular surgeon's dominant eye and personal preferences. The non-selected side of the stereoscopic microscope may block the projected image or provide a relative decrease in the intensity of that side compared to the selected side.
The console 102 includes a computer system 103, a display screen 105, and a number of subsystems that are used together to perform ocular surgical procedures, such as emulsification or vitrectomy surgical procedures, for example, or ILM or ERM procedures. For example, the subsystems include a foot pedal subsystem 106 including, for example, a foot pedal input device 108, a fluidics subsystem 110 including an aspiration vacuum 112 and an irrigation pump 114 that connect to tubing 115, a handpiece subsystem 116 that may be an ultrasonic generator subsystem or a pneumatic vitrectomy cutter subsystem including a handpiece 118 (which may be an ultrasonic handpiece or a vitrectomy handpiece or other instrument, in various embodiments), an intravenous (IV) pole subsystem 120 including a motorized IV pole 122, a tracking subsystem 124 including one or more trackers 127 (cameras located in the eyepieces and/or other tracking hardware, such as a radiofrequency tracking system or an electromagnetic tracking system), and an imaging and control subsystem 126 including a communication module 140. Other tools may be included additionally or alternatively in other embodiments. In this example, a microscope 130 and an arm 150 (
The different subsystems in the console 102 comprise control circuits for the operation and control of the respective microsurgical instruments and for the microscope 130. The computer system 103 may govern the interactions and relationships between the different subsystems to properly perform an ocular surgical procedure and to properly communicate information to the operator of the surgical system 100 through the microscope 130. To do this, the computer system 103 may include one or more processing devices, such as a central processor, and memory and be preprogrammed with instructions for controlling the subsystems to carry out a surgical procedure, such as an emulsification procedure or a vitrectomy or for ILM and ERM peeling, for example. Some of the instructions may cause methods and operations described herein to be performed by the central processor.
In addition, the console 102 includes an input device that permits a user to make selections within a limited scope to control or modify the preprogrammed relationships between different subsystems. In this embodiment, input devices may be incorporated into, or otherwise in communication with, the console 102 and may include the foot pedal input device 108, a touch screen device responsive to selections made directly on the screen, a standard computer keyboard, a standard pointing device, such as a mouse or trackball, buttons, knobs, or other input devices. Yet others are also contemplated, including, for example, a tool tracking subsystem that permits the surgeon to manipulate a virtual user interface using a tool, such as the tip of the handpiece 118. Using the input devices, a surgeon, scientist, or other user may select or adjust parameters that affect the relationships between the different subsystems of the console 102. Accordingly, based on a user input, a user may change or adjust the relationships from those that were hard-coded into the console by the system programmers.
Similarly, the user may change or adjust components of the microscope 130 to adjust a focal plane of an overlaid or projected image viewable to the user through eyepieces of the microscope. As shown in
In the embodiment shown, still referring to
The imaging and control subsystem 126 is configured and arranged to present data and information to the microscope 130 for easy and intuitive display to a surgeon during a surgical procedure. The imaging and control subsystem 126 may communicate with a projected image source to overlay an image into the image path of the microscope 130. As such, the surgeon can look through the microscope 130 to see the surgical environment while still obtaining the benefit of a data display. This may enable the surgeon to look through a microscope, grasp tools, manipulate a virtual user interface, etc., to maintain an optimal surgical experience. The communication module 140 of the imaging and control subsystem 126 may comprise a transceiver used to communicate with the microscope 130, in some embodiments. The communication module 140 may communicate settings and/or images relating to the surgical site and the console settings. Wired and wireless systems are contemplated.
Such an imaging system permits a user to observe both a conventional microscope image and a projected image while using a surgical instrument to perform an ophthalmic surgical procedure such as an ILM removal. The conventional microscope image is observed using light reflected off a subject, e.g., the retina of a patient, which then moves along an imaging path including a plurality of optical elements through one or more eyepieces of the microscope 130 to the eye or eyes of the surgeon. The surgeon may focus the microscope 130 at a subject image plane, e.g., the plane of the retina or another feature undergoing microscopic surgery. The projected image may include user interface elements that provide information about a patient, such as a pressure within the eye (intraocular pressure), information about a particular tool or about the subsystems of the system 100, such as a parameter or a status, and/or a reference image, such as a previously obtained optical image or an image obtained using another modality. Images obtained using another modality may include an optical coherence tomography image, a magnetic resonance image, or an image from yet another modality. The projected image may be a static image, a dynamic image, or may be a series of images or a video.
Generally, such surgical data overlays remain fixed in a viewable location with respect to the subject image as seen in the microscope 130. Thus, the user has to direct his or her vision away from regions of interest to view the surgical data overlay. This can be risky if the user is in the middle of a delicate procedure. The user may have to hold the tools steady while redirecting visual attention to the surgical data overlay. The microscope 130 includes components that allow the user to adjust the projected image plane relative to the subject image plane. In this way, when the surgeon's eyes are focused on the subject image plane, user interface elements projected into the image and pathway of the microscope 130 may appear out of focus. Because those elements and information are presented out of focus, elements and information included in the projected image may present a reduced distraction or obstruction to the surgeon whose attention and eyes are focused at the subject image plane, than when the projected image is project at the subject image plane.
According to principles described herein, the present disclosure is directed to facilitating the adjustment of a plane of a projected image of the surgical data/interface overlay relative to the subject image seen through the eyepieces of the microscope 130 in a subject image plane.
The lens system 300 includes an image path 306 to provide an image obtained at the subject image plane 308. As shown, the image path 306 includes a left eye image path 306A and a right eye image path 306B. Accordingly, the image path 306 provides stereoscopic imaging at the subject image plane 308. The lens system 300 may have a focus point 310 lying on the subject image plane 308.
In order to include a projected image in the image path 306, the microscope 130 further includes the projection system 320, an embodiment of which is illustrated in
Referring now to
The light corresponding to the projected image leaves the projected image source 322 (also referred to as the projector 322) and passes through the optics components or optics component 324. In some embodiments, the optics component 324 includes or is an optical filter, such as a neutral density filter. Additionally, some embodiments of the microscope 130 include an image intensity attenuator, such as an electronic shutter or a mechanical shutter. Accordingly, the optics component 324 may reduce a visual intensity of the projected image relative to a subject image in the subject image path 306 by decreasing the intensity of the light of the projected image before it enters the beam splitter 326. In other embodiments, the optics component 324 may reduce a visual intensity of the subject image relative to the projected image.
The light corresponding to the projected image passes through the optics component 324 into the beam splitter 326. The light of the projected image, or simply the projected image, is split by the beam splitting surface 327 into a left eyepiece projected image along a left projected image path 400A and a right eyepiece projected image along a right projected image path 400B. The left projected image path continues through, or may be redirected through, the remainder of the beam splitter 236 and into the beam coupler 330A. The beam coupler 330A includes the coupling interface 332A, which redirects the light of the projected image into the subject image path 306A to the eyepiece 304A. As illustrated a portion of the light of the projected image is split by the beam splitting surface 327 and directed toward the adjustable optical component 328 and the directable optical surface 329 thereon. The light incident upon the directable optical surface 329 may reflect off the directable optical surface 329 at an angle equal to the angle of incidence upon the directable optical surface 329. The reflected light may form an angle that introduces an asymmetry between the right eyepiece projected image path 400B and the left eyepiece projected image path 400A. From the directable optical surface 329, the portion of the light of the project image travels to the beam coupler 330B where it is redirected into the subject image path 306B by the coupling interface 332B, which may be a reflective surface for light travelling from the directable optical surface 329, while being transmissive to light travelling from the lenses 302. From the coupling interface 332B, the light of the projected image travels to the eyepiece 304B.
As shown in
Due to the configuration of the beam splitter 326 and alignment differences in the adjustable optical component 328, the projected image may appear to the surgeon to be on a different plane than the subject image plane 308 of
Referring now to
Referring now to
As illustrated in
As illustrated in
Some embodiments of the surgical system 100 may include a tool tracking subsystem, included as part of the tracking subsystem 124 or as part of or in combination with the imaging and control subsystem 126 (
Referring again to
The kinematic controller 134 of
Referring now to
Many surgeons have a dominant eye that is more sensitive to the projected image than the other eye. If the projected image is included in the image path of the microscope 130 at too high an intensity, the projected image may be excessively distracting to the dominant eye of the surgeon. In some embodiments, the surgeon may interact with the computer system 103 to request that the projected image should be shown to only the surgeon's right eye or left eye, according to a preference of the surgeon. In such embodiments, the attenuators 802 may be selectively, individually activated to prevent the projected image from being transmitted through the eyepiece 304A or the eyepiece 304B. The imaging and control subsystem 126 may function as an attenuator control system to receive attenuator adjustment commands and command the attenuators 802 to effect the adjustments.
As illustrated in
Additionally, the kinematic mount 608 may be used to adjust the projected image path 400B into or out of the plane of drawing sheet of
As shown in
In some embodiments, the projection system 320 may be provided as a kit configured to retrofit an existing microscope. Accordingly, the projection system 320 may be provided in a housing, as shown in
Referring now to
Embodiments of the method 1000 may begin at step 1002 in which a processing device, such as a processor of the computer system 103, receives information to be rendered as a user interface element in connection with a subject view from a microscope. For example, the computer system 103 may receive or generate information comprising user interface elements for the display of information pertinent to a surgical operation through the eyepieces 304 of the microscope 130 described herein. The displayed information may include presenting a graphical user interface with interactive user interface elements, such as buttons, whereby the surgeon may manipulate one or more settings of the surgical system 100 or may request operating status information or physiological information for display. An example of such user interface elements is provided in
At step 1004, the processing device may project a rendered user interface element or image into an optic system such that the user interface element appears with the subject view to a user. For example, the processing device may communicate with the projected image source 322, which may include an image processor, which thereafter emits light including the user interface element or elements. The projected imaging source 322 directs the light to a beam splitter 326, which splits the light into to projected image paths 400A and 400B. Beam couplers 330 may be used to introduce the light of the projected image paths 400A and 400B, into a subject image path 306 obtained through a set of optical components, such as lenses 302, and directed into eyepieces 304.
At step 1006, the processing device may move a focal plane of the user interface element relative to a focal plane of the subject view from the microscope. For example, the processing device may communicate with an adjusting component, like the kinematic controller 134 may be used to direct to the kinematic mount 136, to adjust the adjustable optical component 328. The adjustable optical component 328 may include a directable optical surface 329, such as a mirror, that causes the projected image path 400B to deviate from a path parallel to the projected image path 400A. The deviation may be interpreted by the visual cortex of the user such that the projected image appears to be at a different focal plane than the subject being viewed through the microscope 130. The processing device may communicate with the kinematic controller 134 to move the adjustable optical component 328 in any of a combination of three, four, five, or six degrees of freedom to adjust the projected image plane. In some embodiments, the beam splitter 326 may be additionally or alternatively adjusted and reoriented by a kinematic mount to redirect the projected image path 400A. Accordingly, both the projected image paths 400A and 400B may be controlled to achieve a desired angle in some embodiments.
At step 1008, the processing device may activate an attenuator to prevent or limit inclusion of the user interface element in a deselected eyepiece of the microscope. For example, the processing device may communicate with the attenuator 802A to prevent or decrease the amount of light in the projected image path 400A such that the projected image appears to the surgeon only in the eyepiece 304B. For example, the surgeon may know that the surgeon's dominant eye is his or her right eye, and may select request that the projected image be displayed to his or her dominant eye. In some embodiments, the surgeon may request that the projected image be displayed to his or her non-dominant eye. In yet other embodiments, an eye tracking tool may be used to determine the dominant eye of the surgeon and automatically adjust the attenuators 802 accordingly.
Through use of principles described herein, a user can have a better experience when viewing the surgical site. Specifically, the user may be less distracted by a display of user interface elements overlaid on a subject view of a microscope. Rather, the surgical data overlay will be displayed on a focal plane that is different from that of the microscope. In this way, interactive user interface elements, such as start and stop buttons may be manipulated when a surgical tool is lifted up away from the surgical site to a projected image plane. The user may also be able to individually adjust the intensity of left and rights paths or channels of a projected image being inserted into the subject viewing path of a stereoscopic microscope.
Persons of ordinary skill in the art will appreciate that the embodiments encompassed by the present disclosure are not limited to the particular exemplary embodiments described above. For example, while a single adjustable optical component is illustrated in the depicted embodiments, other embodiments may include adjustable optical component in both project image paths. In such embodiments, a surgeon or a computer may select which project image path should be adjusted. Additionally, in some related embodiments, both adjustable optical components may be adjusted to provide a project image on a plane that is different from the subject image plane of the microscope.
In that regard, although illustrative embodiments have been shown and described, a wide range of modification, change, and substitution is contemplated in the foregoing disclosure. It is understood that such variations may be made to the foregoing without departing from the scope of the present disclosure. Accordingly, it is appropriate that the following claims be construed broadly and in a manner consistent with the present disclosure.